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An analysis is made of the absorption of sound in metals containing mobile quantum defects. In a 
normal metal the main contribution to the absorption is due to an electron mechanism. At low 
temperatures electrons relax due to their scattering by quantum defects, which gives rise to a 
nontrivial temperature dependence of the absorption coefficient of sound. It is shown that the 
relaxation absorption mechanism, associated with redistribution of defects between interstices, 
can play an important role when two types of interstices separated by a small energy interval are 
present in a crystal and also in the superconducting phase of a metal if the trapping of mobile and 
immobile defects results in the formation of two-level defects. 

In studies of the impurity scattering of electrons and k to k' is carried out over the Brillouin zone. 
metals it is usual to assume that impurities are distributed at Kondo showed in a series of papers (see, for example, 
random and "frozen" at fixed positions. The impurities then Ref. 7 )  that the electron-impuriton interaction results in 
play the role of an external field which acts on electrons. The significant infrared renormalizations of both Vo(q) and of 
physical characteristics of metals with frozen defects are fre- the Green impuriton function Yo(k, E,  ), 
quently calculated by the well-known "cross" technique 
(see, for example, Ref. 1 ) . V, (k, E,) = [ien-m (k) +t]-', 

However, some light interstitial impurities retain their 
mobility even at low temperatures because of quantum tun- 
neling.2 Such mobile defects ("impuritons") should be re- 
garded as internal degrees of freedom of a crystal. Theoreti- 
cal estimates3 and experimental  result^^'^ show that the 
characteristic width of an energy band E, of hydrogen in a 
metal is 0.1-10 K. 

It is undoubtedly of interest to investigate the transport 
characteristics of metals containing mobile defects (hydro- 
gen isotopes and helium). The most promising objects for 
the investigation of these characteristics are single crystals 
of transition metals containing oxygen in a small and con- 
trolled amount. The scattering of electrons by mobile defects 
gives rise to a fundamentally new temperature dependence 
of the relaxation time of the electron subsystem and, conse- 
quently, of the transport coefficients of a metal. 

The interaction of impuritons with one another causes 
them to cluster when a metal is cooled, leading to a funda- 
mental modification of the impurity subsystem kinetics.' 

The present paper reports an investigation of the ab- 
sorption of sound in metals with mobile defects at low tem- 
peratures including the clustering temperature. 

1. INFRARED RENORMALIZATIONS 

The Hamiltonian describing the interaction of electrons 
with a system of impuritons not interacting with one another 
is7 

H =  ~ r ( k ) a + ( k ) a ( k ) + ~  w(k)c+(k)c(k) (1)  
k k 

where E,  is the Matsubara frequency (we assume specifical- 
ly that impuritons are fermions) and [is the chemical poten- 
tial of impuritons. Calculations of the renormalizations in 
the parquet approximation, similar to that developed earlier 
in Ref. 8, yield the following result: 

Here T is the absolute temperature, Eo is the width of the 
conduction electron and energy band, and G(k) is the renor- 
malized impuriton dispersion law. 

According to Ref. 9, the dimensionless electron-impu- 
ritv interaction constant is 

dki dkz 1 Vo (ki-kz) 1 
g=2 'w~i;;i~ I VE(kl) I I V ~ ( k r )  I ' 
where integration is carried out over the Fermi surface. The 
order of magnitudeisgzz [N(O) VO/,l2, where N(0) is the den- 
sity of the electron states on the Fermi surface. If Voz 1 eV 
and the values of N(0) are typical of a metal, we findgz0.1- 
1. 

where ~ ( k )  and o ( k )  are the dispersion laws, a + (k) ,a(k)  
and c +  (k) ,  c(k)  are the operators representing creation 
and annihilation of electrons and impuritons, respectively, 
and Vo (q)  is the unrenormalized ("bare") vertex of the elec- 
tron-impuriton interaction. The summation with respect to 

FIG. 1. Plots of the impuriton Green's function. The dashed line corre- 
sponds to Y,,(k, E,, ), the continuous curve represents the electron Green's 
function, and the wavy line is V,,(q). 
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FIG. 2. Plots of the vertex of the electron-impuriton interaction. The 
notation is the same as in Fig. 1 .  

Figures 1 and 2 show the first terms of a series based on 
the parquet variant of perturbation theory applied to q ( k ,  
E, ) and V(q), respectively. The range of validity of the par- 
quet approximation is governed by the inequalityg 

We now formulate briefly themain results of our analy- 
sis, carried out in the approximation adopted above, of the 
scattering of electrons by impuri t~ns.~ In the range of low 
impuriton concentrations characterized by x(  1 their con- 
tribution to the damping of electrons is described by the plot 
shown in Fig. 3. 

At temperatures T)E' the electron relaxation time 
, governed by the interaction with impuritons, is 

here, r0 is the relaxation time of electrons interacting with 
randomly distributed frozen impurities of the same chemical 
nature. The dependence (TI implies that in a wide 
range of temperatures the temperature dependence of the 
resistance obeys R a Tg. 

We can see that Eq. (7 )  does not include the tunnel 
matrix element E, representing the quantum properties of a 
defect. Therefore, the same temperature dependence of the 
resistance should be observed also in a metal with heavy 
thermalized defects. In other words, the results of our analy- 
sis do not agree in the limit ~'-0 with those obtained using 
the cross technique. ' We consider the scattering of electrons 
by an equilibrium system of defects. However, the relaxation 
time of the defect subsystem is governed by the value of to 
and increases exponentially with the mass of a defect. Mea- 
surements must however be carried out after a time t ) t o  

FIG. 3. Graph showing the contribution of impuritons to the self-energy 
part of the electron Green's function. The double dashed curve corre- 
sponds to Y (k, c,, ) and the black triangle with the wavy line corresponds 
to V(q); the rest of the notation is the same as in Fig. 1 .  

after the change in temperature, which realistically requires 
a very long "expectation" time. Therefore, at the usual rates 
of measurements a system of heavy defects does not reach 
equilibrium and can be regarded as frozen. The presence of 
the frozen defects in a real sample gives rise to a tempera- 
ture-independent contribution T,,' to electron relaxation 
(T; = re;,,!,, + re;,' ), which in turn gives rise to a residual 
resistance, superposed on which we can easily see the tem- 
perature-dependent contribution of impuritons when the 
concentration of frozen defects is c 5 x. 

Depending on the relationship between c and x, cooling 
may either result in localization of impuritons by the poten- 
tial of the frozen defects or in clustering of these defects. The 
latter process either immediately establishes stratification 
into high-and low-concentration impuriton phases or 
creates clusters containing a finite number of particles and 
then stratification into phases with high and low cluster con- 
centrations occurs at a lower temperature.6 

The case c)x corresponds to dominance of the process 
of localization in a random potential, and was considered by 
us earlier." Cooling causes impuritons to freeze in, so that 
they become localized in the deepest minima of the random 
potential and their contribution to the resistance made in the 
limit T-0 becomes equal to the result obtained by the cross 
technique. 

If cooling creates several phases in the system, then a 
comparison with the results of the cross technique obtained 
for a single-phase system is meaningless. It is the existence of 
an ultrapure phase and of a phase with a high concentration 
of impurities (distributed in an ordered manner) that corre- 
sponds to a thermodynamic equilibrium of a crystal with 
impurities in the limit T-0. However, geological times are 
required for the establishment of such an equilibrium in the 
case of heavy impurities. 

2. ABSORPTION OF SOUND BY ELECTRONS 

It is well known that at low acoustic frequencies, when 
the sound wavelength A is much greater than the electron 
mean free path I,, the absorption coefficient of a, of sound 
by electrons is directly proportional to their relaxation time 
re (see, for example, Refs. 1 1-1 3 ) : 

nePozz,  
a,=-, 

ps3 
( 8 )  

where n is the electron density, E, is the Fermi energy of 
electrons, w and s are the frequency and velocity of sound, 
andp is the density of the investigated metal. 

At temperatures in the range T <  8 (where t9 is the 
Debye temperature) the contribution of defects to T, domi- 
nates when their concentration is x - 10 - -10- ,, because 
r e  = r e s i m p .  

A more thorough analysis showsI4 that Eq. (8)  in- 
cludes the time T , ,  which differs from the usual relaxation 
time by the factor [ 1 - P2 (cos p) ] when integration is car- 
ried out with respect to the scattering angle p; P2(y) is a 
Legendre polynomial. 

When the scattering is by static defects, we have 
T , ,  = const and the temperature dependence of the absorp- 
tion is entirely due to the small contribution made to the 
relaxation by the electron-phonon and electron-electron in- 
teractions. l 5  
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However, if the scattering is by mobile defects, the tem- 
perature dependence of a, is due to the temperature depen- 
dence of However, in the range T ) E ~  the main contri- 
bution to T ~ , ~ , ,  comes from collisions involving scattering 
by large angles and the time T2,,,imp differs from T,,~,,,~ simply 
by a numerical factor of order unity. 

Hence the absorption coefficient of sound is described 
by the following temperature dependence: 

where a, is the absorption coefficient in the case of frozen 
defects. 

In the range T(Eo, where E0 is the renormalized width 
of an impuriton energy band, the main role is played by low- 
angle scattering. We then have T~T, '  = 37-;:, where T,,,, is 
the transport scattering time of electrons. It is shown in Ref. 
9 that in the case of an open Fermi surface the relaxation 
time T, , ,  is given by the following order-of-magnitude rela- 
tionship: 

Consequently, we have 

Such a dependence is observed up to a temperature T *  at 
which the condition RSI, is no longer obeyed. When we 
have A 4 I, the quantity a, is completely independent of T,,, 

(Refs. 11-13). Therefore, if T <  T * holds, the quantity a, 
reaches a constant value. Moreover, for T > T *, the inequali- 
ty TZ,,!,,, $7;: may no longer be obeyed, which again causes 
a, to assume a constant value. 

However, experimental observation of the dependence 
(Ref. 1 1 ) is hindered by the process of defect clustering6 or 
the process of their stratification into phases with high and 
low defect concentrations. The characteristic temperature of 
these processes To is 

where W, is the specific binding energy of a defect in a clus- 
ter or in a highly concentrated impurity phase. 

For To > B,, which holds in the case of realistic defect 
concentrations, we can no longer use Eq. ( 1 1 ) obtained in 
the approximation of noninteracting impuritons. For clus- 
tering in the range T <  To there is a steep increase in the time 
taken by the impurity system to reach equilibrium with the 

FIG. 4. Temperature dependence of the absorption coefficient of sound: 
1 ) without allowance for clustering, 2 ) ,  3 )  after allowing for clustering of 
defects (the curves represent defects of two different types). 

crystal after a change in temperature. Therefore, when mea- 
surements are carried out, the impurity system is no longer 
in equilibrium and if T( To, defects can be regarded as fro- 
zen. Consequently, we must show that a, (T )  reaches a con- 
stant value a' in the range T( To. The value of a' depends on 
the nature of clusters which are then formed. The depend- 
ence a, (T )  is plotted in Fig. 4. 

In the case of stratification into phases the value of a, 
depends strongly on the size of nuclei of the highly concen- 
trated phase. 

3. RELAXATION ABSORPTION OF SOUND 

In addition to the above-mentioned mechanism of ab- 
sorption in crystals with quantum defects, there is also a 
relaxation mechanism of the absorption of sound. The great- 
est contribution to this mechanism comes in the case when 
there are two kinds of inequivalent interstices and the energy 
of an impuriton at these interstices differs by an amount 
AE 5 T. In the case of bcc, fcc, and hcp metals the impurity 
band formed from tetrahedral interstitial states is degener- 
ate. A static elastic deformation lifts this degeneracy partial- 
ly or completely and the situation described above may be 
established. 

The deformation created by an acoustic wave alters the 
value of AE, which results in redistribution of impuritons 
between inequivalent interstices. In this case the mechanism 
is fully analogous to the mechanism of the absorption of 
sound by two-level system in amorphous 

Let us assume that 

AE ( t )  =AE+yu ( t )  , (13) 

where u ( t )  is the deformation created by an acoustic wave. 
The quantity y is of the same order as the atomic scale of 
energies, because when the deformation (strain) is of order 
unity, the energy changes by an atomic value. We assume 
that the condition A )limp is satisfied, where limp is the mean 
free path of impuritons. Therefore, in considering this con- 
tribution to the damping, we can assume that the deforma- 
tion created by an acoustic wave has a homogeneous distri- 
bution. 

For simplicity, we assume that the impuriton bands 
formed from interstitial states of one kind are not degenerate 
and we ignore their width compared with AE. 

When we consider the contribution of the change in the 
populations of interstices of different kind to the elastic 
stress in a crystal in accordance with Ref. 17, we find that the 
coefficient representing the relaxation absorption of sound is 

where fl is the volume of a unit cell and T~,,,, is the relaxation 
time of the impuriton subsystem. Following Ref. 18, we find 
that T~,, is given by 

where the integration is carried out over the Brillouin zone 
and n(p)  is the Fermi distribution function of electrons. The 
matrix element describing an interband transition of impuri- 
tons V , ,  (q)  contains a small parameter EdAE, where Eo is 
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the tunnel matrix element of an impuriton transition 
between neighboring interstices of different kinds. 

The order of magnitude of the relaxation time of the 
impuriton subsystem is given by 

The quantity a, reaches its maximum at urimp = 1. 
The value of a,,,, is of the order of 

x o Z y Z  ln ( g e o 2 / o  AE)  
Ur,max = 

8ps3geoz 

and can exceed a,. 
Therefore, in the presence of two types of interstices 

with AE < 6 the relaxation contribution to the absorption of 
sound at low temperatures may compete with the electron 
contribution and exceed the latter. 

4. INTERNAL FRICTION 

In addition to the relaxation mechanism discussed 
above there is also a contribution to the absorption of sound 
from internal friction, i.e., due to a redistribution of impuri- 
tons between the regions of compression and dilatation in an 
acoustic wave. 

We show that this contribution is unimportant. Since 
A )limp, the distribution of impuritons occurs by diffusion 
and the characteristic time of the diffusion process is of order 

where D is the diffusion coefficient of impuritons. An esti- 
mate of the relevant contribution to the absorption of sound 
is readily obtained from Eq. (14) assuming AE = 0 and 
Tim,, = T f :  

where 

The ratio of the two values is 

Even in the case of the lightest hydrogen isotope (pro- 
tium) the contribution of the internal friction to the absorp- 
tion of sound at temperatures T< 6' is much less than the 
electron contribution (the values of D are taken from Ref. 
3). In the case of heavy impurities the values of D and T* 

friction to the absorption of sound can be ignored through- 
out the investigated temperature range. 

5. TWO-LEVEL SYSTEMS 

As pointed out already, at temperatures T <  To a system 
of clustered defects becomes frozen. If the particles in a clus- 
ter are then practically immobile, the relaxation contribu- 
tion to the absorption of sound below to disappears. 

However, there may be a situation4s5 when a mobile 
defect (hydrogen atom) is trapped by a heavy immobile im- 
purity, but it still remains capable of tunneling between two 
(or more) interstices which are equivalent on the energy 
scale. This effect has been observed in niobium single crys- 
tals when hydrogen and deuterium are trapped by immobile 

carbon, nitrogen, and oxygen impuritie~.~~' The resultant 
two-level systems (TLSs) naturally contribute to the ab- 
sorption of so~nd . ' ~ , "  An important role is played by an 
asymmetry of TLSs characterized by a difference between 
the energies of an impuriton at interstices before we allow for 
the tunneling represented by AEi. This asymmetry is due to 
the action of other clusters and point defects on the resultant 
cluster. It follows from Refs. 16 and 17 that the contribution 
of TLSs to the absorption is 

AE; 
~ T L S  = 

1: )= 4Tps"(;;:o+,') (r) c h Z ( E J 2 T )  ' 
(22) 

where r i  is the relaxation time of a TLS yi = d(AE, )/du, 
and the splitting of the TLS levels is given by 

Ei=[  ( A E i ) 2 + ~ o Z ] " r ,  (23) 

and Eo is a matrix element representing tunneling between 
energy minima. In the range of frequencies of interest to us 
we have Ed$ w.  

We now estimate the quantities occurring in Eq. (22) 
on the assumption that the TLS asymmetry is due to the 
action of frozen randomly distributed defects whose concen- 
tration is c. It is known6 that the long-range part of the po- 
tential of the interaction between defects is due to the sum of 
the elastic interaction and the interaction via Friedel oscilla- 
tions of the electron density (first and second terms, respec- 
tively) : 

W ( R )  = [Wet ( R I R )  +We cos (2k,R)  ] 8 / R 3 ,  (24) 

where k, is the Fermi momentum of electrons. The value of 
We, changes its sign depending on the orientation'of the vec- 
tor R relative to the crystallographic axes whereas 
We - N ( 0 )  V,,, V,,o, where V,,, and V,, are the potentials 
acting on electrons and contributed by the first and second 
interacting defects, respectively. The values of We, and We 
are of the same order of magnitude (0.01-1 eV). 

We are interested in the difference between the values of 
W(R) in two adjacent interstices. We can easily see that 
because of a rapid change in cos(2kFR) the main contribu- 
tion to AE, comes from the interaction via Friedel oscilla- 
tions of the electron density. In the case of TLSs with the 
coordinates of the minima R + a/2, we obtain 

x sin ( 2 k ,  I Ri-Rj I ) . (25) 

The summation occurs between static defects with the co- 
ordinates R,. 

Since cos(2kFR) oscillates rapidly over atomic dis- 
tances, we can consider a simplified model on the assump- 
tion that the quantity 

assumes values in the interval ( - b, b), where b is of the 
order of unity, with a probability independent of IRi - R, 1 .  

In this case the problem of the distribution of the quan- 
tity AEi is analogous to the problem of the dipole width of a 
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magnetic resonance line.19 In the range of concentrations 
c( 1 the distribution of the value AE, is Lorentzian with a 
characteristic width 

6=cwe, (26) 

where a typical value y, = d(AEi)/du is again equal to S. 
The value of ri is given by Eq. ( 16), where AE should be 

replaced with E,. Since there is a distribution of AE, (and, 
consequently, of E, ), we are dealing with an exponentially 
wide distribution of times 7,. The difference between single 
crystals and metallic glasses is the absence, at low concentra- 
tions c, of a broad distribution of Eo. For simplicity, we as- 
sume that to is the same for all TLSs of a given kind. 

Substituting the expression for T, into Eq. (22), we find 
that the absorption coefficient is 

ozG2 ( AEi) 
~ 'Gi<l ,  

4Tps3 max (T, Ei) g&,2 ' 

G2g~oz max (T, Ei) (AEi) 
07i)l. 

4Tps3Eik ch2 (Ei/2T) exp (Ei/T) ' 

We introduce a quantity E * representing the splitting of the 
TLS levels such that wri = 1. Then, to logarithmic accuracy 
we have 

Since in reality we find Ei>Eo, it follows that at low 
temperatures we have wri ) 1, and this applies to all TLSs. 

If E * ) E ~ ,  then the main contribution to the absorption 
comes from TLSs with AE, located in the middle of a band 
whose width is of the order of E * and is located near E *. In 
the case when E * 5 .EO, the main contribution to the absorp- 
tion comes from TLSs with AE, of the order of (.FoT) 

Averaging over the distribution of AEi and assuming 
ln(gEi/wT) - 1, we obtain two forms of the expression for 

~ T L S .  
a )  .E04S. 

In this case, we have 

I xTLSg6T'"eo'" 
T<ro. 

Qps3 exp (2c0/T) ' 

The quantity Eo depends on Tbecause of infrared renormali- 
zations caused by the electron-impuriton interaction:' 

(30) 

wherep-g; E, = const is the unrenormalized tunnel matrix 
element. Therefore, for T = S there is a change in the tem- 
pexature dependence from a,,, cc T - ' - 28 if T >  S to 
aTLS cc T - 28 if $ < T <  S ( p &  1 ). The dependence 
a,,, (T) is shown in Fig. 5. 

Comparing the maximum of the function a,,, ( T) cor- 
responding to T = S with the electron contribution to the 
absorption, we find that 

FIG. 5. Temperature dependence of the contribution of two-level systems 
to the absorption of sound: 1 ) in a normal metal; 2) in a superconductor. 

a?:: cxTLSS2 -- -- 
a, szo2 ' 

(31) 

For x,,, -c-  10 - '-10 the electron contribution to 
the absorption dominates the TLS contribution, as support- 
ed by the experimental  result^.^ 

b)  S<P,. 
In this case, we find that 

xTLS s3g 
~ T L S  = Qps3 (Te,) '" exp (2co/T) , 6 z / ~ o < T < ~ o ,  (32) 

~,,,gGT'~ro'; , T<GZ/ro. I Rps3 exp (2&/T) 

We can easily see that the maximum of a,,, is reached at 
T = Eo and its amplitude is less than in the case Po < S. 

6. ABSORPTION OF SOUND BY TWO-LEVEL SYSTEMS IN A 
SUPERCONDUCTOR 

It is known2' that at temperatures T( T,, where Tc is 
the superconducting transition temperature, the electron 
contribution to the absorption of sound falls exponentially 
as a result of cooling. Consequently, the contribution of two- 
level systems to the absorption becomes d ~ m i n a n t . ~  

The difference between the situation where the absorp- 
tion is due to TLSs in a normal metal is associated with an 
exponential rise of 7, because of a reduction in the number of 
electron excitations. 

If the TLS splitting is much less than the absolute tem- 
perature, then ri can be described by the following esti- 

where A is the superconducting gap in the spectrum of elec- 
tron excitations. Then it has to be described by Eq. (301, 
where instead of max( T,eo), we now have max( T, E,, A) 
(Ref. 9) .  Hence for E,, T < A the value of 2, is independent of 
temperature. 

Far from Tc, for E *, S 4 T< A, we obtain [subject to Eq. 
(3311: 

and 
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0'6' (AEi )  ' exp (AIT)  
, 0 Z i < l ,  

~ s ~ ~ E ~ ~ T '  
a;Ls = (35 

6'gFo2 (AE1) 
ps3Ei' erp ( A / T )  ' 

0Zc>l .  

As in the case of a normal metal, two variants are possible. 
a )  6)ZW 

For E * > to, the main contribution to the absorption is due to 
TLSs whose asymmetry is AEi - E  *; in the opposite case the 
characteristic asymmetry of the TLSs is of order E,. After 
averaging over the distribution of AEi, we obtain 

The range of temperatures where the estimate (36) is valid is 
limited from above by the condition T >  Po. For T < E,, we 
can no longer use Eq. (33) for ri. 

Since E * depends exponentially on T [Eq. (34) 1, a 
sharp maximum ofa?,, is observed at E * = S. The tempera- 
ture T,,, corresponding to this maximum, to within loga- 
rithmic corrections, equals 

and at low values of c it can exceed considerably the tempera- 
ture T = 6 corresponding to a maximum of a,,, for a nor- 
mal metal (Fig. 5).  

The amplitude of the maximum aSLs for the supercon- 
ducting phase isgE~/wT,,, % 1 times greater than the corre- 
sponding value for the normal phase and is proportional to 
w, in good agreement with the experimental results.' 

b) Eo%S. 
We then have 

In this case a maximum of aSLs occurs at a temperature 

L . , = A / ~ ~ I ( $ )  , (39) 

at which we have Eo = E * and the value (aSLS contains, 
compared with the 6%E0 case, an additional factor S/E,. 

In the range of values S - A there is a gradual transition 
from Eq. (29) to Eq. (36). The corresponding expressions 
for a?,, are too cumbersome and we shall not give them 
here. 

CONCLUSIONS 

We have thus shown that the electron contribution to 
the absorption of sound in a normal metal containing quan- 
tum defects dominates the relaxation contribution, and the 
temperature dependence of the absorption coefficient a is 
due to the temperature dependence of the relaxation time of 
electrons related to their scattering by mobile defects. Below 
the clustering temperature, where the defects lose their mo- 
bility, the coefficient a reaches a constant value. 

The relaxation contribution to the absorption by a nor- 
mal metal may dominate in the presence of two types of 
interstices separated by a small energy interval. The contri- 
bution of the internal friction to the absorption is small. 

If as a result of capture of mobile and immobile defects 
we can expect formation of two-level systems, then these 
systems also contribute to the absorption of sound associat- 
ed with the relaxation mechanism. The distribution of the 
asymmetry of these two-level systems is Lorentzian with a 
characteristic width proportional to the defect concentra- 
tion. In the case of a superconductor the absorption of sound 
is related specifically to the presence of two-level systems 
and its magnitude is slightly greater than the contribution of 
these systems to the absorption in a normal metal. 
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