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The influence of nonlinear interference effects on the shape of the emission contour Z(w) and 
frequency redistribution function R (w,wl) is investigated. The analysis is carried out by two 
methods: 1) by solving the equation set for the density matrix and 2) by applying the kinetic 
Green's function formalism. In the case of a three-level system both methods yield identical 
analytic expressions for the functions Z(o) and R (w,wl ). The advantages and shortcomings of the 
methods are discussed. As a specific example the "forbidden" component of the spectral doublet 
2'S-4'P, 2IS-4'D of helium-like ions is considered. The values of the atomic constants required 
are calculated using Cowan's program. Qualitative estimates of the contribution of nonlinear 
interference effects to the "forbidden" and "allowed" components and their ratios for various 
plasma parameters are presented. The calculations illustrate the importance of taking into 
account nonlinear interference effects on calculating the emission contour I(w ) and rescattering 
function R (w,w' ) in a hot dense plasma. 

1. INTRODUCTION 

Line radiation of multiply charged ions (MCI) in a hot 
dense plasma has been intensively studied in recent years'-5 
in connection with problems of obtaining x-ray sources and 
plasma diagnostics. Of great importance for these problems 
is the calculation of the MCI spectral line functions which 
determine the spectral distribution of the radiation and its 
transport in the medium. The most important of these func- 
tions are the emission (absorption) line shape Z(w) and the 
frequency redistribution function R (o,wl), which deter- 
mines the probability of emission of a quantum with frequen- 
cy w when a quantum is absorbed with frequency w'. 

The problem of calculating the functions Z(w) and 
R ( w , ~ ' )  in a dense plasma is connected mainly with the need 
to take account of the Stark broadening of the lines of the 
radiating ion due to the electric microfields of the surround- 
ing ions and electrons of the plasma. The specifics of the 
Stark broadening are dictated by the fact that near the radi- 
ating level a level polarizing it is always found, which en- 
sures that the magnitude of the Stark splitting is significant. 
Just such a situation is characteristic both of hydrogen-like 
ions, where these neighboring levels are separated by the fine 
structure interval and of more complicated (e.g., helium- 
like) ions, where the polarization and mixing of states can 
lead to the appearance of forbidden transitions."' It is there- 

time, the effect of taking mixing processes into account in 
order to obtain a correct description of atomic spectral func- 
tions is well-known in laser physics.'0 Here calculations car- 
ried out for three-level systems demonstrate the important 
role of the so-called nonlinear interference effects (NIEF), 
which are due precisely to the nondiagonal elements of the 
density matrix of the radiating states, which are not taken 
into account in the standard theory of Stark broadening.' 

The aim of the present work is to investigate NIEF for 
the case of Stark line broadening in plasmas. This study was 
carried out assuming stationary ions and collisional elec- 
trons. This approximation allows one to obtain an analytic 
solution of the problem for the three-level model consisting 
of a ground state 1, a radiating state 2, and a polarizing state 
3 (Fig. 1 ) . I '  In Fig. 1 the following notation appear: A,,- 
the probability of the dipole transition 2- 1; A,(A,)-the 
total probability of radiative decay from level 2 (3)  to the 
other levels; ye-the frequency of electron-collisional mix- 
ing of levels 2 and 3; and d.F-the interaction with the static 
ion field. 

For the three-level model it is possible to find and to 
study the contribution of NIEF to the spectral functions 
Z(w) and R (w,wl) in explicit form. We also note important 

fore clear that the calculation of the spectral lines should be 4 
based on a consistent account of mixing of near-lying states rT '" in the ion field of the plasma. This question obviously has a 
direct analog in the problem of "dynamic" and "static" in- 
tensities in the Stark effect (see Ref. 8).  

Many of the calculations of the Stark profiles of the ion 
lines'-5 have been based, as a rule, on conventional methods 
of line broadening theory in which only the evolution opera- 
tors of the radiating states are taken into account, whereas 
the density matrix, which determines their relative popula- 
tions, is assumed to be diagonal in some basis. solutions for 
two-level systems within the framework of the more consis. FIG. 1 .  Level diagram used in the calculations of the emission contour 

and the rescattering function. The numeration corresponds to the follow- 
tent approach of Ref. 9, obviously, are also insufficient to ing states of the helium-like ion: 1-2'S, 2 4 ' P ,  3-4'0 (concerning the 
describe the mixing processes of interest to us. At the same mutual placement of levels 2 and 3 see Sec. 7 ) .  
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differences between these NIEF's and those encountered in 
laser physics:I0 1) the mixing field F created by the ions of 
the plasma is static (in contrast with the resonant field in 
Ref. lo), 2) in the case of R (w,wf ) there are in reality three 
fields-the incident field (with frequency w'), the mixing 
field (F), and the scattered field (with frequency w). 

The calculations of I(o) and R (w,wl) are carried out 
below by two independent methods. The first, widely ap- 
plied in laser physics," is based on the equations for the 
atomic density matrix. Its use, however, is associated with a 
known inconsistency, due to the transition from the com- 
pound matrix "atom + electromagnetic field" to the atomic 
matrix, which requires a nonunique procedure for closing 
the equation set." Therefore the functions I(@) and 
R (w,wt) were also calculated by the more general Green's 
function method in the Keldysh technique." The results of 
the two calculations are shown to agree. The way in which 
we formulate the problem fills a gap in the development of 
the theory of formation of the line shape and the frequency 
redistribution function which has been pursued in recent 
years. '-I5 On the other hand, it is found that in the density 
matrix method the separation of the contributions to the line 
shape from the various other physical effects obtains more 
clearly and requires less cumbersome calculations than in 
the case of the Green's function technique, wherefore both 
methods to a certain extent complement each other. 

2.THE DENSITY MATRIX METHOD 

To find the spectral functions I(w) and R (w,wl) we use 
the density matrix method." We begin with the general 
equation in the interaction representation with unperturbed 
Hamiltonian H,: 

p=-i ( VtO' ( t )  , p )  +S+R+Q. (2.1) 

Here VtO'(t) is the total interaction operator, which is a sum 
of the interaction with the plasma (ion) field 

v ( t )  =[ -exp  (-iH,t) dF( t )  exp ( iH,t)  ]/fi 

and the interaction with the fields of the incident V, ( t )  and 
scattered V,(t) radiation: 

V ,  ( t )  =-G, exp (-iQ,t) pipz+, V2=-G,' exp (iQ2t) fJi+pzl  

where GI and G, are the interactions with the field ampli- 
tudes, Cl, = w' - w,, and Cl, = w - w,, are their frequen- 
cies measured from the frequency of the allowed transition 
w,, = (E, - El )/.ti, and fl, and fl ,+ are the annihilation and 
creation operators of the atom in the corresponding states. 
In accordance with the radiation rescattering problem the 
field GI is only absorbed and the field G, is only emitted. 
Therefore the operator ( V,, ,  ,p) is defined with Hermitian 
conjugation: ( V,,, ,p) = V,,,p - p V :, . 

The reason for the incoherent pumping term Q in Eqs. 
(2.1 ) (e.g., by electronic excitation) is that we intend to use 
this system to find both the line shape I(w) and the redis- 
tribution function R (w,wl). The operators Sand R describe 
respectively collisional (electronic) and radiative relaxa- 
tion. '' 

Equation (2.1 ) with the field interaction Hamiltonian 

(2.2), (2.3) in fact determines the density matrix not just of 
the isolated atom, but the compound "atom + spontaneous 
electromagnetic field" system in accordance with the choice 
of selection rules for the perturbations (2.3). The nondia- 
gonal element of such a matrix p2, multiplied by G deter- 
mines the power of spontaneous emission of the medium1': 

P. (o )  ---2hoRe<iG,* exp ( iQzt)p, , ) .  (2.4) 

For this reason in what follows we will call the nondia- 
gonal element p2, of the density matrix the "spontaneous 
polarization" of the medium. 

The symbol (...) in Eq. (2.4) denotes the ensemble 
average over the radiating ions in the plasma, i.e., over the 
entire set of stochastic variables entering into the equation 
forp,,, first of all the plasma microfield distribution F and 
the Maxwellian distribution of the velocities of the radiating 
ions, which determines the Doppler line broadening. Note 
that the radiated power (2.4) in laser physics is usually de- 
fined in the context of constant or monochromatic fields. In 
this case there can be no doubt that the quantity P(w) is 
time-independent. However, in the case of a variable plasma 
microfield, fluctuating in time, the stationarity of P(w) is 
not obvious beforehand. Another possible way calculating 
the spectral characteristics of the radiation is to calculate not 
the power but the total work of the field Q, (w) after some 
time interval T. The work Q,(w) calculated in this way, 
being an integral of the power P(w) given by (2.4) over the 
time interval Tcan differ from the quantity obtained by mul- 
tiplying the stationary power by the interval T. Neverthe- 
less, for ergodic quasistationary physical systems both of 
these characteristics should coincide as T-+ rn . Indeed, inte- 
grating over a sufficiently long time interval T+ rn should 
give rise to the appearance of a definite oscillation frequency 
fl, on the transition 2- 1. This oscillation should also ap- 
pear when the spontaneous polarization (p21 ( t ) )  is ensem- 
ble-averaged. Therefore the means of calculating the spec- 
tral characteristics (in the form of the work or the power) is 
largely a question of convenience. 

The operator S is expressed through the well-known 
collisional broadening operator Q, in the following way (see 
Ref. 2; cf. Ref. 7 ) :  

Saa. ( p )  = x e r p  ( ie t )  (aa, '+ I B 1 a1a,+)pa,a.# 

where N,,  v,  e, and m are respectively the electron density, 
the thermal velocity, the charge, and the mass, r is the posi- 
tion operator of the atomic electron, and E = ma,, - waSai. 

The solution of Eqs. (2.1)-(2.3) for spontaneous emis- 
sion (or rescattering) of the field of frequency a, is found by 
perturbation theory in the parameter G,. In the zeroth ap- 
proximation we have 

For the calculations of the line shape I(w) determined by the 
pumping Q the interaction with the incident field V, can be 
neglected, setting 

729 Sov. Phys. JETP 71 (4), October 1990 Anufrienko eta/ 729 



On the contrary, to find the function R(w,wl), it is impor- 
tant to take the interaction V, into account, while the contri- 
bution of the pumping term Q to the excited levels can be 
neglected. The term containing V, can be taken into account 
using perturbation theory by writing 

&poi=-i(V,, poO), Ep"=-i(V1, p") . (2.8) 

The form of Eqs. (2.8) assumes that the pumping term Q 
(i.e., the matrix po0 ) determines the population only of the 
lower (ground) state 1 (N,); the index i in pO' indicates 
whether the contribution of V, is taken into account to first 
order (for the polarization) as is u s ~ a l , ' ~ ,  or to second order 
(for the populations). Thus, in the zeroth approximation in 
G, the matrix p0 is equal to the sum p0 = poo +pol + po2 of 
solutions of Eqs. (2.7)-(2.8), where the individual terms 
are defined in accordance with what has been said above. 
Below for the zeroth approximation we will use simply the 
notation pa without detailing the individual contributions. 
The equation for the desired density matrix p determining 
the emission or rescattering arises in first order in the inter- 
action G,: 

For simplicity of notation in the specific calculations below 
we will write the matrix p '  as well as the original matrix 
without the index. The operator R is diagonal in the spheri- 
cal basis, and its effect on the matrix p was determined in 
Ref. 10. 

The usual way of solving the static line broadening 
problem is to go over to a new basis of wave functions (the 
Stark basis), diagonalizing the interaction with the ion field 
F. For the case under consideration of MCI line broadening, 
however, this approach is not always convenient, as a result 
of the large value of the radiative width A,,, which is com- 
parable with the Stark splitting (see also Sec. 6).  Therefore 
all the matrix elements of the operators (including the 
pumping Q) are given below in the spherical basis. 

The solution of system of equations (2.7)-(2.9) for the 
problems of the line shape I (@)  and the redistribution func- 
tion R (w,wl) differ markedly in complexity and is worked 
out separately in Secs.3 and 4. 

3. THE SPECTRAL LINE SHAPE 

Let us find the spectral line shape I(w) of this three- 
level system. In the density matrix formalism (Sec. 2) the 
emitted (absorbed) power P(w) is given by the expression 

which follows from Eq. (2.4) as a result of the periodic de- 
pendence on the frequency of the polarization 
p2, ( t )  =P2, exp( - i(w - w,, t), and the spectral line 
shape of the transition 2- 1, normalized to unity, has the 
form 

wherep:, is the stationary population of level 2. 
To determine the stationary populations due to colli- 

sional pumping at the second (Q,) and third (Q,) levels, and 

the po la r i~a t ion~~ ,  associated with the collisional mixing by 
the electrons of levels 2 and 3 in the constant electrical field 
of the ions F, from Eqs. (2.1 )-(2.7) after separating out the 
oscillating part ofp:, = p:, exp (iw,, t)  we arrive at the sys- 
tem of equations 

2V Im p3z0+2@ (pz,O-psso) + (A,i+I',z) ~zZ0-A3ZPS10=Q2, 

-2V Im PszO-2@ (pz,O-pss0)+ ( A 3 2 + A 3 1 + I ' 3 3 ) p 3 ~ = ~ S ,  (3.3) 

where V=(d.F) , ,  is assumed to be real; 
A = A32 + A,, + A,, + T,, + T,,; A,,, A,,, and A32 are the 
radiative widths of the transitions 2 + 1 ,  3 -. 1, and 3 -2, re- 
spectively; r,, and r,, are the homogeneous widths of levels 
3 and 2, respectively; and 2@ is the matrix element of the 
electron collisional broadening operator in Eq. (2.5). Elimi- 
nating the nondiagonal components of the density matrixp,, 
andp,, from Eqs. (3.3), we obtain the kinetic equations for 
the populationsp,, andp,,, in which in addition to the colli- 
sional transitions between the states 2 and 3 also enter transi- 
tions under the influence of the Stark field-the so-called 
field mixing with effective frequency 

If the solutions of system (3.3) are known, it is possible 
to find the polarizationP,, on the basis of Eqs. (2.8)-(2.9) 
from the system of equations 

where r2 = A + r 2  + 2 + , T, = A,, + A,, 
+ T,, + 2@ + TI ,  and T,, is the homogeneous line width 
of the lower level 1. 

The polarizationp,,, found from Eqs. (3.4), is equal to 

From Eqs. (3.2)-(3.5) we obtain 

where I,,, (w) is the NIEF contribution to the line shape: 
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~m A (o )  = i ~ z [ r s ( ~ - ~ z i ) + r z ( ~ - ~ 3 r )  I ,  (3.9) 

Herep:, andp;, are given in explicit form by the expressions 

where v= A V2/(o:, Adet ). 
As can be seen from Eqs. (3.5)-(3.6), the first term, 

which is proportional to 4, describes the spontaneous decay, 
while the second describes the nonlinear interference effect, 
which vanishes in the limits V-0 and V-. oo ( Vis the aver- 
age microfield) and is normalized to zero frequency. From 
the form of the NIEF in Eq. (3.6) it is clear that in the 
present case it is connected with the imbalance of the popula- 
tions of levels 3 and 2. It is important to emphasize that the 
NIEF is proportional to the nondiagonal element of the den- 
sity matrixp;, (3.5). 

From Eq. (3.6) it follows that the line shape depends, 
generally speaking, on the ratio of the pumps to level 2 and 3 
and in this sense it is not a universal characteristic deter- 
mined only by the evolution of the states of the system. In 
particular, for pumping by a wideband light source Q, = 0 
and the NIEF is generally absent. Thus, the line shapes for 
electronic excitation (Q, - Q,) and photoexcitation should 
differ markedly. Mention should be made, however, of the 
restricted character of the statement of problem (3.3) asso- 
ciated with the very introduction of the pumpings Q, and Q, 
as independent parameters. Indeed, the values of Q, and Q, 
should be determined by the population kinetics and the 
mixing of other excited states, so that we arrive at an infinite 
system of equations. Nevertheless, in a number of cases it is 
possible to limit oneself to direct pumping to these levels and 
the given model problem has only limited meaning. 

It is easy to go from Eqs. (3.2)-(3.12) to the particular 
case of the forbidden transition 3- 1 (setting A,, = O), 
which traditionally has been of great interest for plasma 
diagnostics based on the characteristics of the spectrum of 
forbidden components. 5-7 

The results which have been obtained here can be taken 
into account in calculations of the intensity distributions of 
the dielectronic satellites in the spectra of niultiply charged 
ions in a dense plasma. l6 The problem which we have consid- 
ered models the mixing of populations of the doubly excited 
levels of the ions due to excitation by the plasma microfield 
and collisional electronic broadening, taking into account 
the appearance of additional forbidden components, which 
has so far not been studied. Thus, it turns out also to be 
necessary to take NIEF into account in the calculations of 
the intensity distributions of the dielectronic satellites, used 

in the diagnostics of dense plasmas with multiply charged 
ions. 

4.THE RESCATTERING FUNCTION R(w,ol) 

Calculations of the rescattering function prove to be 
markedly more complicated than calculations of the line 
shape. This is due to the appearance of the absorbed radi- 
ation frequency o' ,  which leads to additional oscillations of 
the polarizations and populations with combination fre- 
quencies, primarily with the difference frequency 
E = w - w'. Recall that according to Eq. (2.4) the function 
R (m,ml) is defined as the power P(o,wl) of radiation at the 
frequency o when the transition 1-2 is pumped with fre- 
quency o' (and corresponds to a photon energy Puo on the 
transition 2 + 1 ), normalized by the quantity 

N =(J  J d o  d o f  P ( o l  ) ft 0 

/ 
(see Refs. 13 and 14). 

Let us write out the systems of equations forp andp0 in 
the density matrix formalism. Assuming all dependences of 
the matrix pO(t)  to be periodic (p:, =p:, exp(in,t), 
p;, = P;2 e x p ( i ~ ~ , t ) ,  etc.), for A, ,  = A,, = 0 we obtain 

Equation (2.9) for the main matrixp, after substituting 
the oscillating solutions forpO(t) in it, contains on its right- 
hand side a set of oscillations with various combination fre- 
quencies. To reduce it to stationary form we must take the 
amplitudes of these oscillations into account as additional 
independent variables, setting (see Refs. 10, and 11 ) 

pz, ( t )  =rzt exp ( -iQ2t) + F z l  exp ( i  (e -Qi)  t )  , 
psi ( t )  = [r,,  exp (-iQzt) + F3, exp ( i  ( e -Q, )  t )  ]exp (iwsZt) (4.2) 

p l l ( t )  =r, exp(-iet) -I- r,' exp( ie t )  . 
Here we put o = R2 - a , ,  the asterisk denotes the complex 
conjugate, and the bar indicates the additional independent 
variables. 

Using the representation (4.2) to solve Eq. (2.9), we 
arrive at a system of equations for the elements of the main 
matrix2' 

(-iQz+m + r"+P1i ,) rzl+iVrrl-iG,ri=-iGzpgpO, 
2 

Equations (4.3) describe the complicated interference 
process of mixing of polarizations and populations as a con- 
sequence of the interaction with the external ion field V. The 
nature of the evolution of the system is determined by the 
three elements of the zero-order density matrix p:, , p:, , and 
p:, . To calculate the rescattering spectrum from Eqs. (4.3), 
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it is necessary to find the parameter r,,, which determines In their general form these formulas look quite cumber- 
the spontaneous polarization of the medium. some; however, writing the homogeneous width of the upper 

Calculating the number of emitted photons with fre- level (with A,, = 0) as l?,, = 0, we can obtain the more trac- 
quency w and normalizing by I GI 1'1 G2 I 'N,, after a number table expressions 
of transformations we obtain Rig=(@ (a) @(af)),  (4.9) 

- 
pzI0. (-air,,+ (a-a') ) A 

x [id - z+rliZ - 2 

In Eq. (4.4) we have introduced the matrix elements FO, 
which ensure that Eq. (4.4) is normalized to unity in the a ,  
w' plane, and which do not contain GINl; A =A,, + r2,; and 
I, is a normalizing factor. For T,, = 0 the quantities;:, have 
the form - 

p22O=Sb (a'), 
- 1 ir3/2 - ( ~ ' - a ~ ~ )  
pZl0* = ( q  (a') - i@ (a') = - 

A' (a') 
1 

n 

where the functions q(w) and $(w) are related by the 
Kramers-Kronig relation." The physical meaning of the so- 
lution (4.4)-(4.5) consists in the following: the term con- 
taining ;:, describes the contribution of the spontaneous 
radiation to the incoherent part of the rescattering function; 
the term containing;:; describes the coherent part (in par- 
ticular, in the limit T , , -0 it contains the unshifted Rayleigh 
scattering, proportional to S ( w  - w'), and also the incoher- 
ent part, corresponding to P(l/(w - w')); and finally, the 
term containing ;:, describes the nonlinear interference ef- 
fects (NIEF), taking mixing of states into account. 

The next calculation has to do with the substitution of 
the explicit form of the solution of system (4.1 ) for the zero- 
order density matrix. Expressing these solutions in terms of 
the spectral functions $(a) ,  q( w ), and A (w), it is conven- 
ient to divide the rescattering function into a "coherent" and 
an "incoherent" part 

X{* ~e A (a) ~e A (a') 

- m3, [Re A (a) Im A (a') + R e  A (a') Im A (a) ] 

VZ Azi+r*z Azt+rz, -2 ( 2 0  + - + -) 1m A (a) 1m A (or) I--;--). 
2'3 4 

In the limit r, , -0 Eq. (4.7) gives the Rayleigh term, 
and the last term in Eq. (4.8) gives the main contribution 
according to Ref. 17. Relation (4.9) describes the contribu- 
tion of the spontaneous emission, while Eq. (4.10) describes 
the contribution of NIEF to the frequency redistribution 
function at r3, = 0. In this formalism the symmetry with 
respect to the substitution w-w' is obvious: 
R(w,wl) = R(wr,w). 

As is clear from Eqs. (4.6)-(4. lo) ,  R (w,w1) is normal- 
ized to unity: 

The integrals over w and w' in Eq. (4.10) and in the sum in 
Eq. (4.7) and in the last term in Eq. (4.8) vanish. If we set 
r,, = T I ,  = 0, then in the limit @ - 0 the only nonzero term 
is the one corresponding to Eq. (4.7), while the rest of the 
terms cancel. 

Results (4.6)-(4.10) taken together give the explicit 
analytic form of the rescattering function in the three-level 
system taking into account relaxation of all three levels 
(r,, = O), and the collisional transitions between levels 2 
and 3 and their field mixing. The final result is obtained after 
averaging Eq. (4.6) over the distribution function of the ion 
fields and Doppler shifts w - k . v  and w' - kl.v'. 

The reduced form of the solution, obtained by the den- 
sity matrix method, agrees identically with the result ob- 
tained by the Green's-function method (Sec. 5 ), in spite of 
their external differences. The general properties of the solu- 
tion are indicated below (Sec. 5).  Here let us pause to com- 
pare Eq. (4.6) and the results of Ref. 17. In the static limit 
coincidence of the general form of both solutions is observed 
only if NIEF is neglected. In this case, however, the main 
difference between the two results consists in the fact that in 
Ref. 17 the functions $ (w ) and q( w), already averaged over 
the distribution of fields I?, figure in, whereas in our solution 
only the resulting line shape, which is given by the product of 
these two functions, is subject to averaging. This difference 
has to do with the use in Ref. 17 of a division of the total 
average into a product of averages, which is invalid in the 
statistical case. 
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The main thrust of the calculation of the rescattering 
functions in the presence of the Stark effect is the taking into 
account of NIEF. In essence the presence of significant Stark 
broadening assumes, as was mentioned earlier, the presence 
of additional levels near the emitting level. For this reason it 
is necessary to go beyond the framework of the two-level 
scheme, and in place of it to allow for the mixing of states, 
which leads to NIEF. 

5.THE KINETIC GREEN'S FUNCTION METHOD 

To determine the line shape of photon emission under 
the influence of collisions and the redistribution of frequen- 
cies, we can use the diagram technique for nonequilibrium 
processes developed by Keldysh (Refs. 12 and 18) .3' The 
Keldysh technique contains information on the dynamics of 
the quantum system described by the retarding and acceler- 
ating Green's functions G and G A, and also on its kinetics, 
described by the Green's function G-  + . For nondegenerate 
systems the functions G + - are expressed in terms of G 
and G A with the help of the relation 

by virtue of which the equations for the retarding Green's 
functions form a closed system. The atomic system is de- 
scribed by the set of functions G 7'. For an ideal photon gas 
the kinetic Green's function D ; + has the f ~ r m ' ~ . ' * . ' ~  

Here w, = clkl, and n, are the occupation numbers of the 
photons with respect to momenta, related to the spectral 
radiation density J(w, ,  a) (a function of angles and fre- 
quencies) by the relation 

nh' 
nk=- 

Auk 
](OR, Q) r 

where A is the wavelength, f l  is the unit vector in the direc- 
tion of propagation of the radiation, thus: a= k/(k(. The 
radiation intensity J(w,, f l )  satisfies the transfer equation, 
which follows from the Dyson equation for the Green's func- 
tion D; + (Refs. 12, 18-22) and in the stationary case has 
the form 

(nv) J = - ~ ( U )  J+E (u) .  (5.3) 

The absorption coefficient k(w) and the volume source 
E(W) are expressed in terms of the polarization operators 
II + - and II - + with the help of the atomic Green's func- 
tions 

2nihok 
k (u )=  --(rI+-(o,k)- rI-+(o,k)),  

C 
(5.4) 

In the resonance approximation for the polarization opera- 
tors figuring in Eqs. (5.4)-(5.5), it is possible to obtain 

Thus, in this formalism the spectral photon source is ex- 
pressed with the help of relations (5.7) in terms of the atom- 
ic Green's functions G , + and G 4 - . The atomic density 
matrix is expressed in terms of the frequency-integrated 
functions G ; + (p,w) : 

To find the Green's functions G ","' we make use of the 
resonance approximation in the Dyson equations. We write 
the Dyson equation for the retarding Green's functions G 2 
in the static Stark field F, assuming that G 2 depend only on 
w and F: 

It is possible to write analogous equations for the functions 
G:3 and G & .  

Assuming the level shifts to be included in the corre- 
sponding frequencies wi , we obtain for the values of the mass 
operators figuring in Eq. (5.9) 

where 2: = - ( 1/2) 22 - , and the 82 - are represented 
in the form shown in Figs. 2a and b.I9 

The first diagram describes the radiative decay 2 -. 1; 
the second, collisional mixing of the states 3-2 under the 
action of the electrons. The wavy lines represent the photon 
Green's functions, the thick line, the atomic Green's func- 
tions, the dashed line, the interaction potential of the atomic 
electrons with the broadening particles, whose Green's func- 
tion is denoted by the thin solid line. Using the expression for 
D -  + ( q )  (5.1), we obtain 

FIG. 2. Diagram representation of the mass operators: a) 22 - , interac- 
tion with the photon field taken into account, b) 26 , collisional inter- 
actions taken into account, c )  2; -, collisional interactions taken into 
account, d)  2; - , collisional interactions taken into account. 
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where A is the probability of spontaneous emission on the 
transition 2 + 1, and v,, is the frequency of collisional mixing 
(v3, = v2, = v): 

Here n, are the occupation numbers of the electrons in mo- 
mentum space. The electron temperature is assumed to be 
large in comparison with and V. The nondiagonal ele- 
ments X2, and X3, are proportional to the diagrams shown in 
Figs. 2c and d, and are characterized by an integral of the 
form 

which can be represented in the form 

Relation (5.12) follows from the expressions for G tiA de- 
rived below and the convergence of the integrals in each of 
the terms in Eq. (5.12). From Eqs. (5.9)-(5.12) we obtain 

In what follows for simplicity we will omit the transla- 
tional energy of the atomic particles E,. For G f3 (w) analo- 
gously we obtain 

A ( o )  = (o-oz,+iI',/2) (a-03,+ir312) -V2. 

The elementary line shape a,,(w), a,, (a) is given by the 
expressions 

a-aJ,+ iI'J2 
a,, (a )  = - (lln) Im 

A ( @ )  ' 

o-o,,+ir2/2 
a,, ( o )  = - (11n) Im 

A ( 0 )  

Assuming as before that the matrix element of the interac- 
tion with the "Stark" field V is real, we have 
G &  (01 = G $  (01. 
For the kinetic Green's functions G,k + (w)  from the Dyson 
equations (cf. Refs. 12 and 18) we find the following system: 

The indices s (2,3) and a ( 5 ) are understood to be 
summed over. 

Using relation (5.8), departing from Eq. (5.17) and 
taking into account relations (5.16) we write out the system 
of equations4' 

Here Q2,3 are the rates of formation of the atomic particles 
on levels 2 and 3. It is assumed that the transition 1 + 3 is 
dipole-forbidden, for which reason in Q,, in contrast with 
Q2, photoabsorption from the nearest lower level does not 
contribute: Q, = Q,,  + Q,(w), where Q , ,  is the collisional 
pumping of the second level, 

Here A is the wavelength of the resonant photon, N, is the 
density of particles in the ground state, gi is the static weight 
of the state i, and f, ( v )  is the Maxwellian velocity distribu- 
tion function of the atoms in the ground state over. Taking 
Eq. (5.8 1 into account and integrating Eqs. (5.18) over fre- 
quency, we obtain 

where r2, = I?, + r, and 

In the case of collisional pumping (Q,, Q,,S ) only, from 
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Eqs. - (5.18) taking into account Eqs. (5.20) at Q = 0 and 
Q2 = Q,,, we have the stationary solution: 

where p;k is essentially the solution of system (5.20) at 
Q = 0 and a2 = Q2,s. Solutions of system (5.20) p:k com- 
pletely coincide with the analogous solutions for the atomic 
density matrix obtained from system (3.3) [see Eqs. (3.11) 
and (3.12)]. 

Substituting Eq. (5.23) in Eqs. (5.16) and making use 
of the relation 

where p is the chemical potential of the atoms, we arrive at 
an expression for the emission line contour (3.6)-(3.12) 
due to collisional excitation at A,, = r,, =A,, = r,, = 0. 

To calculate the rescattering function we seek the sta- 
tionary solution of Eqs. (5.18) and (5.20) at Q, = G,, = 0. 
Then 

The elements& in Eq. (5.22) have the form 

pzz@=QzlA, 

A 2rsV 
- ~ ( o s 2 R e x - - - ~ m x ) +  - D Imx.  (5.26) 

D 2 

In Eqs. (5.25) and (5.26) we have introduced the notation 

Introducing for definiteness the frequency redistribu- 
tion function R(w,wl) from Ref. 13, from Eqs. (5.5) and 
(5.7) we obtain 

A h Y 2  do' dP l  (a', P )  
E ( O )  = - N ~ - J  R(o'o),  (5.32) 

4 g, 4nfio' 

where R (w,wl) = R (wl,w) and 

( (...) denotes averaging over the microfields), and, compar- 
ing Eq. (5.32) with Eqs. (5.5) and (5.7), taking Eqs. 
(5.25)-(5.30) into account, it is possible to find Q(w,wP), 
which can be represented in the form5' 

The first term characterizes the contribution of the incoher- 
ent scattering, the second, the coherent. The explicit expres- 
sion for the coherent part has the form 

where 

For the incoherent part Q(w,ol) we have 

AI'sV2 1 +-- p (w,  0') 

4n2ra2 r D  ( A  (o )  ( 1 A (0 ' )  1' ' 

where 

rars 
P ( o .  0') = ( I . . ~ ~ ~ ~ ~ ~ + ~ ~ ~ A  ( V 2  + --6)) 

Expressions (5.34)-(5.37) coincide with the results of 
the calculation of the density matrix of the compound sys- 
tem (4.6)-(4.11) in the case r, , = T,, = A,, = 0 with the 
substitution 2@ = v, A =A2,. Here 

If further we have r, = 0, i.e., mixing of states 2 and 3 due to 
collisions with the electrons is absent, then 

In the limit V-0 from Eqs. (5.34)-(5.37) we obtain', 
Y A 

Q (o ,o l )  = - @ O  (0)  @O (0 ' )  + - 6 (0-0') @ o  ( 0 ) .  
v+A v+A 

Here 
(5.40) 
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r 2 Let us consider the limit of high plasma densities when 
@ o ( ~ ) =  ZZ(Q' +( r2 /2)2) .  o,, can be neglected in comparison with V and v, and 

For V4r2 ,  r,, w32 and R, R') Vwe obtain from Eq. (5.36) V> v)A holds. In this case for the function Qinc (w,o') we 

Qinc(~, a ' )  =rs2/ (4n2Q2Qf2). (5.41 ) I obtain 

As follows from this expression, the rescattering function 
has two peaks in both frequencies: R = + V, R' = + V. 
Note that according to Eq. (5.42) the contributions to the 
rescattering from the peaks corresponding to the condition 
RR' = - V2 are suppressed by a factor of more than 
(A /v) - ' ) 1 in comparison with the contributions from the 
peaks for which RR' = V2. This suppression is a conse- 
quence of NIEF, without an account of which9 the contribu- 
tions from both peaks to the function Q,,, (w,wl) in a strong 
field are equal, and the function Qinc ( w , ~ ' )  itself is propor- 
tional to the product of the line shapes +(w)+(wl). 

In weak fields for w,,> V and V)A, V)v, A>v it is 
possible to obtain an approximate expression for Qinc (a,@' ) 
in the vicinity of the peak R = R' = a,,: 

(here 1 A12 = $/4 + V4). It can be easily seen that the 
second two terms in braces on the right-hand side of Eq. 
( 5.43 ) represent the NIEF contribution to the frequency 
redistribution function and substantially exceed the first 
term. Thus, the influence of NIEF on the height of the peak 
at R = R' = w,, is substantial at small plasma densities. 

Neglecting the NIEF contribution we can write an ex- 
plicit expression for the incoherent rescattering function, 
analogous to Eqs. (5.36) and (5.37). From Eqs. (4.4), 
(4.5), (4.7), and (4.8) we obtain 

From Eqs. (5.44) and (5.45) it follows that in the vicin- 
ity of the points R ' ~ R ~ w ~ ~ - ( b u t  not at the point 
R' = R = itself) the function P(w,wl) can take on nega- 
tive values. This is possible if the conditions w,,% V) (A, v), 
A ) v, and V2) w:, v/A hold. For V)032 the function 2 is 
positive. 

If we take NIEF into account the total redistribution 
function Qinc (w,w') is positive. This once again emphasizes 
that ignoring NIEF can lead to physically meaningless re- 
sults (cf. Refs. 14 and 17). 

The expressions for the spectra of emission with inco- 
herent pumping and the rescattering function found in this 

section reflect the contributions of nonlinear interference ef- 
fects, which are represented by the second term in Eq. ( 5.23 ) 
and the group of terms containing x and p$2 in Eq. (5.25). 

The Green's function method used in the present sec- 
tion, in comparison with the method of the density matrix of 
the compound system, is suitable when the problems of de- 
termining the line shape and the frequency redistribution 
function reduce to the solution of the same system of equa- 
tions. At the same time, in the density matrix method the 
actual structure of the fipal result turns out to be simpler for 
distinguishing effects of different nature. 

6. NIEF IN SPHERICAL AND PARABOLIC BASES: ANALYTIC 
ESTIMATE OF THE CONTRIBUTION TO THE LINE SHAPE 

In the theory of Stark broadening it is customary to use 
the parabolic basis which diagonalizes the atom-electric 
field interaction.' It is %elated to the spherical basis by a 
unitary transformation U which for the three-level scheme 
has the form 

1 0  
0 cos ,6/2 sin I3/2 , 

O I (6.1) 
0 -sin ,6/2 cos I3/2 

where p= arctan (2  V/w32). In this basis of such Stark com- 
pound states the equations for the density matrix (3.3) and 
(3.4) take the form 

where the indices 1,2, and 3 now number the "Stark" states 
of the atom in a constant field with the wave functions of the 
three-level system - 

@,=4,, 
- $,=@, cos $/2f sin ,612, 
qS=-$, sin P/2+@3 cos ,612, 

and, in addition, we introduce the notation 
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Az-A3 1 &-Xj 
A'=cos 8/2 sin p/2 ----- = - tg p - 

2 2 2 ' 
&=A2 cos2 $12+A3 sinVl2, AZ=l'zz+Alt, 
B3=A2 sin2 6/2+As cos2 812, A3=I',3+As,, 

Q'z-Qz cosZ 812+Q3 sinz 612, 
Q'S=Q2 sin2 p/2+Qs cos2 812, (6.4) 

G,=G cos 812, G3=-G sin 812, 
B ~ , = ~ ~ - - B ~ ~ / ~ ,  Bsi=oo+t5sa/2, 00- (~a,+osi) 12, 

u ~ ~ =  (03z2+4V2) "'=O~ZICOS 8, 

and for cos2 0 / 2  and sin2 0 /2 there exist the convenient re- 
lations 

It is natural that using Eqs. (6.1)-(6.5) leads to the 
same result for the line shape as in the spherical basis [see 
Eqs. (3.6) and (3.7)]: 

where R = w - w,, and R = w - w, , are the shifts from the 
frequency of the allowed (a,,) and the "forbidden" (w,, ) 
transitions. Here 

In the frequently arising case 

it is possible to represent the total line shape in the form of a 
sum of two Lorentzian line shapes corresponding to the al- 
lowed and forbidden (A,, $A,,) components of the line: 

where 

The NIEF contribution to the line shape is determined by 
the parameters 

For a,, nf% r,, r, the terms proportional to 6' cancel 
and the NIEF contribution depends only on 6. In addition to 
this, the terms with 6' disappear at the peaks of the compo- 
nents. The amplitudes of the allowed and forbidden peaks 
are 

( 0 )  cosZ P/2 ( 0 ,  sin2 P/2 I ,  =-- If =-. (6.15) 
nr2/2 ' nr3/2 

In the limit V- w or V+O NIEF is absent, i.e., 6, 6'-0. 
Therefore if the terms with 6 and 6' in Eq. (6.11) are dis- 
carded, we obtain the intensities of the components in the 
purely spherical or parabolic bases with probabilities 2, and 
2, (6.4). Taking NIEF into account leads to a redistribution 
of the intensities: I Lo' decreases while I?' grows. The rela- 
tive contribution of NIEF to the forbidden component can 
be characterized by the quantity 

Let us consider for simplicity the case A, = 0, A, = 0. Then 

In weak fields, for Veo32, (yr) 

i.e., the magnitude of the contribution of NIEF depends on 
the ratio of the radiative and collisional widths. For ions 
with small nuclear charge Z under real conditions we have 
64 1, but with increasing Z this contribution grows since 
A -Z4, but Y - Z -  '. For V$ ( v r )  'I2 the relativecontri- 
bution of NIEF falls off with the field as V- ' : 

but the amplitudes of the forbidden and allowed components 
(6.15) are comparable (6-0, T,- r , ,  cos2 0 /2 -  1/2). 

Thus, the NIEF contribution turns out to be substantial 
for Z -  20-30, while condition (6. lo),  more exactly 
AT = r2 - r, 4G3,,  is satisfied all the way up to Z(50. 

From a comparison of system of equations (3.6), (3.7) 
with system of equations (6.2) it is clear that when we go to 
the parabolic basis the field terms fall out and the frequencies 
mi, are simultaneously replaced by the field-perturbed fre- 
quencies Gii,  complicating the form of the collision operator. 
In the case met in practice y < w,, and the parameter 6 can be 
represented in the form (for A, = 0, A =A,) 

This result also follows from the simplified system 

which arises upon discarding the terms in A ' and the nondia- 
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gonal elements;,, and;,, in Eqs. (6.2). This has to do with 
the fact that these terms are small in the parabolic basis in 
comparison with the population difference Aj, = p,, - P2 ,  
with small proportionality parameter y/w3,: 

while in the spherical basis only the imaginary part of p:, 
remains small: 

If we neglect the first pair of Eqs. (6.19), then we obtain 
the conventional result for the theory of spectral line broad- 
ening, which is based solely on a consideration of the evolu- 
tion operator1 and is in essence equivalent to just the second 
pair of Eqs. (6.19) (for the polarizationsj,, and;, , ) . In this 
case the populationsi3,, andp,, are assumed to be identical, 
and the nonlinear interference effects disappear completely. 
Precisely such an approach, based on the assumption of 
equal occupancy of levels 2 and 3, is used in Ref. 5 to calcu- 
late the intensities of the forbidden components in the spec- 
tra of atoms of helium, lithium, and copper. It thereby be- 
comes clear that NIEF is due to the inequality of the 
populations of the emitting levels in any basis. 

7. NUMERICAL RESULTS FOR THE LINE SHAPE AND THE 
RESCATTERING FUNCTION 

a. The line shape 

The calculations were carried out for the transitions 
2IS-4'P and 2'S-4'P of helium-like ions of aluminum and 
nickel: All1 + and Ni26 + . The necessary atomic param- 
eters, given below, were obtained in the Hartree-Fock ap- 
proximation, taking into account the interaction of configu- 
rations (Cowan's program23) : 

Here the indices 1,2, and 3 denote respectively the levels 2'S, 
4'P, and 4'0. Note that the energy difference changes sign at 
the value of the nuclear charge 2 ~ 2 2 .  

This behavior the dependence of w,, ( Z )  was confirmed 
by the calculations of Vainstein and SafronovaZ4 by means of 
an expansion in the parameter 1/Z. The absolute values of 
the energies of the excited states of the helium-like ions, ob- 
tained by different  author^,^'-'^ agree to within four or five 
significant figures. However, the differences in energy of 
near-lying levels are determined with considerably less accu- 
racy. For example, the values of a,, according to the data of 
Refs. 23 and 24 differ for A1 by - 30%, and for Ni this dis- 
crepancy stands at - 10%. In our calculations we gave pre- 
ference to Cowan's program,,, which provides the possibil- 
ity of obtaining the entire set of atomic data within a single 
approach. Nevertheless, it should be borne in mind that our 
final results (the line shape, the rescattering function) have 
for the most part a qualitative character and have as their 
goal to demonstrate first of all the role of NIEF. 

Evaluation of the collisional width gives7 

The matrix element Vof the interaction of the atom with the 
field for the mean Holtsmark field intensity is usually taken 
to be equal to 

This quantity corresponds to the value of the dipole mo- 
ment averaged over the magnetic quantum numbers of the 
states 4'P, and 4'0,. This approximation gives a simplified 
picture of the Stark splitting (e.g., The 4'F3 Stark states, 
which substantially influence the magnitude of w,,, are not 
taken into account) and can be justified only as the first stage 
of calculations which have a model character. 

The radiative transition 3 -. 1 (4'D- 2 's)  is dipole-for- 
bidden, but the probability of the corresponding quadrupole 
transition is negligibly small in comparison with 
A2,:A,, = 2.610's-I forAl1I+ andA,, = 1.9.10~ s- ' for  
~ i 2 6  + , so that the quadrupole transition plays no substantial 
role in determining the line shape. 

Figure 3a depicts the line shape of the spectral doublet 
2'S-4'P, 4 ' 0  of the helium-like ion of A1 in a plasma with an 
electron density of N, = 10,' cm-' and temperature 
Ti = T, = 350. eV, calculated according to Eq. (6.11).6' 
The pumping at the levels 2 and 3 was assumed to be identi- 
cal: Q, = Q,. The given figure corresponds to line shape not 
averaged over the velocities and the microfield distribution: 
1-the total line shape, 2-the NIEF contribution, and 3- 
the line shape without account of NIEF. It is clear that 

Contour, 1 /eV a A 3 

FIG. 3. a )  Line shape of the spectral doublet 2 'SA1P ,  4'Dof the helium- 
like aluminum ion, not Doppler-averaged. The magnitude of the field 
intensity corresponds to the average Holtsmark field. N, = 10'' cm -', 
T, = T, = 350 eV, Q, = Q,. Curve 1 ) the total line shape, curve 2) the 
NIEF contribution, curve 3)  the line shape without NIEF; b) line shape 
of the same transition as in Fig. 3a, but for the helium-like nickel ion at 
N, = lo2' cm - ' and T, = T, = 500 eV. Notation the same as in Fig. 3a. 
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Contour, 1 /eV 

FIG. 4. a )  Same line shape as in Fig. 3a, but averaged 
over the microfields and the velocities of the emitters; 
b) same line shape as in Fig. 3b, but averaged over the 
microfields and the velocities of the emitters. 

NIEF leads to a decrease in the intensity of the allowed com- 
ponent (the right peak) and some increase in the forbidden 
component (the left peak). Averaging over the microfields 
and velocities makes the NIEF contribution still more sig- 
nificant, as Fig. 4a shows. 

Figure 3b shows the analogous line shape for the heli- 
um-like ion of Ni for an electron density N, = 10'' cm - 
and temperature Ti = Te = 500 eV. Under the given condi- 
tions before averaging over the velocities and the fields with 
NIEF taken into account the forbidden component has a 
higher peak than the allowed one, but after averaging (Fig. 
4b) the allowed component becomes more intense (al- 
though insignificantly so, by no more than a factor of 1.5). 

It is clear that in all of the calculated cases the NIEF 
contribution substantially varies the ratio between the inten- 
sities of the allowed and forbidden components of the line. 

b. The rescattering function 

Using this theory we carried out calculations of the in- 
coherent part of the frequency redistribution function 

R (w,wf) for the helium-like ions of A1 and Ni (the transi- 
tions and constants the same as in the calculations of the 
emission contour) in a plasma at different densities. Figures 
5a and b depict the function R(o ,o l )  at T, = 350 eV and 
N, = lo2' cm-3 for the helium-like aluminum ion in the 
mean Holtsmark microfield intensity (Fig. 5a, with NIEF 
taken into account; Fig. 5b, with NIEF not taken into ac- 
count). Figures 5c and d depict the rescattering function for 
the helium-like nickel ion at T, = 500 eV and 
N, = 6.5. lo2' c m P 3  c)  with NIEF, d )  without NIEF). It is 
clear that NIEF is manifested in the redistribution of intensi- 
ty between the peaks. At large fields (N, > 10'' cm- 3, 

NIEF leads to a strong suppression of the peaks correspond- 
ing to the condition RR' = - v2 according to the approxi- 
mate formula (5.42). At small fields (N, < 10'' cm - 3 ,  the 
role of NIEF is at its most significant for the value of the 
redistribution function Q (0,') at the point 
R = R' = w-3, according to Eq. (5.43) (cf. Figs. 5a and b). 
In this limit the parameter that characterizes the contribu- 
tion of NIEF to the redistribution function, analogous to the 

FIG. 5 .  Frequency redistribution function R(w,wl) 
for the spectral doublet 2'S-4'P, 4'1) of the helium- 
like aluminum ion, but averaged over the fields and 
velocities at T, = 350 eV, N, = 1OZ0 cm-' (a, b) and 
the helium-like nickel ion at T, = 500 eV, 
N, =6.5.1022 cm-' ( c ,d ) ;  a) andc) theformofthe 
function R(w,ol)  with NIEF taken into account; b) 
and d) the form of the function R(w,ol)  with NIEF 
not taken into account. 
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parameter 6 [see Eqs. (6.16) and (6.17) ] can be written in 
the form 

Here we have v<A, and the larger 5 is, the larger is the NIEF 
contribution. 

Note that at relatively small fields ( V< lOI9 cm- ' ) neg- 
ative values of the rescattering function, calculated without 
account of NIEF, can exist in the region wzw'zw,, [see 
formulas (5.44) and (5.45) and Fig. Sd]. This once again 
emphasizes the necessity of taking NIEF into account. 

In the region of higher fields ( V)w,,, V)v>A) the 
contribution of NIEF to the peaks corresponding to 
an' = - V2 is also determined by the quantity v/A, which 
in this limit is much smaller than unity. 

Note that the values of the incoherent part of the redis- 
tribution function shown in Figs. 5a and c were calculated 
for the mean Holtsmark electric microfield intensity. The 
true redistribution function is obtained according to Eqs. 
(5.23) and (5.33) by averaging over the microfield distribu- 
tion and over the velocities of the absorbing ions. Figure 6 
shows the rescattering function for helium-like aluminum 
(nickel) ions, averaged over the microfields, for conditions 
analogous to those of Fig. 5 (Fig. 6a and c-the total func- 
tion, Fig. 6b and d-the function without NIEF taken into 
account). Qualitatively, as in the calculation of the emission 
contour, the role of NIEF is preserved after averaging over 
the microfields and velocities. During averaging there is the 
possibility of redistribution between the positive and nega- 
tive regions of the values of the rescattering function, calcu- 
lated without account of NIEF (cf. Fig. 5a and Fig. 6a). In 
radiative transfer theory frequency use is made of the rescat- 
tering function R (w,wl) averaged over the angles of the inci- 
dent and scattered photons (cf. Ref. 13) and even the ther- 
mal motion of the ions. In the present paper we do not 
present the results of this averaging. 

FIG. 6. The frequency redistribution function R(o ,o l )  aver- 
aged over the microfields for the spectral doublet 2'.!W1P, 4 ' 0  
of the helium-like aluminum ion at T,=350 eV, 
N,  = loz0 cm - (a, b) and the helium-like nickel ion at 
T, = 500 eV, N,  = 6.5.102' cm- (c, d); a) and c)  the form of 
the function R(o ,o l )  with NIEF taken into account; b) and d) 
the form of the function R(w,ol)  with NIEF not taken into 
account. 

Note that the high sensitivity of the frequency redis- 
tribution function of the photons to NIEF in an MCI plasma 
can be used as a diagnostic for an optically thin plasma irra- 
diated by resonant radiation which is then scattered by the 
absorbing ions. As was already noted, the function R (w,wf ) 
is more sensitive to the role of NIEF than the emission con- 
tour, which characterizes the emissivity of the optically thin 
MCI plasma. 

In the case of an optically thick plasma transport of 
resonant radiation with the Stark microfields taken into ac- 
count possesses a number of qualitative features associated 
with the nature of the redistribution function and the influ- 
ence of NIEF on the magnitude of the function R (a,@').  In 
the case of small values of v/A the redistribution function is 
almost coherent [see Eq. (5.35) ] ; however, the multiplier of 
the 6-function does not coincide with the line shape q5(w), 
and at the point S1= o,, this difference can be large, propor- 
tional to the parameter V2/vA, 1. At large values of v/A the 
incoherent component plays the main role in the radiative 
transfer. However, because of the role of NIEF noted above 
the regime of complete frequency redistribution (CFR, see 
Ref. 13) is not realized in this limit, which means that 
R (o,wl) zq5(w)q5(w1) and the spectral density of the excited 
atoms N(w) z Nq5 ( a ) ,  where N is the total density of excited 
particles. This difference from CFR is connected with the 
fact that the average of the product of the Stark microfields 
does not coincide with the product of the averages: 
(q5(w)q5(w1)) # (q5(w)) (#(cat)), and the NIEF contribu- 
tion strongly influences the redistribution of intensities of 
the peaks of the rescattering function. 

In conclusion we express our thanks to A. A. Panteleev 
and V. A. Roslyakov for their interest in this work and help- 
ful discussions. 

APPENDIX 

To describe the atomic subsystem we introduce four 
Green's functions: 
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iG+-(x, 8; x', g') =<$(x, g j$+ (XI, g)), 
iG-+(x, E ;  x', gf)=-< ($+(x, E)%(X~, g)). 

Here $(x,{) is the particle field operator in the Heisenberg 
representation, and T and Fare  the chronological and an- 
tichronological ordering operators. In the interaction repre- 
:entation the following expansion is valid for the operator 
$(x,5) 

Here V is the volume of the system, ii, is the annihilation 
operator of the atomic particles possessing momentum p in 
the state j. For definiteness we assume Fermi statistics. The 
wave functions of the atomic particles in the external electric 
field F satisfy the equation 

where Ho({) is the Hamiltonian of the atomic subsystem 
which determines the eigenstates of the system q5j ( 5 )  with 
energies fiwi : 

the function 4, is found from Eq. (A3 ) with the initial condi- 
tions ( t -  - w ) :  

The projections of the Green's functions on the wave 
functions of Eq. (A4), i.e., onto the original spherical basis, 
are obviously equal to 

We restrict ourselves to the dipole approximation in the de- 
scription of the interaction of the atomic system with the 
Stark field F with quantized electromagnetic radiation field. 
In this case we use the operator of the intensity of theirans- 
verse quantized field in the interaction representation Ei (x)  
in the form 

A + 
-e; (k, h) bk,r exp (iwkt-ikr) 1. (A71 

Here h , ,  is the annihilation operator of the photon with 
wave vector k and polarization A, ei (k,A) is the unit vector 
in the direction of the field, w, is the frequency of the photon 
with wave vector k, and w, = cl kl. 

In analogy with Eq. ( A l )  it is customary to introduce 
the Green's function for the photon subsystem. For exam- 
ple, 

iDjk-+(x, x') =<E~(x')~F+(x) ), (-48) 
h 

where the operator E, is already in the Heisenberg represen- 
tation. 

Broadening of the atomic subsystem by electrons is 
characterized in the Fourier representation by the matrix 
element of the interaction potential V,, (q,w). 

The retarding and accelerating Green's functions, e.g., 
for the atomic system, are defined by the relations 

Transforming from the coordinates x, x' to the coordinates 

and making use of the Fourier transformation of the Green's 
functions with respect to p and T, we arrive at the functions 
G:a'(w,p,R,T), which figure in the main text. 

I '  The transition 3 - 1 may be forbidden. 
2'The variable r2, determines the time-dependent part of the rescattered 

power, which disappears upon averaging over a period. For its physical 
meaning see Ref. 10 and 8. 

"The main definitions are given in the Appendix. 
4' Note that the atomic density matrix used in the present section has no 

simple relation to the density matrix of the compound system which 
figures in Sec. 2. 

"The coherent term can be distinguished only when there is no decay of 
the lower level: r , ,  -0. 

"The quantities A o  = o - o,, and Am' = o' = o,, are plotted along the 
horizontal axes in Figs. 3-6. 
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