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By using the phenomenological Hamiltonian for the fermions in an antiferromagnet ( AFM), 
constructed by accounting for the symmetric properties of the AFM ordered state, we study the 
ground state of the system when a single fermion is introduced. It is shown that, depending on the 
parameters of the Hamiltonian, a self-localization or delocalization regime exists. The formation 
of a large-radius polaron is possible in an intermediate range. A phase transition is possible for a 
finite concentration of particles in the system. Twisting of the AFM order parameter is 
advantageous in the new phase. It is shown that if one considers this phase in the 2 0  case, when 
the order parameter vector n lies in the plane, vortex excitations must be taken into account. 

1. INTRODUCTION 

The question of the interaction of fermions with mag- 
netic degrees of freedom has been widely discussed recently 
in connection with applications to the theory of high-tem- 
perature supercond~ctivity.'~ Besides the microscopic ap- 
proach, mainly on the basis of the Hubbard model, a symme- 
try approach5s6 to studying fermions in an antiferromagnet 
(AFM) is possible. In this case, an essential element in de- 
scribing the fermions is a representation by which a single 
particle excitation is transformed in an Heisenberg AFM. 
We will assume that the ground state of the AFM is de- 
scribed by a nonlinear u-model for the AFM order param- 
eter-the unit vector n giving the magnetization direction of 
the sublattices. The Hamiltonian of the single-particle AFM 
excitations5 has been constructed for the invariance group of 
the AFM order parameter. A brief symmetry description of 
the AFM and derivation of the Hamiltonian are given in the 
Appendix. The Hamiltonian for a point r of the Brillouin 
zone (see Fig. 1 ) has the form 

where)=(z),n= (cosp,sinp,O) = (n,,n,,n,),pisthe 

tilt angle of the vector n, lying, as is assumed, in the xy-plane. 
In this paper, the possible ground states of the system 

are investigated, depending on the parameters of the Hamil- 
tonian. We show in Sec. 2 that localized states of two types 
are possible in the single particle problem. Depending on the 
parameters of the Hamiltonian, either a self-localized re- 
gime is possible at atomic scales where our phenomenologi- 
cal approach is inapplicable, or delocalization of the parti- 
cles occurs. The formation of a large-radius polaron is 
possible in a certain interval of the parameters. It will also be 
shown that the motion of a localized particle leads to the 
creation of an excitation around the polaron, having an am- 
plitude proportional to the velocity of this particle. 

In Sec. 3 we consider the ground state of the system in a 
delocalized regime for a finite concentration of particles. It 
will be shown that due to the interaction of the magnetic 
degrees of freedom with the fermionic ones, spin-wave soft- 
ening occurs, where the magnitude of the renormalization of 
J is proportional to the fermion concentration. For a suffi- 

ciently large interaction constant gi, the renormalized stiff- 
ness vanishes at a certain concentration. If one always as- 
sumes smootheness of the configuration n(x,y) in the space, 
then a transition to a spiral phase is possible in the ~ y s t e m . ~  
We, will show, however, that for decreased effective stiff- 
ness, one must also consider vortex excitations. A Koster- 
litz-Thouless transition creating vortices is possible at a fi- 
nite temperature. At the critical point, where the stiffness 
vanishes, the order parameter n has a finite correlation radi- 
us and at this point our model is approximately described by 
a theory with the local symmetry group U( 1 ), leading to a 
logarithmic attraction of the two types of fermions in the 
AFM. 

For the rest of the paper, we limit ourselves to consider- 
ing a two-dimensional Heisenberg AFM on a square lattice. 
Moreover, it is always assumed that the vector n lies in the 
plane. This case is realized in an AFM with an anisotropy of 
easy plane type, for example in lanthanum AFM's. 

2. SINGLE-PARTICLE STATES 

Consider the state of the system obtained by introduc- 
ing a single fermion into an AFM. In this case, we restrict 
ourselves to the self-consistent field approximation. The en- 
ergy levels are determined from the Schrodinger equation 

Since we want to illustrate the main possibilities here, 
we limit ourselves below to considering different limiting 
cases. 

Consider the case g, = 0. By writing the matrix equa- 

FIG. 1 .  Brillouin zone in A F M ;  r and Xare characteristic points. 
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tion (2.1 ) for the components $, X, we obtain the coupling 
$ = + X. The equations for the components coincide and 
have the form 

It is evident that forg, > 0, the energy minimum ( 1.1 ) is 
attained for p = const, since in the opposite case, the energy 
of the system is increased by 

0. 

Equation (2.2) with q, = const reduces to the nonlinear 
Schrodinger equation with attraction. It is known that the 
eigenstates of 

for m i rn ,z2?~ are delocalized with a continuous spectrum 
of eigenvalues 0 0 ,  and for m > m,, a particle in the ground 
state is localized at microscopic scales. In the case under 
consideration, m* = 2mg4 plays the role of m. Therefore, for 
m* > m, the fermion is localized at atomic scales, where the 
continuum theory under consideration is inapplicable, and 
for m* < m,, the fermion is delocalized. In both-cases, we 
have p = const in the ground state. 

If g, < 0 holds, a solution. is possible for a ground state 
with q, = const Eq. (2.2) differs from (2.3) by the addi- 
tional attracti~epotentialg,(d~q,)~. Therefore, form* > m,, 
the fermion, as before, is localized. The distribution of the 
tilt angle q, of the magnetization vector n is determined from 
the equation obtained by varying the functional ( 1.1 ) with 
respect to p: 

Since the fermion is localized at atomic scales, we have 
1$12 a S ( r  - r,), and Eq. (2.4) assumes the form 

l~cp/2=-~,d,6 (r-r,) <d,cp)-gz6(r-ro) (Acp), ( 2 . 5 )  

where ( . . . ) is the mean over the scale of the fermion local- 
ization length, which is not determinable in the continuum 
model. Solving (2.5), we obtain 

A term growing as r+ co is absent if (Ap ) = 0. 
In the caseg, < 0, m* < m,, for p = const the fermion is 

delocalized. The existence of a phase with p # const is favor- 
able if 

If the fermion is delocalized ( 1 $ 1  cc L - I ) ,  this condition is 
not satisfied, and we have e, = const in the ground state. 

In the case m* < m,, g, < 0 for sufficiently small values 
of J, localized polaron states with energy W< 0 can arise. 
Actually, in the field of attraction g,(d,~e,)~,  if p is a local- 
ized function, there always exists in the two-dimensional 
case, a localized solution with an exponentially small nega- 
tive energy level 

Therefore, the total energy of the system W = E + J ~ ( d p ) *  
can be negative for sufficiently small J. In the arguments 
here, we have not considered the nonlinear term g4l$I2, 
which lowers the value of Weven more. 

Let us consider the effect of the term g,$ + ?dppjp$ 
on the AFM state. Let m* > m,. Then the fermion is local- 
ized and I$I2zAS(r - r,), I$12zBS(r - r,). (For g,#O 
the condition $ = + x is not satisfied.) The self-consistency 
condition fore, assumes the form 

where 

In the ground sta.te there is no current$ = 0. However, 
if we consider a moving localized polaron, then in the quasi- 
classical approximation we have j, cc v, 6 ( r  - vt) and 3, j? 
a v, d, S( r  - vt), where v is the velocity of motion. Substl- 
tuting j, into (2.7) and solving, we obtain a contribution 
linear in the velocity, 

where R is the vector taken from the polaron to the observa- 
tion point. 

In this manner, the moving polaron creates around it- 
self an AFM excitation with an amplitude proportional to 
the velocity, and.a power-law decay of the tilt angle p of the 
magnetization vector. 

3. MULTIPARTICLE EFFECTS 

1. In this section, we consider the effects to which a 
finite concentration of additional particles leads. We will 
assume that the doped fermions in an AFM are described by 
Bloch states and are not self-localized. This case is realized if 
the term g,p is absent or the mass m is,sufficiently small, 
that is mgi< m,. Ignoring the term with g,, let us write the 
Hamiltonian ( 1.1 ) in the form 

where A, = [n(d, n)  ] 2 = d, e,. As previously, it is as- 
sumed that the vector n lies in the xy-plane and the model is 
equivalent to an XY-model interacting with fermions. 

The Hamiltonian (3.1 ) describes a field A, of bosons 
with mass M = Jo interacting with fermions. The terni with 
g ,  describes the interaction of the fermionic spin current 

with the field A,, and the term with g, is obvious. If by A, is 
understood a field of superfluid velocity: ( V, ), = A,, then 
the stiffness J, coincides with the superfluid density, and our 
Hamiltonian describes the interaction of the current with 
V, . It is clear that for a sufficiently large current, superfluidi- 
ty is destroyed and J,, vanishes, since in superconductivity 
there is a critical current. Here, this (spin) current arises 
spontaneously for a sufficiently large constant g,. Let us find 
the renormalization of the stiffness constant J,, caused by 
the interaction of the magnetic system with the fermions: 
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U(k,  o) = - g , ' ( z  j; (q, o f )  j; (k-q. o-o') ) 
%a' 

and n is the concentration of fermions. The evaluation of the 
correlator in (3.2) is elementary. However, one can also ob- 
tain the result (3.2), without integrating, by using Green's 
functions. For this, let us take advantage of an analogy with 
calculations in superconductivity theory. Observe that 
SJ(k,w) is the kernel in the expression for the average cur- 
rent 

<j,(k, a)>=-6J,,(k, o)A,(k, o) .  (3.3) 

We add to the current operator 

a term $+$~,e'/m(e = g1m), so that the total operator is 
invariant with a respect to a the local group U( 1 ) : 
A, -+A, + d,A, $-+exp(i?R)$. In this case, Eq. (3.3) for 
the total gauge-invariant current must depend only on the 
transverse part of the vector potential. In the case considered 
by us, th? fiejd A, = d,p is purely longitudinal, therefore 
j, + g,m$+$A, = 0, whence in th: c ~ r d i n a t e  representa- 
tion we must have SJ(r,t) = g: m ($+$) . 

2. In this manner, the interaction of the AFM with the 
fermions leads to spin-wave softening and if the condition 
f 'mn + Jo = 0 = Jeff is satisfied, it is natural to expect the 
unstable magnetic subsystem to form a spontaneous spin 
current. Such an instability was discovered in Ref. 4 for the 
point X. As the concentration n is increased further, the ef- 
fective stiffness becomes negative and then the spiral phase 
with d, p = A ,  = const is more favorable. The self-consis- 
tency equations for A, are obtained from (3.2) : 

2gz (nt-n-) A.-I~A.=~ (nt-n-) k.. 
(3.6) 

where n+,n- are the occupation numbers of the Jermio? 
states with different polarization, n+ - n- = $ + 7% 
/? = 1/T. Differentiating (3.6) with respect to A,, we find 
the condition for a critical concentration, for which a new 
minimum appears, which coincides with that obtained from 
(3.5). For Jeff <O the energy functional (3.1) is a negative 
definite quadratic form. Therefore, for the existence of a 
minimum, it is necessary to add the term yA z .  For T = 0 the 
self-consistency conditions (3.6), taking into account the 
additional term, are exactly solved. Summing over the wave 
vectors k, , we obtain 

3. Let us consider the critical point J, = f 'mn in more 
detail. Since the stiffness vanishes, the terms of the expan- 

sion of the AFM energy of higher orders become essential. In 
the previous section, we proposed that the decomposition 
proceed in powers ofA, . One can point to yet another inter- 
esting possibility. Let the next terms of the decomposition 
beF:, , where F,, = d, A, - d,A,. Generally speaking, for 
a purely longitudinal field A, = d,p, it is necessary that 
F,, = 0. However, in the case of a nonsmooth configuration 
p (vortex phase) we have F,, #O, and therefore Pi, makes 
sense. Let us note that the case under consideration occurs if 
there are no terms of the same order ([A 1 4 ,  (d,A, )' and 
others) in the energy decomposition, violating U(1)-sym- 
metry. At the critical point, for a simple quadratic dispersion 
law of femions, we have 

The Hamiltonian (3.7) describes the spin electrodynamics 
of two fermionic fields $,, $, having opposite charges with 
respect to the "gauge" field A,. In the two-dimensional case, 
the Coulomb potential of two point charges is logarithmic. 
Therefore, the particles*$, and $, attract each other loger- 
ithmically, which can lead to a superconductive condensate 
($,, $') #0 for a sufficiently large concentration n, = Jo/ 
f 'm, destroying the AFM ordering. The higher terms of the 
original fermionic Hamiltonian and the nonlinearity weakly 
violate U( 1 )-symmetry. Therefore, the logarithmic poten- 
tial of the two particles has a finite radius, which can be quite 
large. 

Let us observe that there have been many attempts to 
obtain the attraction between fermions in an AFM with the 
help of magnetic subsystem excitations. However, they are 
primarily based on the BCS-mechanism.' In this case, the 
issue quickly becomes one of the "confinement" of the exci- 
tations. At the point X, where to first order, there is no inter- 
action of the fermions with the vector m, this U( 1 )-symme- 
try, if it occurs, can not be violated at the critical point. 
Furthermore, at the critical point, we have strong fluctu- 
ations of the vector n. 

In this sense, the AFM is, at the critical point, in a spin liquid 
phase.' On the whole, however, the possibility that a local 
symmetry exists, is a consequence of the quadratic spectrum 
of the fermions and the interaction j, A, . 

4. VORTEX PHASE 

It follows from what has been said above that the intera- 
tion of a magnetic subsystem with fermions leads to a soften- 
ing of the spin-wave stiffness constant. Let us consider the 
possibility of Kosterlitz-Thouless vortices7 arising. From 
this analogy with superconductivity, it is natural to expect a 
mechanism of superconductivity destruction, using the cre- 
ation of vortices, which in the 2 0  case are Kosterlitz-Thou- 
less vortices. For this, let us find how the stiffness constant of 
the vortices is renormalized by interaction with the fer- 
mions, namely, let us show that it is renormalized similarly 
to J. Since we assume that the vecjtor n lies in the xy-plane, 
everything said below relates in equal degree as well to the 
XY-model. 

Consider in A, the vortex contribution 
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where ei is the charge of a vortex, 2re i  = $A, dr, ,ri is the 
center of the vortex, and GP is the unit vector corresponding 
to the angle in the cylindrical coordinate system. In the 
Hamiltonian, it is necessary to consider additional terms 
corresponding to the interaction of the vortices between 
themselves and with the fermions: 

From (3.9), similarly to the renormalization of J,,, using 
(3.3), (3.4), we obtain 

whence follows the renormalization 

Since the logarithmic divergence accumulates on large 
scales, we let k-0 in SJ(k,w) for the derivation of (3.10). In 
the long-wave limit with one stiffness constant J for the spin 
waves, we have KO = 2nJO and (3.10) coincides with the 
renormalization of J. Therefore, in the critical domain, 
where Je, = 0, it is necessary along with the smooth excita- 
tions of the magnetic system to also consider vortex excita- 
tions. And what is more, the finite temperature causes vortex 
melting with a finite concentration of vortices to occur in the 
system before the instability in the spin-wave spectrum de- 
velops. Actually, the Kosterlitz-Thouless (KT)  phase tran- 
sition occurs at a temperature T = rJe,, that is when the 
entropic contribution to the free energy renders the creation 
of vortices favorable, although the magnetic system is still 
stable. If n = nf = n,  - Sn, Sn = aT/mf ', a vortex phase 
arises. The phase diagram, therefore, has the form shown in 
Fig. 2. If vortices are present in the system, the spiral order 
parameter has a finite correlation radius R, : 

A more accurate study would require taking into account 

FIG. 2. Phase diagram of a 2D-AFM taking into account the interaction 
of the magnetic subsystem with the fermions: I-AFM, 11-KT, 111-KT 
+ spiral phase. 

the correlation length of the pure AFM.8 We assume that the 
finite correlation radius of the AFM order parameter does 
not change the physical picture considered here. 

CONCLUSION 

In the paper, we have investigated the ground state of a 
two-dimensional Heisenberg AFM doped by fermions (elec- 
trons or holes 1. The study is based on a phenomenological 
Hamiltonian, obtained by starting from the symmetry prop- 
erties of the s y ~ t e m . ~  

Moreover, we constructed the Hamiltonian of the fer- 
mions for the point r of the Brillouin zone. This assumption 
is justified for superconductors of electron type (for exam- 
ple, Nd, -, Ce, CuO,), where the minimum of the electron 
spectrum is found to be in the center of the Brillouin zone.9 

We showed that a single particle in the AFM, depend- 
ing on the choice of the Hamiltonian parameters, is either 
localized on atomic scales, or delocalized. In the localized 
regime in the ground state, the tilt angle of the magnetization 
vector is either constant or decays in a power fashion with 
separation from the fermion. In a certain range of the param- 
eters, polaron states with a more complex configuration are 
possible. 

Owing to the interaction of the fermions with the anti- 
ferromagnetic system in the delocalized regime, a softening 
of the spin-wave stiffness J occurs, for a finite concentration 
of fermions, where the magnitude of the renormalization of J 
is proportional to the fermion concentration (3.4). As a re- 
sult, the effective stiffness can vanish or become negative, 
which indicates the instability of the AFM ground state un- 
der consideration. It is shown that for T = 0 a phase transi- 
tion to a spiral phase is possible in the system if one does not 
consider vortices. 

The possibility of creating vortex excitations in an 
AFM has been considered. It has been shown that the effec- 
tive interaction constant of the vortices is renormalized the 
same as the spin-wave stiffness. Therefore, for a finite tem- 
perature T = KO, a Kosterlitz-Thouless transition creating 
vortices is possible in the system. 

For a specific choice of Hamiltonian parameters at the 
critical point, where the AFM stiffness vanishes, the Hamil- 
tonian becomes invariant with respect to the local symmetry 
group U( 1 ), that leads to a logarithmic attraction of the two 
types of fermions in the AFM. 

The authors are grateful to S. A. Brazovskii, G .  E. Volo- 
vik and E. Sidzhia for useful discussions of the questions 
considered in the paper. 

APPENDIX 

Let us briefly consider a symmetric approach to con- 
structing the Hamiltonian of the fermions in an AFM. Let us 
restrict ourselves to the case of a 2 0  AFM on a square lattice. 
Then, the invariance group of the AFM order parameter of a 
unit vector n consists of the elements 

where T, is the group of translations by the unit vector of the 
crystal lattice, R is the time-inversion operator, and D, is the 
point symmetry group of the crystal. As shown in Ref. 5, the 
fermionic representations G,,, in the case of a wave of spin 
density (the weak coupling model) and in the case of a 
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strong coupling (Hubbard model) form the same irreduci- 
ble representation. Since we are concerned with a two-val- 
ued representation, the fermipn in the AFM is described by 
the two-component column $ = ($,x), and its components 
transform under the action of GAP, according to the follow- 
ing law: 

~ ~ $ = e x p  (ih) i.c,$, (A21 

where r i  are the Pauli matrices in the space ($,x) and U( 1 ) 
denotes the global group corresponding to rotation around 
n, since this symmetry remains unviolated in an AFM. The 
new Brillouin zone signifies periodicity in the k-space with 
period Q = (T,T) (see Fig. 1). For k-k + Q we have 

This symmetry is essential for the boundary of the Brillouin 
zone, for example, in considering the point X (Fig. 1 ). 

We do not consider the representations of D4 in an 
AFM, since we restrict ourselves to the case of those opera- 
tors in the Hamiltonian which are invariant with respect to 
D4. In other words, we are interested purely in exchange 
effects in disregarding spin-orbital interaction. To second 
order in the gradients and first order in the concentration, it 
is easy to obtain the phenomenological Hamiltonian of the 
fermions in an AFM: 

where j, = [n(d,n) ] = zd,p is the Noether current in the 
AFM. The magnetic subsystem is described by the nonlinear 
u-model Hamiltonian 

where m are the rotation generators of the group SU(3) act- 
ing on the variables in the spin space. We assume below that 
n lies in the plane: n = (n, , n,, ) = cos p ,  sin p). Further- 
more, in writing the Hamiltonian (A6) we assumed that the 
energy minimum lies at the point r of the Brillouin zone 
(Fig. 1). After Gaussian integration with respect to m, we 
obtain the Hamiltonian ( 1.1 ), with which we will work (in 
this case g4 < 0). For the point X, the Hamiltonian can be 
similarly obtained, and in the momentum representation has 
the form 

A ,. 
H = C e k g +  $k+g2(a.n)2 i+G+g, j+ 4 sin k,j.. (A8) 

For the point X, a semiphenomenological derivation of 
the Hamiltonian based on the Hubbard model, was given in 
Ref. 4; the result of this derivation coincides with (AT). 
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