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A theory is developed for the drift of 180-degree Bloch- and NCel-type domain walls in an external 
oscillating magnetic field of arbitrary frequency. The dependence of the drift velocity on the 
frequency and polarization of the oscillating field, on the topological charge of the domain wall, 
and on the direction of the magnetization-vector rotation in the wall is determined. 

1. INTRODUCTION 

Domain-wall (DW) drift in a ferromagnet constitutes 
the onset of a constant DW velocity in an external magnetic 
field that is homogeneous in space and oscillates in time. The 
first to call attention to the possibility of drift motion of a 
solitary DW were Schloman and Milne,' who considered the 
case when the frequency w of the external field considerably 
exceeds the frequency w, of the homogeneous ferromagnetic 
resonance. The approach proposed in Ref. 1 was subsequent- 
ly extended to the general case of an arbitrary external-field 
frequency.' Schlomann and Milne attributed the DW drift 
to the action of a constant effective pressure due to the differ- 
ence in the ferromagnet energy density on the two sides of 
the DW. It was assumed that the pressure applied to the DW 
is equal to the difference, averaged over the field oscillations, 
of these energy densities. 

Another a p p r ~ a c h ~ . ~  to the description of the DW drift, 
is based on the equations of motion, in a spherical coordinate 
frame, that specify the direction of the magnetization vector. 
The region in which this theory is valid is bounded by the 
condition w ) w , .  It is obviously possible go outside this 
bound, in the case of a small-amplitude external field, by 
resorting to perturbation theory. It is clear, however, that 
standard perturbation theory cannot describe DW drift for 
 soliton^,^ for in this theory the time derivatives of the param- 
eters of the unperturbed solution of the equation of motion 
for the magnetization, particularly the DW velocity, are as- 
sumed to be linear in the amplitude of the oscillating field, 
whereas the DW drift is at least second-order in the field 
amplitude. 

The DW drift induced by an oscillating field was experi- 
mentally observed in the form of translational motion of the 
stripe domain ~tructure.~~'  These experimental data, unfor- 
tunately, are insufficient for a detailed comparison with 
theoretical results. 

Drift of a magnetic topological soliton of another type, 
a Bloch line, induced by an external low-amplitude oscillat- 
ing field, was investigated in Refs. 8 and 9. Iordanskii and 
Marchenko9 have proposed a theory of such a drift and have 
shown that the drift velocity is proportional to the square of 
the external-field amplitude. 

Incontrast to Refs. 1-4, no restrictions were imposed in 
Ref. 9 on the frequency of the magnetic field, but its ampli- 
tude was assumed to be low. Our present calculation proce- 
dure is close to that of Ref. 9 and has two basic purposes: 1 ) 
to develop a systematic asymptotic procedure for describing 
the dynamics of a magnetic soliton [of a 180-degree DW of 

the Bloch (Niel) type] in a weak oscillating field of arbi- 
trary frequency and polarization; 2)  to demonstrate the pos- 
sibility of a directed drift of a system of such DW in an oscil- 
lating field polarized in the plane of rotation of the 
magnetization vector in the DW. 

Even though a Bloch (NCel) DW is as a rule a rather 
idealized model of real DW, the advantage offered by the 
possibility of investigating its dynamics in detail justifies, 
from our viewpoint, the formulation of this problem. 

2. BASIC EQUATIONS 

We consider the dynamics of the magnetization vector 
M in an oscillating magnetic field H, ( t )  by starting from the 
phenomenological Landau-Lifshitz equation" with a relax- 
ation term in the Gilbert form 

Here M=M(y, t ) ,  ~ = d M / d t ,  M =  IMI, y is the gyro- 
magnetic ratio and a is the damping parameter. Assuming 
that the energy of a two-axis ferromagnet is of the form - 

1 5 [ t C ~ ' 2 - -  2 PM,' + - 1 2 XM/-MH,] d y ,  (2) 
- - 

we write for the magnetic field H = H(y,t), connected with 
Wby the relation H = - 6W/6M, the expression 

where E is the exchange constant, f l>  0 and x are the anisot- 
ropy constants, M' = dM/dy, and ex, e,, and e, are unit 
vectors along the corresponding axes of the Cartesian coor- 
dinate frame xyz. 

In the ground state (at H, = 0) the magnetization dis- 
tribution M 'O' (y), which satisfies the condition 

and the boundary conditions 
M'O' ( + CXJ ) = + SMe, (6  = f 1 is the DW topological 
charge1 ' ) corresponding to an 180-degree DW, can have the 
structure of a Bloch or NCel DW, depending on the sign of x. 
Thus, according to Eq. 2 the magnetization vector should 
undergo rotation in the xz plane, i.e., in the DW plane 
(Bloch-type DW) if x > 0, and in the yz plane ( NCel-type 
DW) ifwe havex <Oanda> 1x1. It is known then that in the 
case of a Bloch DW we have 
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M(Oi ( y )  =ME ( y )  =e,pM sin 0 ,  ( y )  +e,GM cos 0,  ( y )  , 

sin 0 ,  ( y  ) =sech ( y l A )  , cos 0 ,  ( y )  =--th ( y l A )  
(5) 

( A  = (dB) "') is the DW-width parameter and p = f 1 
indicates the direction of the magnetization-vector rotation 
in the DW), while in the case of a Niel DW 

M(") ( y )  =MN ( y )  =e,pM sin 0 ,  ( y )  +e,GM cos ON ( y )  . 
The expressions for sin 8, (y) and cos 8, (y) are of the same 
form as in the case of a Bloch DW, but8  must be replaced by 
8- 1x1. 

3. PERTURBATION THEORY 

We express the dynamic distribution of the magnetiza- 
tion in an oscillating magnetic field in the form 

M ( Y ,  t ) = 2 ( y - ~ ( t ) ) + m ( y - ~ ( t ) ,  t ) ,  (6) 

which takes explicit account of the possibility of drift motion 
of the DW. The functions 2 (y) and m(y,t) which describe 
the magnetization distribution in a reference frame connect- 
ed with the DW, as well as the function Y(t) which has the 
meaning of the DW coordinate, must satisfy the equation - --+ 

m - (3' f m') Y = - y [(.jX + m),(% + h)] 
+ ( a / M )  [(J + m ) , ( b  - (3' + m l )  Y ) ] ,  (7) 

which follows from ( 1). In accordance with (3) ,  we have 
here 

The functions 2 ( y ) ,  m(y,t) and ~ ( t )  are not uniquely de- 
fined by Eq. (7) ,  so that in addition to the condition 

which follows from the integral of motion (M2 = const) of 
Eq. ( 1 ), they must be subject to a number of additional con- 
straints. Consid%ing, to be specific, the case of a Bloch DW, 
we assume that d ( y ) ,  m(y,t), and ~ ( t )  can be represented 
in a weak oscillating magnetic field by the series 

~ ( Y ) = M , ( Y ) + ~ Z ( Y ) + .  . . , 
m ( y ,  t ) = m , ( y ,  t ) + m 2 ( y ,  t ) + .  . . , 

P ( t ) = V + l i , ( t ) + l i z ( t ) + . .  . (10) 

with zero mean values of m, (y,t) and u, ( t )  

Here V = V, + V, + ... is the DW drift velocity, the numeri- 
cal subscripts indicate the order relative to the amplitude of 
the external-field amplitude, and the angular brackets de- 
note averaging over the period of tke field oscillations. We 
kave left out of the expansions of d ( y )  and V the terms 
A, (yS and V, linear in the field, since it is clear beforehand 
that d , ( y )  = V, = 0. On the basis of ( lo ) ,  ( l l ) ,  and the 
series 

. % ( y ) = ~ , ( y ) + & ~ ( y ) + .  . . , 
h ( y ,  t ) = h , ( y ,  t ) + h z ( y ,  t ) +  . . . , (h,,)=O, (12) 

which follow from ( 8 ) and ( 101, a solution of ( 7 ) can in 

principle be obtained to any order of perturbation theory. 
Confining ourselves to the principal terms of the asymptotic 
expansions of the oscillating (m,, u,) and averaged 
(A , ,  V2) variables, we write for the linear approximation of 
(7)  

and for the quadratic approximation averaged over the field 
oscillations 

The conduction that the length (9) of the magne+tization 
vector be constant requires that the vectors m, and d2 satis- 
fy also the relations 

To simplify the analysis that follows, it is convenient to ex- 
press Eqs. ( 13) and (14) in a local coordinate frame with 
basis vectors el (y) = [eyell (y) 1, e,, ell (y) = MB ( y ) / M .  

' Recognizing that according to ( 15) 

+ 
(the subscripts of m,, u,, d2 and V2 will be omitted from 
now on), Eq. (13) leads to a system of equations for f i ,  ( f )  

and Gy (6) : 
( E - i p a )  iii,(E) + ipE , (E)  =-ipaMEGp sin 0B(E) /A  

+ [ p a ,  sin OB ( E )  -GR, cos 0 ,  ( E )  I I B ,  (16) 

(E- ipa-q) i i i , (E)  -ip%,(E) =-ipMEGp sin O B ( ~ ) l A - ~ u / B ,  

while Eq. (14) breaks up into independent equations for 
dl ( f )  and My (5):  

o , A E A ,  ( E )  =-aVMGp sin 0 ,  ( E )  + ( y A m l ( E ,  t )  ~ I I  ( E ,  t )  

o r A  ( E - q ) J X , ( E )  =-t7MGp sin ~ B ( E )  + ( y A m u ( E ,  t )  ~ I I  (E, t )  
-li ( t )  m,' (E, t )  -azi ( t )  mu' (E, t )  ). (18) 

?ere f = y/A, q = x/P, p = d m , ,  w, = PyM, 
L = d2/df - cos 28, ( f ) ,  m(c,t) = Re iii(f)exp(iwt), 
u( t )  = Re ii exp(iwt), H , ( t )  = ~e H exp(iwt). 

In accordance with the physical meaning of the prob- 
lem, the solution of Eqs. ( 16)-( 18) must be sought in a class 
of smooth functions $(c) that obey the condition Y ( f )  -0 
as f -  + cc . This circumstance yields, even without solving 
the equations, a general equation for a DW drift velocity in a 
biaxial ferromagnet, using only the conditions that Eqs. 
( 17) and ( 18) have solutions in this class of functions. 

Equations ( 17) azd ( 18) contain a negative-definite 
self-adjoint operator L having a zero eigenvalue corre- 
spo%ding to a uniform shift of the DW. For q > 0 the opera- 
tor L - q has no zero eigenvalues and therefore, according 
to the Fredholm alternative, Eq. ( 18) has a solution for any 
value of V. Equation ( 17), on the other hand, can be solved 
only if its right-hand side is orthogonal to the functicn 
8 b (5) = sin 8, (c ) ,  which is the kernel of the operator L. 
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Obviously, to satisfy this condition the expression for the 
DW drift velocity must be of the form 

rn 

+2ypA6pmm1 sin 0,) dE. (19) 

In the case of a uniaxial ferromagnet (q = O), however, the 
solubility conditions of Eqs. ( 17) and (18) are found to be 
incompatible, and it becomes incorrect to describe the mag- 
netization in an oscillating field on the basis of (10) and 
( 1 1 ). If, however, we include in the energy of the uniaxial 
ferromagnet also the magnetostatic energy whose density, 
since the problem is spatially one-dimensional, equals 
277M:, the total energy takes the form given by Eq. (2)  with 
x =   IT, and we return to the case of a biaxial ferromagnet. 

We proceed now to solve the system ( 16) and obtain the 
DW drift velocity in an oscillating field polarized in the DW 
plane and in the plane perpendicular to the easy-magnetiza- 
tion axis. 

4. OSCILLATING FIELD POLARIZED IN THE DW PLANE 
(R, =o) 

For Ey = 0 we seek the solution of the system ( 16) in 
the form 

sin 0, ( 2 )  = A ( ~ ~ ~ ~ ~ )  - 
Substituting (20) in ( 16) and using the linear independence 
of the functions sin 0, ({) and cos 0, ({), we obtain for.the 
elements aU of the matrix A the expressions 

where 

It follows from (21) that iTi({), meaning also m({,t), de- 
pends on ii. Since the only restriction on the values assumed 
by ii is the inequality la,, I (M, satisfaction of which calls for 
the condition I m 1 ( M, it is obvious that a unique choice of ii 
is possible. By finding the variation of M({,t) due to the 
variation of ii we easily verify that in the approximation lin- 
ear in the oscillating field this ambiguity is not reflected in 
the distribution of the magnetization, so that the manner 
used to choose ii has no particular significance. If, for exam- 
ple, we demand that the condition a , ,  = 0, hold, we get 

pa-iq 
E=AS Rz 

pp [qa+ip (I+a2) ] M' 
and the function u ( t )  will satisfy the equation1* 

which describes the linear dynamics of the DW in the adia- 
batic approximation. 

Using relations (20) and (2 1 ), and recognizing also 
that 

h , ,= -2~6p  sin O,(m,'+ m, cos 0,) +,pH,, sin 0,+6H,, cos O,, 

by means of elementary integration in (19) we get for the 
drift velocity of a solitary DW in an oscillating (p+O) field 
polarized in the DW plane the expression 

which is invariant, as expected, to the choice of ii. Here 
V, = WAM /40, 

qZ+q+p2 ( l + a 2 )  - ipa RxRz' 
S =  d , d z [ p a - i p ( l f a 2 )  ] M2 ' 

It follows from (25), in particular, that a stripe domain 
structure can also drift if the directions of rotation of the 
vector M, in neighboring DW are suitably matched. Indeed, 
since the topological charges of any two neighboring DW are 
of opposite sign, the DW velocities will, in accordance with 
(25), be equal only if the magnetization rotations in them 
are oppositely directed. 

We present also the principal terms of the expansion of 
Vin powers ofp forp% 1 andp-4 1. I f p s  1, then 

in an elliptically polarized field and 

6pa sin 29 v= V d  
2pZ ( l + a 2 )  

in the case of linear polarization 
(ax = la Isin p, Bz = 12 lcos p). In the other limiting 
case, when the frequency of the oscillating elliptically polar- 
ized field satisfies the condition p < 1, we have 

5. OSCILLATING FIELD POLARIZED IN THE XYPLANE 
(R, = 01 

We transform the system ( 16) at gz = 0 into 

( t - i p a )  m,(u+ipm,'l)=O, 
(30) 

(E-ipa-q) m,(l)-ipm,(i)=-R,lp, 

by putting 

i i i L ( E )  =ai2 cos O B ( E )  +m,(')(E),  
(31) 

%,(E)=azz cos eB(E)+mu( ' ) (b ) .  

We expand the solution oiEqs. (30) in terms of the eigen- 
functions of the operator L: 

rn 

the complete set of which is known to consist of one localized 
state 

corresponding to a zero eigenvalue, and of the continuum 
modes 
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with eigenvalues - ( 1 + k 2 ) .  Using the conditions of nor- 
malization and completeness of the eigenfun~tions'~ 

6 ( k - k ' )  for i = k ,  j=k' 5 4% (8 %* (8 = { 
6  ij in the remaining cases, 

-m 

[S(k) is the Dirac delta function and Su is the Kronecker 
symbol], we obtain from Eqs. (30) the coefficients of the 
expansion in (32) : 

Recognizing finally that 

- lim ------ 
- m  

cos (kc )  I 2 s h ( n k / 2 )  ,,, k  ' 

we can represent the solution of Eqs. ( 16) for kz = 0, on the 
basis of (3 1 ), (32), and (34), in the form 

I +  q+ i pa  n H ,  sin OB(k) 
iiil ( E )  = 6A: cos 0 ,  ( i )  + - 

Pdldz 28 q a + i p ( l + a z )  

PRY e'kE ( ik- th k )  
-F - m  ' (n2+di )  (kz+hz)  ( n 2 + l )  sh(nk12)  dk' 

(35 
n B ,  a sin 0 ,  ( E )  i p  cos 0 ,  (E) + - i i - i " (E )  = -6Rx- 

pdidz 28 qa+ip ( l + a 2 )  

e i"( l+ipa+kZ) ( ik- th E )  + i- 2 ' ( k z + d l )  (k2+d2)  ( k 2 + l )  sh ( n k / 2 )  
dk.  

- m 

Calculation, with the aid of (35), of the DW drift veloc- 
ity ( 19) in an oscillating field polarized in a plane perpendic- 
ular to the easy-magnetization axis (the z axis) yields 

where 

a(2-I-q) + i p ( l + a 2 )  

qa- ip  ( l+a2) 
= 

k2 [ kh+k2 (2+q)  +dld2]  

To analyze the asymptotic behavior of V for p )  1 and 
p( 1, using the identity 

k4+k2 ( 2 + q )  +dldz= (k2+ d l g )  (kz+dz') +2ipa (k2+2+q)  

and evaluating the integral 
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it is convenient to transform (37) into 

On the basis of (38) we obtain for the DW drift velocity in 
the casep) 1 the expression 

which agrees with that obtained in Ref. 3, while for p (  1 we 
have 

As already noted in the Introduction, it was assumed in the 
DW drift description of Refs. 1 and 2 that the effective pres- 
sure acting on the DW is equal to the difference, averaged 
over the field oscillations, of the energy densities of the ferro- 
magnet on the two sides of the DW. The present results, 
however, do not confirm tnis assumption, according to 
which the DW drift velocity forp) 1 and a ( 1 should exceed 
(39) by a factor of two, and be oforderp3 fo rp4  1 (Ref. 2).  

To conclude the analysis of the DW drift, we present an 
expression for the drift velocity of a Bloch DW in an oscillat- 
ing field of arbitrary polarization 

The same equation can also be used to determine the drift 
velocity of a Niel DW, by replacing in the expressions for S 
andT,t tby I x l , P b y P - - ~ x l , @ ~ b ~ & a n d ? i , b ~  - R .  

We note in conclusion that among the most promising 
objects for experimental verification of the conclusions of 
the proposed theory are apparently long and narrow yttrium 
iron garnet specimens, in which solitary 180-degree DW 
have been observed. l4 
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