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In this paper we determine the differential cross-section with respect to energy and angle for 
neutron scattering by rare-earth ions (REI) in superconductors. We show that a nonequilibrium 
distribution of electrons induced by an external AC electromagnetic field leads to resonant 
growth of the neutron scattering cross-section and to increased transition line widths for energies 
lying within the region 2A( T ) (aij (2A(T ) + o, (where Sij = Ei - E,, E,, Ej are theenergy 
levels of the RE1 in the crystal field, 2A ( T ) is the energy gap of the superconductor at a 
temperature T, and wo is the frequency of the electromagnetic field). The estimates that we have 
obtained for the high-temperature superconductor Tm,, Yo,, Ba,Cu,O,, show that this resonant 
growth can increase the integrated scattering intensities by as much as 20% and the line widths by 
asmuchas 12.8%. 

1. INTRODUCTION 

Experimental investigations of the properties of com- 
pounds such as La, _ ,Tb,Al, (Ref. I ) ,  
Tm,, Yo., Ba,Cu,O,, (Ref. 2), ErBa,Cu,O, . (Ref. 3 )  and 
others based on inelastic neutron scattering have shown that 
the line widths of transitions between crystal-field levels of 
the rare-earth ions change considerably when these com- 
pounds enter the superconducting state. The theoretical cal- 
culations of Refs. 4 and 5, which include both ordinary re- 
laxation processes and recombination effects associated with 
the breaking of Cooper pairs for S, 2 2A ( T ), give a satisfac- 
tory description of the experimental results. However, it is 
quite difficult to determine values of the energy gap by using 
data from measurements of the temperature dependence of 
the transition line widths. The primary reason for this is the 
fact that, although there may be a considerable variation in 
the width of a given transition line with temperature starting 
near T = Tc ( Tc is the superconducting transition tempera- 
ture), in most cases a plot of the linewidth versus T shows at 
most a change in slope for 2A(T ) = S i j  (Refs. 1,2). Never- 
theless, theoretical considerations suggest that when the 
edges of the energy gap are sufficiently sharp, the probability 
for crossed quantum transitions between the conduction- 
electron and rare-earth-ion (REI) systems should be reson- 
antly enhanced when 2A(T ) = So.  Such a change of the 
transition probability ought to influence the occupation of 
the RE1 levels and their lifetimes, and consequently the pa- 
rameters for inelastic neutron scattering; these effects can be 
resonant when, for example, the system of conduction elec- 
trons is transferred to a nonequilibrium state. 

From an experimental point of view, the most desirable 
situation of this kind is one in which a resonant variation of 
some measurable physical quantity occurs at those tempera- 

external nonequilibrium>ource will be expressed in terms of 
the nonequilibrium distribution function of the electrons 
and REI. However, in order to find the distribution function 
it is necessary to determine kinetic equations for the electron 
and ion subsystems; in the general case this also requires that 
we determine the coupled kinetics of the occupation of the 
RE1 levels and the conduction electrons. 

It is certainly true that the solution of coupled kinetic 
equations for ions and electrons constitutes a complicated 
problem. In this paper we will simplify the problem by first 
imposing the limitation of small RE1 concentrations; this 
allows us to neglect the inverse effect of the ionic subsystem 
on those quasiparticle excitations that are "heated by the 
external field. At this time, the problem of the kinetics of the 
electron subsystem can be regarded as rather well under- 

One of the most powerful methods used to study 
electron kinetics is the method of Green's functions integrat- 
ed with respect to which is based on the diagram 
technique for nonequilibrium systems." In this paper we 
also assume that in constructing the kinetic equations for the 
ion system we can describe the electronic component enter- 
ing into the latter by using Green-Gor'kov-Eilenberger- 
Eliashberg functions. 

Based on the above assumptions, in this paper we have 
made an attempt to study the kinetics of the occupation of 
the RE1 levels in nonequilibrium superconductors. The 
quantity we have chosen to study is the cross section for 
inelastic neutron scattering by the rare-earth elements. The 
system is driven out of equilibrium by a variable electromag- 
netic field which acts continuously on the superconductor; 
the frequency of this field satisfies w, < 2A(T ) , i.e., it can- 
not give rise to the creation of quasiparticles above the ener- 
gy gap. 

tures T for which the equation 2A(T ) = Si, is satisfied. 
Note that the problem of determining the parameters of neu- 2. STATEMENT OF THE PROBLEM 

tron scattering by electrons in the magnetic shell of the ions The neutron scattering cross section reflects the dy- 
is directly related to the more general problem of studying namic properties of the target at various frequencies and 
the kinetics of the occupation of the RE1 levels in nonequi- wavelengths. In connection with this, based on the fluctu- 
librium superconducting compounds. More specifically, the ation-dissipation theorem, the response of a system to a weak 
dynamic response function that determines the neutron scat- perturbation that depends on frequency and wave vector is 
tering cross-section of a system under the influence of an usually described by using the dynamic s u s ~ e ~ t i b i l i t ~ . " ~ ' ~  

788 Sov. Phys. JETP 71 (4), October 1990 0038-5646/90/100788-07$03.00 @ 1991 American Institute of Physics 788 



Thus, for the differential scattering cross section of unpolar- 
ized neutrons with respect to energy and angle we have1* 

1 
x - J dt erp ( - i d )  
2n-_ 

where 

-- "' --0~54.10-" cm, 
mOcz 

k, kt are the wave vectors of the neutron in its initial and final 
states, respectively, W(Q) is the Debye-Waller factor, and 
F(Q) is a form facto: The co~relation functions of the local- 
ized spin operators S ; and S ,+ in Eq. ( 1 ) are expressed in 
terms of the dynamic susceptibility as follows: 

1 
Si(') (a)  = - 5 dt exp( - io t )  ( S - ( + )  (0) S + ( - )  ( t )  ), 

2n - w  

In order to calculate the susceptibility in Eq. (2 ) ,  we intro- 
duce the Hamiltonian of the problem: 

gini = ( l ) a j ( l ) l p m + ( r t ) ~ ~ *  (r t )  ( 3 )  
1 ijoo' 

h 

in which 2F0 describes the free motion of conduction elec- 
trons %nd RE1 in the crystal field of the superconductor 
while Z,,, is the operator which describes the interaction of 
the conduction electrons with the REI. Here $,f ( r ) ,  $, ( r )  
are field operators for electrons, A is the vector potential of 
the electromagnetic field, M zc. is the matrix element for a 
transition between states i and j with energies 8, and 8, of the 
REI, and a,+ (I), a, (I) are spin fermion oRerators, which are 
connected with the usual spin operators S, by the relationI3 

A plays the role of a chemical potential, which "freezes out" 
the unphysical states in the limitI4 

Thus, our task is to determine the dynamic response func- 
tion,y(iw) = ,y, (iw) + ,y,(iw), taking into account the defi- 
nitions (4)  and ( 5  ), where 

cee" xi (io) = lim x i j  (a) 

cePr 
= lim - <ai+ ( t )  aj ( t ) a j+  ( t r ) a i  ( t ' )  )*, 

h-cm 

ceOr 
x z ( i o )  = lim - 

A+m 2 xii ( 0 )  

cee' 
= lim - (a j+  ( t )  a ,  ( t )  a,+ ( t ' )  aj  ( t ' )  ),, 

r-+m Z 

here Z is the partition function'' and c is the RE1 concentra- 
tion in the sample. Because we have assumed that c 1 and 
are neglecting ion-ion interactions, in carrying out the cal- 
culation we will assume that the change in the density of 
electron levels caused by scattering of the conduction elec- 
trons by RE1 is small and therefore does not lead to any 
appreciable change in the superconducting order parameter. 

3. KINETIC EQUATION 

The most general method used in microscopic investi- 
gations of nonequilibrium systems is the method of Kel- 
dysh. lo  In this method, the equation for the Green's function 
of the RE1 takes the form 

where D f ,  D ;1 are the advanced and retarded Green's func- 
tions, which are expressed in terms of the Green-Keldysh 
function in the usual way: 

a ( t ) a +  ( l t )  t> t f ,  
iDi - - ( l ,  t ;  l ' t t )  = { 

-<ai+ ( l l t ' )ai  (It) ), tc t ' ,  

iD+- ( l t ,  l't') =<ai( l t )ai+ (l't') ). 

The following identities are obtained for the self-energy 
parts:I5 

-&R=Zi--+Z<-+=-Zi++-Zi+-, Zi=Zi--+Zif+, 
( 9 )  

Using Eq. (7)  we can obtain quasiclassical equations 
for the Green's function9 

+ - 
d d 

a,-- bit,, + D i f i ~ ~ , + i  5 dt,  $ i t t , ~ i t , i ~ - ~ ~ t t ~ , t , t ~ )  =0. 
d t  d t  - Ca 
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Assuming from here on that the functions entering into Eq. 
( 1 0 )  vary rapidly with 7. = t  - t , ,  we Fourier transform Eq. 
( 1 0 )  with respect to this difference variable. Eventually we 
obtain for the ( - + ) component 

a - n, (A, t )  =inf (h, t )  Xi+- (h+6t, t )  
at 

- i [ n i  (A, t )  -l]Zi-+(A+6i, t ) .  ( 1 1 )  

In obtaining Eq. ( 1 1  ) we have used the functions D ; + , 
D t - in the following form: 

0,-+ (0, t )  =2nini (h, t )  6 (a-A-bi) , 
( 1 2 )  

where in equilibrium ni ( R , t )  reduces to the function n ? ( R )  : 

Relations ( 1 2 )  are obtained by standard methods (see Ref. 
1 5 )  based on the Hamiltonian ( 3 )  and the definition of the 
functions D ; + , D 7 - in Eq. (8).  

Equation ( 1 1  ) is our basis for obtaining kinetic equa- 
tions for the occupation of the RE1 levels. To do this it is first 
necessary to find explicit forms for the components of the 
self-energy parts 2; + ( A  + 6; ) and 2+ - ( A  + Si ) and, 
secondly, to annihilate the unphysical states in Eq. ( 1 1 ) by 
taking the limit with respect to the parameter R  given in Eq. 
( 5 ) .  

Let us introduce the electron Green-Keldysh functions 
in the usual way: 

where ( 1 ) = ( r , , t ,  ); the indices m and n indicate which of 
the two branches of the Keldysh contour the time coordinate 
will f o l l ~ w . ' ~  Once we have introduced the single-particle 
functions for conduction electron% we can write down ex- 
pressions for the self-energy parts Xi in explicit form. Thus, 
for the c%mponents 2; + and 27 -, we obtain to second 
order in Xi,, the following: 

where G and Fare, respectively, the normal and anomalous 
Green's functions of the superconductor. 

After Fourier-transforming Eq. ( 1 4 )  with respect to 
the time difference and passing from the total Green's func- 
tion to the Green-Gor'kov-Eilenberger-Eliashberg function 
integrated over we obtain for Xi- + and 2: - 

Xi+- (hf 65, t )  

where 

herep is the density of states of conduction electrons at the 
Fermi surface in the normal state, and f ( ~ )  is the nonequi- 
librium quasielectron distribution function. We assume that 
the usual symmetry of the electron and hole branches of the 
distribution function for the excitations obtains, and that 
this symmetry also holds in the nonequilibrium case, i.e., 
under excitation by the high-frequency electromagnetic 
field.16 In what follows we do not take into account the de- 
pendence of the matrix elements M$d on the components a, 
a' of the electron spin, and therefore we assume that 

Nevertheless, we note that the validity of the last equality in 
Eq. ( 1 6 )  is a question that requires a special investigation. It 
is possible that in certain compounds the question of the spin 
dependence of M can turn out to be important, because 
the symmetry properties of these matrix elements, as is clear 
from Eq. ( 1 5 ) ,  are directly related to the sign of the coher- 
ence factor. 

Thus, by using Eqs. ( l l ) ,  ( 1 5 ) ,  and ( 5 )  it is easy to 
obtain the kinetic equations for the occupation of the RE1 
levels: 
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where ni ( t ) ,  nj ( t )  are nonequilibrium occupation numbers 
for the ith and jth ionic levels, respectively. If we pass to 
equilibrium (or turn off the source of nonequilibrium excita- 
tion) we find 

As we should expect, the right-hand side of the kinetic 
equation ( 17), which is the collision integral, reduces to zero 
when we replace the distribution functions n and f by their 
equilibrium values. 

The problem of finding the electronic distribution func- 
tion f ( ~ )  of a superconductor that is subjected to electro- 
magnetic radiation has been discussed in detail in Refs. 6 and 
17. Considerable progress has been made in investigating the 
nonlinear electrodynamics of superconductors based on the 
model proposed by Eliashberg with a phonon heat 
According to this model, the coupled kinetic equations for 
electrons and phonons decouple for the case of sufficiently 
thin films, in which the nonequilibrium phonons that are 
generated by the field succeed in leaving the film without 
giving rise to any change in the stationary distribution of 
conduction electrons. Moreover, it is possible to represent 
electron kinetic equations that are initially given in terms of 
Green-Gor'kov-Eilenberger-Eliashberg functions integrat- 
ed over energy in the form of Boltzmann equations. This 
situation is realized for the case of a system with a sufficient 
number of nonmagnetic impurities. By taking into account 
the limitations mentioned above, and assuming that the ex- 
ternal electromagnetic field with frequency w, is incident 
perpendicular to a sample film, so that the vector potential A 
lies in the plane of the film, and that the film thickness is 
smaller than the penetration depth of the field, the authors of 
Refs. 6 and 18 obtained the following expression for f ( ~ ) :  

where 

D = +U;T is the diffusion coefficient and A, is the Fourier 
component of the vector potential at frequency a,. 

Substituting Eqs. (19) and (20) into the right side of 
the kinetic equation (17) and setting it equal to zero, we 
obtain for the population of the RE1 levels 

where 

np, n; are the equilibrium populations determined by Eq. 
( 18). The quantities a,, a , ,  and P,  are given in the Appen- 
dix. 

4. DYNAMIC RESPONSE 

Using the Keldysh method1' the equations for the non- 
equilibrium susceptibility (6)  can be written in the form 

a ( i - - IS<) ki ( t ,  t', t )  =6 ( t- t ' )  [ 4 ( t f ,  t )  -bi(r, t r )  ] 
at 

The equations forxg (t,t ',t) are obtained from Eq. (23) by 
exckangng the positions of the subscripts i and j. The matri- 
ces Di, Xi are determined in Eq. (7).  The following relations 
can be derived for the components ,yo from Eq. (24); note 
that these hold for the single-particle Green-Keldysh func- 
tion as well: 

After passing to a mixed representation in Eq. (23) and 
taking the Fourier transform with respect to the time differ- 
ence, we obtain for the components of Eq. ( 12) 

By using Eqs. (6),  (9) ,  (15), and the condition of ther- 
modynamic equilibrium of the system consisting of the su- 
perconductor plus external electromagnetic field, after some 
uncomplicated mathematical transformations we find from 
Eq. (26) 

where 

nj - n, is determined in Eq. (21 ). The quantities a,, a , ,  and 
p, are given by Eqs. (A1)-(A3) of the Appendix. 

Finally, taking into account Eqs. ( I ) ,  ( 2 ) ,  (27), and 
(28), the equation for the differential cross section with re- 
spect to energy and angle for scattering of neutrons by RE1 
takes the form 

2c n,-ni 
X- 

26ijo (I'+K) + (mz+64j1) ( r - K )  
n l-exp (-Po) ( o a - 6 i ~ ) z +  [ o  (r+K) +8,, ( r i K )  1' 
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where 
r=2n 1 Mij12pa (ao+ul), 

5. DISCUSSION OF RESULTS 

As is clear from Eqs. (A1 )-(A3 ), the quantities a,  and 
PI vary significantly in the region of energies determined by 
the condition 

2 A  (T) 4 6ijG 2A (T) +COO. (30) 

Note that when condition (30) is fulfilled the quantity n 
given by Eqs. (21) and (22) becomes negative. At first 
glance this leads to a paradoxical result: when the supercon- 
ductor is "heated" by an external electromagnetic field a 
cooling of the RE1 system occurs, i.e., the occupation of the 
ground state level of an ion in the nonequilibrium supercon- 
ductor becomes larger than its value in the absence of the 
field. However, this effect has a simple explanation: in the 
absence of electromagnetic pumping, for 8, - 2A ( T ) 
"crossed" quantum transitions occur between crystal-field 
levels of the RE1 system and across the energy gap in the 
system of conduction electrons. The numbers of self-induced 
transitions "upward" and "downward" with respect to the 
energy are the same under equilibrium conditions. When the 
electromagnetic field with frequency wo < 2A ( T ) is 
switched on, a redistribution occurs of the quasiparticles 
that are located above the energy gap into regions of higher 
energies; because energy states directly above the energy gap 
are thereby exposed, this leads to an enhancement of the 
upward transitions across to the energy gap in the system of 
conduction electrons, and correspondingly to an enhance- 
ment of the downward transitions to the ground state level of 
the RE1 system. The new thermodynamic equilibrium of the 
system of superconductor plus AC electromagnetic field will 
be characterized by an increase in the population differences 
of the ground and excited levels of the RE1 n, - n, above 
their values n; - np which follow from the Boltzmann distri- 
bution. 

The situation described above is in a certain sense simi- 
lar to the "phonon deficit" effect investigated by Gulyan and 
Zharkov:I8 according to these authors, a superconducting 
thin film that is placed in a heat bath and subject to an exter- 
nal electromagnetic field with frequency wo < 2A can effec- 
tively absorb phonons within a certain spectral interval from 
the heat bath. 

According to Eq. (29), the increase in n, - n, should 
change the scattering cross-section; in addition, by virtue of 
the coupling of the parameters I? and K to a ,  andp, as given 
by Eq. (29), it should also change the width of the transition 
lines. In order to estimate the magnitude ofthis effect, we use 
experimental data from neutron-scattering studies of the 
high-temperature superconductor Tm, , Yo, Ba2Cu306, 
(see Ref. 2).  In this compound, for which T, = 92 2 K, 
the ground-state 3H6 multiplet of the Tm3+ ion, which is 
split by an electronic crystal field of orthorhombic symme- 
try, is characterized by the following low-lying levels: the 
ground state level T3 and the two lowest excited states I?, 
and r, with energies 1 1.8 and 14.2 meV, respectively, and by 
dipole-allowed transitions from the ground state level. With 
regard to the case of a two-level system which we are discuss- 

ing here, we can assume a value 8 ,  = 1 1.8 meV for the tran- 
sition T3-T,. This quantity yields an estimate of 
2A(T ) = S, = 136.84 K, since according to Ref. 2 we have 
2A (0) > 14.8 eV. Assuming values for the other parameters 
that agree with analogous estimates that can be found in the 
literature [wo = 1 K = 2aX0.21 x 10" sec-' (see Ref. 19), 
B,,, = 2 x lop4 Oe for the magnetic induction of the electro- 
magnetic field,20 re, = sec (see Ref. 21 ), v, = 2X lo6 
m/sec, 7 = 2~ 10-l3 sec], let us plot the dependence of n, 
- n, on 2A ( T ) in the energy region determined by condi- 

tion (30) (see the figure). 
Introducing the notation 

d2a s = -- 2A (T) G6ijG2A (T) +COO, a~ aE' ' 

we estimate the ratio s/so for w = a,-, i.e., at the center of the 
scattering line: 

where I? - a, + a,  is the line width for cases (31a) and 
(3  lb),  respectively. Estimates based on Eqs. (A1 )-(A3) 
and Eq. (32), using the parameters presented above, give 

It follows from Eq. (33) that when condition (30) is fulfilled 
the following quantities increase in a resonant fashion: the 
line width ( T K O )  increases by 12.8%, the integrated scat- 
tering intensity ( -n, - n,/n: - np) increases by 20%, and 
the maximum of the scattering cross section (s/s,) increases 
by 6.4%. Of course, all of these estimates are conditional, 
since as the intensity of the source that drives the system out 
of equilibrium varies the ratios in Eq. (33) can increase sig- 
nificantly until inverse saturation occurs, i.e., at n, - n; = 1. 
The study of nonequilibrium kinetics under conditions of 
supercooling of the ion system, which certainly is an inter- 
esting problem, lies outside the framework of this paper 
since it can be addressed only by taking into account such 
distinctive features as the change in the density of electronic 
levels and the superconducting order parameter brought 
about an intense electromagnetic field, the appearance of 

FIG. 1. Dependence of the population differences of RE1 levels on the 
magnitude of theenergy gap obtained according to Eq. ( 2  1 ). The values of 
the parameters are presented in the text. The dashed line denotes the 
equilibrium population difference calculated for T = 86 K. 
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shock ionization effects,22 etc. 
The author thanks B. I. Kochelaev for useful discus- 

sions and assistance in this work. 

APPENDIX 

Let us write the following obvious relations for the oc- 
cupation of a two-level RE1 system: 

from which, in particular, there follows: 

After linearizing the kinetic Eq. (17) with respect to 
the amplitude of the external electromagnetic field, we ob- 
tain for n 

n;pI-ndOat 
n =  a. ( I + ~ - ~ ' U )  ' 

where 

The integrals (A1 )-(A3) can be calculated by using 
the mean-value theorem Eq. (23), which separates out the 
slowly-varying part of the function under the integral sign. 
Substituting the explicit form of the correction to the elec- 
tron distribution function f, ( E )  with respect to the field into 
Eqs. (A1)-(A3), to the accuracy of the mean-value 
theorem we obtain 

where 

A+to X = ch-' - 2 ( ( A) "' ) , 2T rI (A+to. to)  (8,+00) % 6i1+ oo 

A 2 ij-00 
y =  c h - 2 - q I ( ~ ,   to)-^ ( ( + ) ' I 2 )  7 

2T 6 ii 

A+8tj 0 = Ch-2 - 2 
2T 9 2  (A, -to) 

(6,jf to)" 

A+6i, R = Ch-2 - 
2T 
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c r  (e,  oo) =ti ( 8 ~ - 8 ,  ~ o ) .  

A j A  A+oo<E1<8ij-Aa 

A<Ez<6ij-A, 

Acb<6ij-A--~00, 

and K ( z )  is the complete elliptic integral of the first kind.24 

"In what follows we limit ourselves to investigating only two-level sys- 
tems. 
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