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Based on the Born hypothesis that the shear modulus reduces to zero at a critical point, we 
construct a continuum theory of melting. We show that the fundamental contribution to the 
variation of the shear modulus is given by dislocations, and obtain a dependence of the effective 
shear modulus on the temperature of the crystal that agrees well with the experimental data. 

INTRODUCTION 

Among the multitude of papers on the theory of melting 
(based on the Lindemann criterion,' computer modeling 
 method^,^ use of an empirical equation of state'.3) the dislo- 
cation model of melting apparently reflects most adequately 
the underlying physical p ro~ess .~ '  This model starts with a 
quasimicroscopic picture of the phenomenon, in which the 
crystal is treated as an elastic medium with line defects, i.e., 
dislocations. It is assumed that melting of the material oc- 
curs at the instant when dislocations of infinite length can 
form in the  material^,^ leading to a loss of long-range crystal 
order.' The description of dislocations in these papers is car- 
ried out by using a three-component complex "disorder" 
field.' The appearance of a phase transition in the disorder 
field then corresponds to a phase transition in the dislocation 
system of the crystal with the formation of dislocations of 
infinite length.',' Despite the fact that work in this direction 
has been carried extremely far, no one has calculated the 
temperature for melting of real materials within the frame- 
work of this approach. 

On the other hand, there is a well-known macroscopic 
criterion for melting: the Born criterion. The Born crite- 
rion assumes that the melting of a material takes place at that 
temperature for which the shear modulus vanishes. The 
Born hypothesis agrees with experiment; the empirical de- 
pendence of the shear modulus ,ii ( T )  on the temperature T 
for metals has a simple and universal form:' 

wherep is the shear modulus at T  = 0, and TM is the melting 
temperature of the metal. 

The idea of Born is attractive by virtue of its generality; 
however, it says nothing about the physical model of the 
process, and does not answer the question of why the shear 
modulus behaves in this way. Attempts to calculate the 
change in the elastic moduli by taking into account phonon 
anharmonicity have not led to any desirable results.' 

It is obvious that the Born criterion and the dislocation 
model are saying the same thing; reduction of the shear elas- 
tic modulus to zero corresponds to reduction to zero of the 
energy per unit length required to create a dislocation. Ac- 
cordingly, both models lead to the appearance of a phase 
transition in the crystal's dislocation system. 

The goal of this paper is to construct a model of melting 
that unites the Born criterion with ideas from the dislocation 
model of melting. It turns out that this unification allows us 
not only to explain the relation ( 1 ), but also to calculate 
melting temperatures for real metals that agree with the ex- 
perimental temperatures. In order to describe melting as an 

essentially macroscopic phenomenon, we must first parame- 
trize correctly all the possible microscopic configurations of 
the crystal that give or can give contributions to the physical 
process. In this paper we adopt the following parametriza- 
tion: the vibration of atoms around their equilibrium posi- 
tion is described by phonon modes, which are treated within 
the framework of elasticity theory. As the temperature rises, 
effects due to anharmonicity become important: local modes 
appear that are connected with point defects of the crystal 
lattice, along with larger collective displacements of atoms 
from their equilibrium positions, i.e., dislocations. Within 
this parametrization, the real behavior of condensed matter 
is extrapolated by using functions that are correct in the lim- 
its of small and large displacements of atoms from their equi- 
librium positions. 

A description of melting within the framework of this 
parametrization reduces to investigating static properties 
and calculating effective elastic moduli for a material system 
containing a phonon component (treated in this paper with- 
in elasticity theory), a component due to local modes (i.e., of 
point defects) and a component due to dislocations, and all 
possible interactions between these components. 

The identification of the class of condensed matter 
states listed above is also a fundamental approximation of 
this paper. 

The paper is set up as follows. In the first section we 
obtain general relations that allow us to calculate the effec- 
tive elastic moduli of a material containing defects of various 
types. In the second section we construct a vacancy model of 
melting. As it turns out, this model does not agree with ex- 
periment, leading us to construct a dislocation model of 
melting based on the Born hypothesis. This is done in the 
third section of the paper. 

1. VARIATION OF ELASTIC MODULI OF AN ISOTROPIC 
CRYSTAL IN THE PRESENCE OF DEFECTS 

The Hamiltonian of an isotropic elastic material which 
contains defects (both point and line) can be written in the 
form 

where He,, HdiSI, H,,, and Hi,, are, respectively, the 
Hamiltonians of elastis deformation, dislocations, point de- 
fects, and the interactions between them. In this case 

Here K and p are the elastic moduli of a defectless crystal, 
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and uik is a deformation tensor. The Hamiltonians Hdi,,, 
H,, , and Hi,, will be determined below. 

The partition function Z of the system is an integral of 
the probability density W- e - H'T of the various configura- 
tions of condensed matter with respect to all realizable con- 
figurations of defects and fields uik : 

Here D{T), Du, are integration measures in the spaces of 
defect configurations and fields uik , respectively. 

Introducing the effective Hamiltonian He,, 

(4) 
we can cast the partition function (3) in the form 

By expanding He, [u, ] in a series with respect to uik 
and retaining terms up to quadratic in uik, we find that the 
presence of defects in the crystal structure leads to the fol- 
lowing change in the elastic moduli of condensed matter: 

p (r, " )  = p6 (r-r') + (6)  

Here g, ,ii are the effective moduli of condensed matter with 
defects. For the case of homogeneous matter, Eq. (6)  is con- 
veniently written by passing to a Fourier representation with 
respect to the variable Ir - rll: 

From Eq. (7)  it follows that in the general case the presence 
of defects leads to the appearance of dispersion in the elastic 
properties of the condensed matter. 

2. A VACANCY MODELOF CRYSTAL MELTING 

Relation (7)  allows us to construct a vacancy model of 
crystal melting. Let us construct this model in the following 
way: at nonzero temperature point defects, specifically va- 
cancies, are present in the crystal, whose concentration in- 
creases with temperature. This increase in the vacancy con- 
centration leads to a change in the elastic moduli of the 
material. According to the Born criterion, the temperature 
at which the modulus of uniform shear,ii ( p  = 0) reduces to 
zero will be the melting temperature T,  of the crystal in this 
model. Other types of defects are not taken into account 
here. 

Let us turn to calculating the change in the shear modu- 
l u s ~  due to the effect of point defects. The effective Hamilto- 
nian ( 1 ) of an elastic medium in the presence of point defects 
can be written in the form 

j { Ht.t[p, u t h l + F [ p ,  u,,1 H&=-Tln exp - 
T 

where F[p,uik ] is the free energy of the system of point de- 
fects in the elastic deformed medium and D G )  denotes inte- 
gration over all configurations of the defect density p ( r ) .  
The interaction Hamiltonian H 2 is expressed in terms of 
the stress tensor a:: caused by a single point defect in the 
following way: 

In the functional integral (8)  the primary contribution 
comes from configurations for which 

For a system of point defects SHE/Sp has the sense of an 
external field 

In an undeformed medium the equilibrium density of point 
defects p is determined by the condition 

Assuming the deviation of the density Sp from j7 associated 
with the strain uik in the medium is small, by combining Eqs. 
( 1 1 ) and ( 12 ) it is not difficult to obtain 

wherep(r,rl) is the linear response function of the system of 
point defects to the external field: 

6p (r) = j p (r, r f )  VeZt (rl) drt. (14) 

The quantity a$ can be calculated in the model by consider- 
ing a point defect as a dilatation   enter:^ 

d" 
%? (r) = {(K-'/,d 6 d  (r) -2p --) ax, ax, r AV, 

where A V is the dilatation volume of the defect. 
At low temperatures the dilatation volume for the va- 

cancy comes to A V z  (0. l-0.2)a3, where a is the lattice con- 
stant. 

Using Eq. ( 15) we obtain for the term in He, that is 
quadratic in uik 

where 
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a,, (r) = (6 ikf -3~i~k)  /r5. (17) 

In the Fourier representation the integral ( 16) and the ten- 
sor Ti;.,,, ( p )  have the form 

Averaging the tensor Ti,,, (p)  over the directions of the 
vector p and combining Eqs. ( 16), ( 15), and (7),  after some 
simple calculations we obtain an expression for the effective 
shear modulus p (p = 0)  in an elastic medium with vacan- 
cies: 

In deriving this relation we have used the elastic modu- 
lus of a defectless material in expression ( 15); however, the 
problem is formulated so that the tensor a$ describes stress- 
es that arise from point defects in some "composite" materi- 
al consisting of an elastic medium that is described by the 
modulip and K, and a system of point defects. In connection 
with this, in Eq. ( 15) it would be correct to use a renormal- 
ized shear modulus ,ii. However, the dilatation volume A V 
also depends onp:AV- l /p  (see Ref. lo) ,  while in the final 
analysis Eq. (20) includes the combination pA V, which is 
invariant relative to changes in p .  

In order to determine TM it remains to calculate the 
response function b ( p  = 0). The response function is con- 
nected with the pair correlation function of the system of 
interacting vacancies g, (r,rl) by the following relations: 

Tp (r, rr)=gs(r* r') -p(r)p(r1)+'Iz(p (r)+p(r') )6(r-rC), 
i 

(21 

where Fo is the free energy of the noninteracting vacancies 
and U is the potential of the vacancy interactions. Further- 
more, 

Here E,  is the energy required to create a vacancy and po is 
the number of atoms of the material per unit volume. 

At small distances the potential U has the form of a 
potential well, corresponding to the possibility of forming 
the experimentally observed coupled state of two vacancies 
(i.e., a divacancy ) with a binding energy E, (Ref. 11). At 
large distances the vacancies interact via the elastic field, 
which corresponds to 

U (r) =S(n) N, I S (n) dn=O, n=r/r. (24) 

The equilibrium concentration of vacancies p is determined 
by Eq. ( 12) which, in view of Eq. (23), has the form 

e,+T In p/po + - - 
(25) 

In what follows we will show that up to the melting tempera- 
ture we have p/po 4 1. 

The last term in Eq. (25) is of order ( P / P ~ ) E ~ .  Accord- 
ing to the experimental data we have E, - 1-3 eV, E, -0.1- 
0.5 eV (Ref. 11). We can therefore neglect the vacancy- 
vacancy interactions in this case and assume that 

In order to obtain the response functionfl(p = 0) of interest 
to us it is convenient to make use of the relation 

which follows from Eq. (21 ) and the thermodynamic identi- 
ty (see Ref. 12) 

where 

Here P = dF/dfl, and R is the system volume. 
In order to calculate the quantity P i n  a system with a 

specified interaction potential Uwe make use of the Van der 
Waals approximation; 

Using Eqs. (27) and (28) we find the response function 

after which we finally obtain from Eqs. (7)  and (20) an 
expression for the shear modulus j i  in an elastic medium 
with vacancies: 

Figure 1 shows curves plotted using the functions based 
on Eqs. (3  1 ) and (26) calculated for various metals. In this 
case we have assumed A V = 0.2a3. The value of the param- 
etersp, a, E, , E, are given in the table. The values ofp and a 
are taken from Ref. 13, E, and E, , from Ref. 1 1. The choice 
of the quantity p/po in the table is based on the theoretically 
calculated transition temperature T = T zWr. Figure 1 re- 
veals a significant disagreement between the shape of the 
curves that were obtained based on Eq. (3 1 ) ( - e and 
the experimental curves ( - T ,). Furthermore, the quantity 
T theor at which ,ii reduces to zero in Eq. (31) differs by a 
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FIG. 1. Temperature dependence of the effective shear modulus in the 
vacancy melting model: I-Al, 2-Xu, 3-Fe, &Na, 5-K, 6-experi- 
ment.' 

factor of 1.5 to 2 from the experimental melting temperature 
TM. Thus, despite the encouraging similarity of the curves 
(ji/p ) ( T/TM ) for various metals, the vacancy model can 
not claim to be a quantitative and qualitative description of 
the process of crystal melting. 

3. THE DISLOCATION MODELOF CRYSTAL MELTING BASED 
ON THE BORN HYPOTHESIS 

Let us calculate the contribution of dislocations to the 
change in the elastic modulus of a crystal. To do this we use 
the disorder field technique developed in Refs. 6 and 7, 
which allows us to calculate the partition function of a sys- 
tem of dislocations in an elastically deformed crystal. 

In order to describe the system of dislocations we intro- 
duce three complex fields '4, (x),  v = 1,2,3 (where x is the 
coordinate of a site of a cubic lattice). Let Z. be the energy per 
unit length of a dislocation. Then the partition function of a 
system of dislocations located in an external strain field u,, 
has the form7 

A - ) ( ) Y G V ,  (33) 

where 

TABLE I. 

(a is the lattice parameter), 
I' 

(r, rl) =cI(~,  rl) exp{- f ! B ~ , ( R )  c) d ~ , )  , 

J exp (-x-gx2) dx 
0 

C =  

The summation with respect to a implies a summation over 
the nearest neighbors to the site of r'; 2(r,r1) is the length of a 
dislocation line with a distance I r - r' I between its ends, and 
b'"' is the Burgers vector with orientation along the vth axis 
of the crystal. The tensor Qii describes the interaction of the 
stress field caused by the dislocations with the elastic strain 

Here 2, denotes a summation over all the dislocations. 
The fourth-rank tensor Do,, is evaluated by means of the 
well known expression for the stress field of a dislocation 
loop and has the form:" 

where 

is the Poisson coefficient. 
The constant g in Eq. (33) corresponds to the energy of 

intersecting dislocations. For u, = 0 the partition function 
(33) describes a dislocation system in which a phase transi- 
tion is possible; in Refs. 6 and 7 this transition was identified 
with melting. 

In the Hamiltonian in Eq. (33) we have neglected the 
long-range part of the dislocation interaction. We can in- 
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clude this interaction within the continuum approach by in- 
troducing three vector fields B'") whose interaction with the 
disorder field is through the gauge-invariant combination 
d,("'-,d,'''' + iBjv'. In Ref. 6 it was shown that by taking 
into account the long-range part of the dislocation interac- 
tion we are led to the appearance in the Hamiltonian &[Y, 
u, ] of a term proportional to IY, This is equivalent to 
changing the order of the phase transition in the dislocation 
system. However, it turns out that the corresponding first- 
.order phase transition is close to a second-order transition.' 

The calculation of the effective Hamiltonian that corre- 
sponds to the dislocation contribution to the shear modulus 
(7) can be carried out by expanding in powers of uik and 
limiting ourselves to terms that are quadratic in uik . It  turns 
out that the calculation of the partition function (32) is sig- 
nificantly different for crystals that are near the melting tem- 
perature and those far from it. 

Near the melting temperature the primary contribution 
to He, is given by dislocation configurations whose size is 
comparable to a characteristic interatomic spacing of the 
system.6 In this case expanding R[u,Y] with respect to the 
field uik we obtain 

where 

The brackets (...) denote averages over all realizations 
of the Hamiltonian H[uik = 0, TI. For g > 0 Go(p) is the 
Green's function of the n-component complex field. l4 

The energy of formation of a unit length of dislocation 
in the continuum model has the form1' 

where L is the length of the dislocation and d is the radius of 
its core. In Eq. (42) we have used the effective modulip and 
z because we are investigating the formation of dislocations 
in a "composite" medium made up of material consisting of 
an elastic medium with moduli p and K and the dislocation 
system. In fact the use of jl and K in Eq. (42) is also an 
operation that makes the problem of calculating the effective 
modulus self-consistent. 

Near T,  the fundamental contribution to Go(p) is giv- 
en by small p. Using the results of the fluctuation theory of 
phase transitions we find14 

where y is the corresponding critical index. Within the 
framework of the &-expansion, y has the formL4 

Substituting Eq. (43) into Eq. (39), we find the follow- 
ing effective Hamiltonian as T-, TM : 

Using the explicit form of the tensor CPii (r)  in Eq. (37) and 
Eqs. (38) and (39), after some uncomplicated but tedious 
calculations we obtain (see Appendix) 

Relation (45) allows us to determine the melting tempera- 
ture of the crystal. Assuming that the parameter 

2 pb2a 
"0' "n 

is small compared to unity (x, ( 1 ) and considering a dislo- 
cation with minimum Burgers vector b = a, we obtain from 
Eq. (45) 

For the majority of metals the melting temperature calculat- 
ed based on Eq. (47) coincides with the experimental values 
of TM if we take f =. 1. In this case, when we pass from one 
metal to another, the parameter f varies insignificantly. The 
value of 6 that insures agreement between the theoretical 
and experimental values of TM is given in the table. 

It should be noted that the contribution of vacancies to 
the renormalization of ,ii and z is insignificant at these tem- 
peratures and can be neglected. 

The accuracy with which the melting temperature TM 
is determined based on Eq. (47) is limited by the smallness 
of the parameter x,. Near TM we obtain the following 
expression for the shear modulus j2 (AT = TM - T) 

The logarithmic terms in Eq. (48) can be neglected if 

For metals the value of the parameter pa3/2rf, is of 
order 20 eV. Therefore, the inequality (49) is fulfilled every- 
where except for a narrow region AT/T- near the 
melting temperature. 

In the low-temperature limit ( T < TM ) the region of 
applicability of expression (48) is limited by the possibility 
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of expanding the exponent in Eq. (43). In the table we pres- 
ent values of the parameter AT,,, that determine the condi- 
tions of applicability of Eq. (48) : 

TM-AT,,<T<TM<TM-ATm,,. 

At low temperatures the primary contribution to the 
effective Hamiltonian comes from dislocation configura- 
tions that differ in size from the smallest possible. In order to 
take this into account, let us define a sublattice in the original 
crystal the distance between whose sites is R = ma, m > 1. A 
dislocation is represented for the original lattice by a broken 
line consisting of submonomers with size on the order of R. 
For such a line relation (33) is valid, with a replaced by R. 
As for the energy for the formation of a submonomer the 
spacing between the ends of which equals I, this quantity is 
not a linear function of R and is determined by the average 
length of a dislocation line that joins the ends of the submon- 
omer. 

Therefore, in place of Eq. (34) we must write 

where I is the length of a chain based on the original lattice 
the distance between whose ends equals Ir - r'l. This quan- 
tity can be obtained for a submonomer by using the Fleury 
theory,15 according to which 

'la R ( u + Z ) / S  

( a )  o ( )  , R=lr-r'l, 

where N(R ) is the dimension of the space. 
The number of submonomers N(R) of size R that be- 

long to a single unit cell can be determined by averaging the 
square of the absolute value of the disorder field Y, over all 
realizations of the Hamiltonian & that are defined on the 
sublattice R (Ref. 16). Using Eqs. (33), (41), and (50), we 
obtain 

where 1(R) is determined from Eq. (51). In Eq. (52) we 
have used the renormalized value of the modulus p because 
we are discussing the limit of low temperatures. 

The effective Hamiltonian that takes into account dislo- 
cation configurations that differ from a loop of minimal size 
is obtained by averaging the effective Hamiltonian defined 
on the sublattice of size R with the distribution function 
N(R). From Eqs. (33), (50), and (52), we find 

2n 
H ~ ~ =  - - { J A;.} 

<S2 ( R )  > 
3T as ' 

Here the vector A, is determined by relation (40) while (S2) 
is the average value of the squared area of a minimal loop 
defined on the size-R sublattice. It is natural to assume that 

S=tR2, (54) 

where t is a number that is in fact a fitting parameter of the 
theory. Then 

Using Eqs. ( 53 ) and ( 55 ), after some uncomplicated 
but tedious calculations we obtain 

where r ( x )  is the gamma function. 
Relations (56) and (57) determine the law of variation 

of the elastic moduli near zero temperature. Equation (56) 
gives a power-law dependence for the temperature variation 
of the elastic modulus that is close to the experimental de- 
pendence. It is obvious that we can obtain more accurate 
agreement with experiment if we make use of more general 
relations between the area and the length of dislocations and, 
more specifically, take into account that S- RR . The choice 
of the parameter t (and for that matter, the choice t = 3.1 ) 
can bring about satisfactory agreement between the theoreti- 
cal dependences of ,ii and I; and the experimental function 
Eq. (1).  

Figure 2 shows calculated curves for ,ii( T/TM ) for a 
number of metals. In the region T, < T <  TM, where 
T, = TM - AT,,,,, , the curves are plotted by using a spline 
interpolation between the point T,/TM = 0.3 and 
T/TM = 1. At the point T = TM the derivative TMd,ii/dT is 
chosen to equal 2 in order to agree with the law ( 1 ). In this 
choice there is no contradiction with Eq. (48), because the 
law ( 1 ) itself was obtained in the region T- TM by extrapo- 
lation. ' 

In calculating the effective Hamiltonian we have ne- 
glected the interaction of point defects with the dislocation 
configurations. We can take this interaction into account 
within the approach developed here in the following way. 
The contribution to the partition function from these inter- 
actions can be separated into two parts-a fluctuation part 
and a mean-field part. The mean-field contribution corre- 
sponds to including the interaction of dislocations with an 
"external" elastic field which is determined by the mean de- 
fect concentration. This contribution is small; its smallness 
is on the order of the ratio p/p, (see Table I ) .  The fluctu- 
ation part corresponds to taking into account the interaction 
of fluctuations in the defect density with dislocations. It fol- 
lows from Eqs. (33) and (34) that the fluctuation contribu- 
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tion leads to a term of the form P(p)  IY 1 4 .  From this we see 
that if the constant g that determines the energy of intersect- 
ing dislocations is sufficiently large, the fluctuation part can 
also be neglected. 

CONCLUSION 

The satisfactory description of the melting of crystals 
within the framework of the model presented here is in our 
view related to our fortunate choice of the configurations of 
states of the solid. In addition to addressing the problem 
investigated here, our approach can also be applied to a de- 
scription of surface melting. Furthermore, in constructing a 
quantitative theory of disruption of a crystal it is also neces- 
sary to take into account the mechanism by which the elastic 
moduli of the crystal are renormalized. 

The author is grateful to V. D. Borman and D. N. Vosk- 
resenko for fruitful discussions of the problems considered 
in this paper. 

APPENDIX 

In order to derive Eqs. (45)-(47) let us write the vector 
Ai in explicit form using Eqs. (37), (38), and (40) : 

The calculation of the quantity $A :dr is conveniently car- 
ried out if we pass to the Fourier transform: 

In order to calculate the Fourier components (A3) we make 
use of the obvious relations 

whose Fourier transforms have the form 

FIG. 2. Temperature dependence of the effec- 
tive shear modulus for various metals obtained 
within the framework of the dislocation model 
of melting: 1-Al, 2-Cu, 3-Fe, 4-W, 5-x- 
periment.' 

Substituting (A5 into Eq. ( 38) which determines the ten- 
sor DmB,, , we obtain 

Within the framework of the isotropic approximation used 
in this paper, in order to calculate the quantity (A2), we 
carry out an average over all directions of the vector li. By 
making use of the well known relations 

we obtain for the effective Hamiltonian He,, 

eff H =--- I + 
3 (lo-'- I) (lo-'- 1) '7 

According to the Born hypothesis, as T- T,, the shear 
modulus p -0; therefore, Eq. (A8) should be expanded in a 
power series in @. By varying the effective Hamiltonian 
(A8) with respect to the strain tensor components u , ~  we 
obtain from Eq. ( 7 )  the equations (45) and (46), from 
which there follows an equation which determines the melt- 
ing temperature: 
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Considering the parameter 

from (A9) we obtain Eq. (47) presented in the text for T M .  
The accuracy with which this formula is obtained is dis- 
cussed in detail in the text of the paper. 
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