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The (2 + 1 )-dimensional Landau-Lifshitz equation is solved numerically in order to study the 
motion of a solitary domain wall in a ferromagnetic film with a uniaxial anisotropy subjected to a 
homogeneous magnetic field. The internal dynamics of a domain wall in the velocity saturation 
region is determined as a function of the intensity of the applied magnetic field. 

INTRODUCTION 

Domain walls have a considerable influence on a num- 
ber of processes such as quasistatic and dynamic magnetiza- 
tion reversal (switching), electrodynamic losses, motion of 
isolated domains, etc., which occur in magnetically ordered 
materials (see, for example, Ref. 1). Moreover, domain 
walls significantly influence the spectra of magnetic excita- 
tions, resonance properties, wave propagation, and other 
phenomena (see, for example, Ref. 2). This accounts for the 
major interest in the dynamic behavior of domain walls. 

Since the paper by Landau and Lifshitz3 where the re- 
sults of a calculation of domain wall velocities were present- 
ed for the first time, much work has been done on the dynam- 
ic behavior of these walls (for reviews see Refs. 4-6). The 
present direction of research is aimed to gain an understand- 
ing of the major role played in the dynamics of domain walls 
by their internal structure, which can change considerably in 
thz process of domain wall motion. 

The most general equation which can be used in a study 
of the domain wall dynamics is the Landau-Lifshitz equa- 
t i ~ n . ~  However, because of the great complexity of this non- 
linear integrodifferential equation, it is usual to consider 
simpler models of the domain wall structure and the asso- 
ciated simpler equations of motion,"" which nevertheless 
allow for the main features of the original problem. 

The simplest model which can be used to obtain an ana- 
lytic solution of the Landau-Lifshitz equation is a one-di- 
mensional rigid domain wall.' It is true in this case that we 
can describe only the steady-state behavior of the wall. How- 
ever, the model is far from reality in the case of thin magnetic 
(and particularly magnetically uniaxial) films with an easy 
magnetization axis perpendicular to the film surface. In 
films of this kind the structure of a domain wall is at least 
two-dimensional, due to the existence of magnetostatic poles 
on the film surface. Consequently, the domain wall is twist- 
ed.8 

The major progress in the study of the dynamics of 
twisted domain walls was made by Sloncze~ski ,~ who re- 
duced the two-dimensional problem with a nonlocal mag- 
netostatic interaction to a one-dimensional local problem. 
He obtained two relatively simple equations assuming that 
the distribution of the domain wall magnetization in the po- 
lar angle is the same as in a Block domain wall. An analytic 
investigation of the dynamic behavior of a domain wall was 
subsequently made'09" by introducing the concept of hori- 
zontal Block lines which dynamically transform the domain 

wall structure and represent the transition region between 
two domain walls with different forms of chirality. 

According to the experimental data (see, for example, 
Ref. 12), the dependence of the domain wall velocity on the 
intensity of the external driving magnetic field is initially 
linear in many materials, followed by a saturation region. 
The theory put forward in Refs. 10 and 11 relates the linear- 
saturation transition to the formation of a horizontal Bloch 
line in some critical field. The two best known theoretical 
models of the dynamic modification of the domain wall 
structure in the saturation region are 1)  generation and 
breakthrough of a single horizontal Bloch line at the film 
surface;'' 2)  generation and formation of clusters of hori- 
zontal Bloch lines followed by subsequent expulsion of these 
lines to the film, surface and their annihilation." However, 
the values of the saturation velocity obtained on the basis of 
these two models do not agree even qualitatively with the 
experimental results (see, for example, Ref. 12). 

The first numerical investigations of the Slonczewski 
equations were made by Hubertr3 who demonstrated that 
the nature of the dynamic transformations of the domain 
wall structure depends on the film thickness. Subsequent 
investigations of the Slonczewski equations by numerical 
methods were reported in Refs. 14-16. They demonstrated 
that both of the above internal dynamics mechanisms are 
possible. Moreover, certain new features were established: 
for example, it was shown in Ref. 15 that horizontal Bloch 
lines may form in relatively weak fields, but they cannot 
break through to the surface. 

The strong influence of the nature of the dynamic modi- 
fication of a domain wall on the average velocity demon- 
strates the need to analyze in greater detail the mechanism of 
the internal dynamics of domain walls without any model 
assumptions underlying the existing theories. Our aim will 
be therefore to investigate the domain wall dynamics nu- 
merically, retaining the rigorous micromagnetic formula- 
tion of the problem within the framework of the Landau- 
Lifshitz equation. 

This approach had been used to study pro- 
cesses unrelated to the motion of a domain wall. The equa- 
tion of motion of the magnetization allowing for the damp- 
ing has been used as an analog for the steady-state method to 
obtain two-dimensional static solutions. 

We shall list the main assumptions of a new numerical 
tracking method and give the results of an investigation of a 
(2  + 1)-dimensional domain-wall equation of motion 
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which allows for a nonlocal demagnetizing field. We shall 
describe in greater detail a new mechanism of generation and 
breakthrough of horizontal Bloch lines which corresponds 
to the region of saturation of the domain wall velocity re- 
ported earlier in Ref. 2 1. 

FORMULATION OFTHE PROBLEM ANDSOLUTION METHOD 

Consider a ferromagnetic film with a uniaxial anisotro- 
py (assumed to be a material with bubble domain walls). We 
assume that the z (k)  axis coincides with the anisotropy axis 
and is perpendicular to the film plane, while the x( i )  axis is 
perpendicular to the domain wall and lies in the plane of the 
film, and the y ( j  ) axis is directed along the domain wall in 
such a way that the coordinate system is right-handed. We 
assume that all the investigated magnetization distributions 
are translationally invariant along they axis (Fig. 1 ). 

We assume that 

Here, M(x, z, t)  is the distribution of the magnetization; M, 
is the saturation magnetization; H(x,  z, t)  is the effective 
field; y is the gyromagnetic ratio; I is a characteristic length; 
A is the exchange constant; K is the uniaxial anisotropy con- 
stant; Q is the quality factor. We write down the Landau- 
Lifshitz equation in its dimensionless form: 

h (x, z, t )  =-4nQv,+ (n/Q) V2v+hd,+hd,+ho, ( 1 ) 

where 

n is the external normal to dR, R = [ - L,/2, L,/2] 
[ - L,/2, L,/2] is the region where the calculations are car- 
ried out, h, (x, z) is the demagnetizing field of the neighbor- 
ing domains, ho is the external magnetic field, and a is the 
damping parameter. The boundary and initial conditions are 

FIG. 1. Geometry of the calculation region: I ) ,  2 )  curves bounding the 
domain wall kernel at the initial time. 

\ & I  

v (I, Z,  0) =vo (x, z), (x, Z) EQ, t~ [0, TI. 

We introduce a uniform network w in a region R (Fig. 
1 ). We approximate the effective exchange field by a stan- 
dard fourth-order difference operator and the demagnetiz- 
ing field by piecewise-constant finite elements matched to 
the network w (Refs. 18 and 20), and the effective anisotro- 
py field as well as the external magnetic field by standard 
projections on a set of network functions. The boundary con- 
ditions can be approximated by postulating additional 
boundary layers. Time differencing was done by a stable dif- 
ference scheme (using the predictor-corrector method with 
monitoring of the accuracy at each step). 

Since there are no phase surfaces separating the domain 
from its it is desirable to artificially introduce bound- 
ary surfaces and to identify a domain wall as a two-dimen- 
sional region for the study of its dynamics. 

We call the kernel of a domain wall the subregion 
R, ( t )  of the region R where the main rotation of the mag- 
netization vector from one domain to another takes place. 
The subregion R w  ( t )  is bounded by the lines z = & L2/2 
and u, (x, z)  = f 0.9 (we recall that Ivl = 1 ). 

Assume that x = SL and x = FL are lines R,(t) at 
t = 0. The subregion bounded by the lines z = f L2/2, 
x = SL, x = FL will be labeled R,, . 

Application of an external magnetic drive field 
h, = - ak (a  = const > 0)  displaces the domain wall to- 
ward a domain with its magnetization opposite to the exter- 
nal field. If the network is fixed, then after traveling a certain 
distance this wall stops at the edge of the calculation region 
R because of the boundary condition (2).  The numerical 
tracking method involves retention of the domain wall core 
inside the region R,. After a time interval At a "photo- 
graph" of the domain wall is taken, i.e., the region of local- 
ization, the displacement of the center of the wall from the 
center of the calculation region, and the dynamic character- 
istics are calculated; if the line v, (x, z, t )  = f 0.9 intersects 
the line SL or FL, the network is shifted by several nodes in 
such a way as to ensure R, ( t )  C R wD . The quantities SL, 
FL, L,, and At and the displacement are obtained by trial 
and error, depending on the capabilities of the computer and 
the characteristics of the domain wall motion. It is found 
that these quantities can be selected so that the error in the 
displacement is less than the error due to the approximation 
involved in the original equation. 

RESULTS OF CALCULATIONS 

Assume that p(x,  z, t )  is the angle between the projec- 
tion of the vector v(x, z, t )  onto the xy plane and the y( j )  
axis, and B(x, z, t)  is the angle between v(x, z, t )  and thez(k) 
axis. The process of mapping a two-dimensional three-com- 
ponent dynamic vector field is by itself a complex task and it 
is best solved by producing a computer-generated film on the 
screen of a display. We lacked facilities for such a procedure 
and were therefore able to obtain only certain "frames" of 
the dynamic process. 

We consider the following characteristics: the curve 
representing the angle of twist of a domain wall $(z, t)  [$(z, 
t)  = p(x,  z, t)  on the central line B(x, z, t)  = ?r/2]; the lo- 
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calization region of a domain wall R, ( t ) ,  the velocities of 
three "key" points S , ,  S,, and S, also located on the central 
domain wall line at the upper surface of the film, in the cen- 
tral plane of the film, and the 1ov:er surface of the film, re- 
spectively. 

In the case of thick films [obeying the condition 
A/L, < 1, where A = ( A  / 2 ~ M 3 )  ' I2 is the nominal width of 
a horizontal Bloch line] a horizontal Bloch line is usually 
understood to be a sharply localized region of a domain wall 
where a considerable change in the angle of twist $(z, t )  
takes place. Horizontal Bloch lines then join static branches 
of the twist curves $(z). In our case, for the sake of brevity, 
we use the term "horizontal Bloch line" to denote parts of 
the domain wall where the angle of twist varies rapidly, al- 
though there may be no clear localization (A/& =; 0.26) and 
a horizontal Bloch line does not necessarily join different 
static branches of $,,(z). 

We report the results of calculations for the following 
parameters: Q = 4, L, = 3 (in units of I), a = 0.2, 
hb = - ak, aE[O, 51 (in units of M, ). We consider in great- 
est detail the case a = 4. The majority of the calculations 
were carried out for a N, x N, = 40x40 network. The ini- 
tial condition was a two-dimensional distribution of the 
magnetization obtained by solving the static variational mi- 
cromagnetic problem in the case when h, = 0. Next, in the 
course of integration of the equations of motion we assumed 
that a static external drive magnetic field was applied ab- 
ruptly (in the form of a step). 

If 0 < a  < a ,  = 1.2, the dependence of the domain wall 
velocity on the drive field is linear. The evolution of the angle 
$(z, t )  is then slow compared with the domain wall velocity. 
The $(z, t)  curve is typical of this case and very similar to the 
curves reported in Ref. 6 (Fig. 17.2b). This case fully de- 
serves the term "quasisteady". 

In a ,  < a  < a 2  = 2.7 a perturbation of the twist angle 
created at the lower surface of the film grows quite rapidly 
reaching the value -- 2~ (giving rise to a 277 horizontal Bloch 
line) and then the Bloch line breaks through to the upper 
surface of the film. The process is then repeated: a new hori- 
zontal Bloch line is created at the top, i.e., it grows, drops 
downward, and becomes annihilated there, and so on. The 
motion of the horizontal Bloch line is faster than that of the 
domain wall; such a line has a retarding influence on the part 
of the wall where it is localized. An increase of the external 
field intensity enhances the amplitude of the perturbations, 
although the average domain wall velocity still remains ap- 
proximately constant. Averaging over several periods of pas- 
sage of a horizontal Bloch line gives the relative domain ve- 
locity 0.44. The internal dynamics mechanism is then 
qualitatively similar to the mechanism described in Ref. 10. 

For a, < a  < 5, the average velocity remains as before, 
but the internal dynamics mechanism changes significantly. 
We describe this in greater detail by splitting the process into 
stages (see Figs. 2-5, which correspond to the case when 
a = 4 ) .  

1. A perturbation of the twist angle $(z, t )  is created at 
the lower surface of the film by an external field. After a 
time, a perturbation wave rises to the central plane of the 
film and grows at the center, whereas the edges are charac- 
terized by stable values - 77/2 and 77/2 which are due to the 
action of the demagnetizing fields of the adjacent domains. 
We say that a pair of horizontal Bloch lines is formed: the 

FIG. 2. Dynamics of the curve representing the twist angle $(z, t )  of a 
domain wall. The dashed curves are the static branches of the twist angle 
$,,(z). The numbers alongside the curves correspond to the following 
times: 1) t = 0; 2 )  0.274; 3) 0.52;4) 0.767; 5)  1.014; 6 )  1.359; 7 )  1.507; 8)  
1.754;9) 2.002; 10) 2.076; 11) 2.248; 12) 2.371; 13) 2.617; 14) 2.893; 15) 
2.992; 16) 3.484; 17) 3.932; 18) 4.077; 19) 4.250; 20) 4.475; 21) 4.843; 
22) 5.114; 23) 5.361. 

upper line is greater and the lower line is smaller (curves 1-5 
in Fig. 2a). 

2. The upper horizontal Bloch line first rotates by an 
angle =: 477 and then the lower line rotates by an angle z 2~ 
(curves 6-1 1 in Fig. 2b). The energy of a stressed twisted 
state (curve 5 in Fig. 2a) is sufficiently high for the magneti- 
zation vector on the upper plane of the film to jump across 
the stable position 31r/2. 

3. The breakthrough of a horizontal Bloch line has the 
effect that the central part of the $(z, t )  curve lags behind the 
surface regions. The center of the curve then begins to move, 
whereas the surface vectors are in the vicinity of the stable 
states 5 ~ / 2  and 7 ~ / 2  (curves 12-14 in Fig. 2c). 

The stages 1-3 are then repeated but the polarity of the 
domain wall is reversed: the large horizontal Bloch line is 
now at the bottom and the small one at the top (curves 15-17 
in Fig. 2c); this is followed by breakthrough involving rota- 
tion by angles of -- 4.rr and -- 277, respectively (curves 18-2 1 
in Fig. 2d); finally, the central region of the $(z, t)  curve 
reaches its surface and the complete cycle is repeated. 

Since the motion of a domain wall begins from a static 
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rapid motion of the central region of the $(z, t )  curve are 
accompanied by reciprocating motion of the relevant parts 
of the domain wall. 

Figures 5a-5d give certain characteristic two-dimen- 
sional distributions of the magnetization. It is interesting to 

* \ note that the most "critical" moments of the domain wall 
x retain their rotational nature, which is due to the magneto- 

static interaction. 

DISCUSSION 

Direct numerical integration of the Landau-Lifshitz 
1 equation revealed three internal dynamic mechanisms of a 

/ 
\ / 

/' 
/' 

moving isolated two-dimensional domain wall. The results 
of calculations confirmed the hypothesis that saturation of 

FIG. 3. Dynamics of boundaries and of the central line of the domain wall 
core. 

state, the process is of steady-state nature and the exact peri- 
odicity is not obeyed. 

The behavior of the domain wall core [region fl, ( t )  ] 
is shown in Fig. 3. The numbers of the curves in Fig. 3 are the 
same (and the times are the same) as in Fig. 2: the states are 
plotted for the same moments in time. It is quite clear that 
the formation and breakthrough of the horizontal Bloch line 
distort the domain wall structure. 

Fuller information on the reciprocating nature of the 
motion of a domain wall is presented in Fig. 4, which gives 
the velocities of the three points S, ,  S,, and S, whose posi- 
tions at the initial moment are shown in Fig. 3. The velocity 
was calculated from the expression = AS,/At, where 
At = 0.02 and ASi is the path traveled by the relevant point. 
Note that the breakthrough of a horizontal Bloch line and 

the domain wall velocity as a function of the drive field is due 
to the internal transformations of the domain wall structure. 
There is a qualitative agreement between some effects of the 
two-dimensional domain wall dynamics and the results re- 
ported in Refs. 6 and 14-16, obtained by solving the Slonc- 
zewski equations. We now list them. 

1. A horizontal Bloch line is created "automatically" 
(in a natural manner) at the film surfaces in the vicinity of 
the critical points where the effective field intensity is least. 
The formation of the horizontal Bloch line is due to the dy- 
namic properties of the Landau-Lifshitz equation and due 
to the topological limit I vl = 1. 

2. The existence of the quasisteady range 0 < a  < a  ,, cor- 
responding to initiation of deformation of the $(z, t)  curve, 
is localized within the film and there is no breakthrough to 
the surface. 

3. When the first critical value a ,  is exceeded by the drag 
field, the horizontal Bloch line exhibits regular and irregular 
breakthrough to this film surface and the surface magnetiza- 
tion vector then rotates by an angle Z ~ T ,  resulting in anni- 
hilation of the horizontal Bloch line. The internal dynamics 
then follows the Slonczewski model. 

4. In the course of motion of the domain wall the region 
where the horizontal Bloch line is localized moves at a lower 
velocity than the rest of the domain wall. The velocity de- 
creases on increase in the angle of twist of the horizontal 
Bloch line. 

5. When the horizontal Bloch line breaks through the 
surface region, it exhibits reciprocating motion, whereas the 
rest of the wall moves forward. 

However, there are some differences. For example, 
when the drive field is increased still further, the horizontal 
Bloch line no longer rises to the surface and the central part 
of the line travels forward much further than the nearest 
static branch $,(z), while the edges are in potential wells 
created by the demagnetizing fields of the adjacent domains, 

1- 

FIG. 4. Plots showing the velocities of thepolnts 
S,, S,, and S,. 
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so that $( + L2/2, t )  =. f 77/2. Strongly twisted regions 
form on the surface which for brevity we call horizontal 
Bloch lines, although it is clear from the figures that the 
structure is now somewhat different. Strongly twisted re- 
gions are smoother than "classical" horizontal Bloch lines. 
Moreover, fast rotation (in the form of annihilation of hori- 
zontal Bloch lines) occurs not only on the film surfaces, but 
also in the interior where the central region catches up with 
the edges (Fig. 2c). A mechanical analogy can be quoted in 
support of this mechanism: the twist curve resembles an elas- 
tic filament with small loads at the ends moving on a surface 
with a relief under the influence of a distributed force. 

In our opinion the smoother nature of the dynamics due 
to the Landau-Lifshitz equation is the result of the intrinsic 
magnetostatics of a domain wall which is allowed for more 
rigorously than in the case of the Slonczewski equation. 

The results of our calculations demonstrate that there is 
a great variety of internal dynamic processes corresponding 
to the saturation region of the domain wall velocity in an 
external field. The saturation velocity obtained in our model 
(0.44 nominal units of the length I per unit dimensionless 
time t ,  ) is higher than the velocity deduced using the empiri- 
cal de Leeuw expression v = 77-/5Q, which creates a certain 
margin of the strength since an allowance for dislocations, 
irregularities of the parameters of the material, and stabiliz- 
ing fields used in real experiments reduces the value of this 
velocity. 

FIG. 5. Components ( u , , ~ , )  of the distribution of the 
magnetization at the following moments: a)  t = 1.507; b) 
r = 2.002; c)  t = 2.493;.d) t = 3.484. 

An estimate of the accuracy and reliability of the nu- 
merical solution of the system of equations ( 1 )-(2) is a diffi- 
cult task and a detailed analysis of this task is impossible 
within the framework of the present paper. We simply stress 
some aspects of the solution of this nonlinear problem. 

The absence of a proper analytic solution of the domain 
wall dynamics makes it more difficult to test the code and to 
estimate the precision of the calculations. We investigated 
separately the quality of the approximations in terms of the 
temporal and spatial variables by considering model motion 
paths obtained in the course of preliminary calculations us- 
ing coarser networks. 

It is essential to study the solution using nested net- 
works at different time intervals, since we found that the 
nature of the solutions depends on the network parameters. 
For example, if the number of nodes in a network is insuffi- 
cient in the regions where the magnetization varies rapidly, 
there may be internal breakthroughs which disappear when 
finer networks are used and which are in conflict with the 
physical meaning of the micromagnetic formation of the 
problem. 

All the reported results were obtained using a package 
of routines UNIMAG.DW (in the Fortran-77 language) in- 
tended for the calculation of static and dynamic structures of 
two-dimensional domain walls. The time needed for the cal- 
culation of several cycles of creation and annihilation of the 
horizontal Bloch line on a computer capable of 10' opera- 
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tions/s was 3 4  h of central processor time. 
The authors are grateful to A. L. Kupriyanovich for his 

help in the calculations. 
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