
Characteristics of two-sublattice spin chain with Dzyaloshinskii interaction 
A. A. Zvyagin 

Physicotechnical Institute ofLow Temperatures, Academy of Sciences of the Ukrainian SSR 
(Submitted 20 March 1990) 
Zh. Eksp. Teor. Fiz. 98,1396-1401 (October 1990) 

The stationary states of a two-sublattice quantum spin chain with a ~z~a losh in sk i i  interaction 
are analyzed exactly. The corresponding thermodynamics is constructed. Certain distinctive 
features are found in the magnetic characteristics of this spin system, in particular, helical 
structure. 

There is no waning of interest in research on low-di- 
mensional spin systems. Experimentally, these systems ex- 
hibit some special properties (Ref. 1, for example). From 
the theoretical standpoint, low-dimensional systems are in- 
teresting primarily because in these cases exact solutions can 
be found for problems of both classical dynamics2-4 and 
quantum Multiple-sublattice low-dimension- 
a1 systems have been attracting particular research interest 
in recent years.8 These systems are interesting because of the 
diverse properties of these magnetic materials and also be- 
cause of aspects of their behavior which stem from the low 
dimensionality. 

Some very interesting entities for study are weak ferro- 
magnets, in which there is a nonzero magnetic moment in 
the absence of a magnetic field because of the Dzyaloshinskii 
exchange-relativistic intera~t ion.~ In addition, the Dzyalo- 
shinskii interaction may lead to particular features in the 
spin structure, noncollinear helical structures.I0 A theory 
describing the behavior of three-dimensional multiple-sub- 
lattice weak ferromagnets has been derived for various types 
of magnetic structures." The customary approach is to seek 
the equilibrium configuration of magnetic moments for the 
ground state; the excited states are slight deviations of the 
magnetic sublattices from this equilibrium position. This ap- 
proximation usually works quite well in describing the low- 
temperature behavior of magnetic systems, provided that 
the spin at a site is far greater than unity. Quantum-mechani- 
cal corrections, however, may prove important if this "site 
spin" is on the order of unity. 

In this paper we are reporting a study of the quantum- 
mechanical aspects of the behavior of a two-sublattice spin 
chain ( s  = 1/2) with the Dzyaloshinskii exchange-relativis- 
tic interaction. In this system, the Dzyaloshinskii interac- 
tion takes a special form. For simplicity we will discuss the 
situation in which the easy-plane magnetic anisotropy is ex- 
tremely pronounced, i.e., the case of an XYchain (the conse- 
quences of incorporating a Z-Z interaction between spins in 
chains with a Dzyaloshinskii interaction were demonstrated 
in Ref. 12 by the present author). 

The Hamiltonian of this system is 

where J,,, are exchange constants, D,,, are Dzyaloshinskii 
interaction constants, h > 0 is a constant magnetic field, 
p, >p, > 0 are the sublattice magnetons, $35 are the spin 
projection operators (s = 1/2) in cell n, and 1 and 2 are the 
indices of the sublattices. Using the transformations of Ref. 
13, we obtain the Fermi operators 

w h e r e ~ z ~ , ~  = s~,,,, f i$ ,,,, and a h 2  obey Fermi com- 
mutation relations. Here and below, we are uninterested in 
edge effects, being concerned only with the thermodynamic 
limit N-. W .  Taking Fourier components, we have 

where N is the number of cells. The Hamiltonian ( 3 )  can be 
diagonalized easily by means of the unitary transformation 

The coefficients of transformatim (4)  are 

where q, and $ are arbitrary phases, and the Hamiltonian 
becomes 

h, j  

where 
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We introduce 

hl,z= {(J,2+Jz"+D,2+Dz2~2 [(Jt2+Dt2) (J22+D22) 1 ') /4ptp2) "', 
(8) 

It can be seen from (7 )  that we have E ~ , ,  >O for all h and k. 
For Ek.2, on the other hand, in the interval O<h<h, we have 
E ~ , ,  (0 for all k. For h>h2, we have E , ,  )O for all k. If, on the 
other hand, we have h, <h<h2, than we have E%, (0 for 
k f <k<k ; and E , ,  )O for all k outside this interval. The 
energy of the ground state of the spin chain is 

Eo=- (Nl2) ( p t + ~ z )  h + erz. (10) 
A 

For O<h< h, , the summation in ( 10) runs over all values of 
k; for h, <h<h2, the summation is over k values in the inter- 
val k ; <k< k ', . For h)h2, the corresponding interval is emp- 
ty. Corresponding to the creation of a genuine excitation is 
the creation of fermions with positive energies or the cre- 
ation of "holes" in the "Dirac ocean," which forms the 
ground state of this system and which has been discussed 
previously. 

In the ground state, the expectation values of the z pro- 
jections of the sublattice spins are 

The summation is over the same intervals of k as in expres- 
sion ( 10). It can be seen from (1 1)  that in the interval 
O<h< h, we have (sf ) = - (6 ), while for h>h2 the z pro- 
jections of the site spins are equal to the nominal value. In 
this spin chain, there are accordingly three phases at abso- 
lute zero: an "antiferromagnetic phase" for O<h<h,, a 
"spin-flip phase" for h>h2, and an intermediate phase at 
values of h which are not in either of these regions. At the 
points h = h,,, , the magnetic susceptibility of the spin chain 
has square-root singularities; i.e., second-order phase transi- 
tions in the magnetic field occur at these points at absolute 
zero. 

The free energy of the spin system is 

where T is the temperature in energy units. Clearly, a non- 
zero temperature will disrupt the phase transitions; this is 
the customary situation for one-dimensional systems. 

Let us take a look at the transverse structure of the spin 
system. Since the expectation values are zero, (c;:,, ) = 0, a 
planar spin structure is determined substantially by binary 
spin correlation functions of the type (s:, ,$+ ,,,!), where a, 
P = x ,  y, and i, j = 1, 2. It was shown in Ref. 14 that the 
angles p, and p, + , which satisfy the relation 

maximize the probability that in cell n the spin projection 

onto the axis making an angle p, with the x axis is one-half, 
and in cell n + m the spin projection onto the axis making an 
angle pn + , with the x axis is also one-half. An analogous 
relation can easily be derived for the case of a two-sublattice 
spin chain. The corresponding angles thus characterize the 
planar structure of the spin chain. 

We know that there is no long-range order in one-di- 
mensional systems at nonzero T. We will accordingly exam- 
ine the correlation functions of the spins of nearest neigh- 
bors, in order to bring out the features of the short-range 
order in a spin chain with the DzyaloshinskiY interaction. At 
T = 0 ,  forO<h<h,, and in thelimit N -  UJ, we have 

=-D, J dk{[ I+ [ (J;+D,Z)I(J,'+D,') ] I h  cos k ] / R } ,  
0 

It can thus be seen from (14) that we have 
~ ~ ~ ( P ~ , I - P ~ , ~ ) = D I / J I  and tan(pn,2-Pn+1,1) 
= D2/J2. For h, <h<h2, we find the same spin structure, 

while the correlation functions take a form similar to ( 14); 
for example, 

- 1 dk {[If [ (JZ2+D,')/ (Jlz+D,') 1 "  cos k ] / R }  
0 

arccoa a 

=-Dl dk{ [ I + [  (J2'+D,')/(Jl2+D1') 1" eos k ] / R }  
0 

2 0 ,  (p,+pz) h[4p~p2hZ+1,Z+D,2-J22-D22] +- 
2 (J,2+D,2)a1r(J~+DZZ) 'I' ( I-a')  I h  

' 

780 Sov. Phys. JETP 71 (4), October 1990 A. A. Zvyagin 780 



arc cos a 

--D, d k { [ l + [  (J, '+Di2)/(J~+D,')  I n h  cos k ] / R )  
0 

For magnetic fields h>h,,  the correlation functions are of 
course zero, and there is no helical planar spin structure. The 
introduction of a nonzero temperature does not alter the 
planar structure of this spin system. We wish to stress that it 
prevails at all values of the field h for T $0. 

When we compare the results of an exact quantum-me- 
chanical calculation with the result found by replacing the 
spin operators by Bose operators (the Holstein-Primakoff 
representation disregarding Boson interactions), we see that 
there is no "antiferromagnetic" phase in that semiclassical 
description. Although the planar correlation functions of 
nearest neighbors in the ground state do not behave as de- 
scribed by ( 14) and ( 15 ), the complex helical structure is 
the same as that predicted by the exact quantum-mechanical 
theory. 

Let us examine the case with a field h = 0. One can 
show fairly easily, by analogy with Ref. 15, that there is co- 
operative Jahn-Teller phase transition in this chain. Assume 

J1,2=J(l*bG), D,,z=D(i*bG), 
where S is the displacement of an atom of the chain, and b is 
the magnetoelastic constant. The ground-state energy of the 
chain of spins is, at small values of 6, 

U=- ( 2 1 ~ )  N(J2+D2) IhE (1-b26') +NCb2, (16) 

where Cis an elastic constant, and E ( x )  is the elliptic inte- 
gral of the first kind. Minimizing expression ( 16) with re- 
spect to 6, we find that in the case 6 4  1, in the ground state, 
an equilibrium corresponds to 

In other words, Peierls period doubling .occurs in the chain. 
In a chain with suchperiod doubling, simple helical planar 
structure occurs, as can be seen from (14): 
tan(p,+,, ,  -p , , , , )= tan(p , ,  -p , , , )=D/J .  At high 
temperatures, there is a phase without period doubling. 

We have studied the quantum-mechanical aspects of 
the behavior of a low-dimensional two-sublattice spin chain 
with the Dzyaloshinskii interaction. Although this interac- 
tion generally does not give rise to weak ferromagnetism 
(the imposition of a magnetic field in the basal plane in XY 
systems poses serious difficulties to a theoretical descrip- 
tion), in agreement with Mermin and Wagner's assertionI6 
that there is no long-range order in one-dimensional uniaxial 
spin systems in a magnetic field directed perpendicular to 
the special axis, this interaction does renormalize the fields 
of the phase transitions. In addition, the Dzyaloshinskii in- 
teraction in this spin chain leads to some special helical 
planar spin structures. These helical structures occur in the 
antiferromagnetic and intermediate phases if the magnetic 
field is below the level corresponding to the spin-flip transi- 
tion, h, . 

I wish to thank V. M. Tsukernik and A. E. Borovik for a 
useful discussion of these results. 
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