
Electrodynamics of a slowly varying nonuniform plasma 
V. S. Krivitskii 

Institute of General Physics, USSR Academy of Sciences 
(Submitted 23 May 1990) 
Zh. Eksp. Teor. Fiz. 98,1292-1303 (October 1990) 

The propagation of an electrostatic wave in a plasma whose density is varied slowly in time by 
some external source is investigated. It is shown that in such a system with variable composition 
the number of quanta is not an adiabatic invariant and is not conserved in time, so that wave 
damping (or amplification) is possible. The cause of nonconservation of the number of quanta in 
a nonstationary plasma is analyzed. 

1. THE PROBLEM 

We consider below a collisionless plasma described by 
the kinetic equation 

afplat+vafplar-eEafp/dp=Q ( t ,  r, p) , ( 1 )  

where f, is the electron distribution function and Q is an 
external source. We consider hereafter longitudinal electric 
fields, without a magnetic field in Eq. ( 1 ) . 

The number of particles in the source Q is assumed to 
vary with time: 

anlat + div nV=q ( t ,  r )  3 J d3p Q ( t ,  r ,  p) ZO, (2)  

where the electron density is 

n ( t , r ) =  I d 3 ~ f P ( t . 4 ,  

and the macroscopic velocity is 

The source Q with time-dependent particle density can de- 
scribe processes occurring in a plasma, such as ionization, 
recombination, and others. 

For simplicity we confine ourselves below to a nonsta- 
tionary but spatially homogeneous situation. We describe 
the source Q by 

i.e., we assume that the particles are created with zero mo- 
mentum and at an identical rate at each point of the medium. 
To meet the condition that the plasma as a whole be electri- 
cally neutral we assume for the ion component a source iden- 
tical with ( 5 ) in the right-hand side of the kinetic equation 
(whose only difference from ( 1 ) is that the ion charge + e is 
positive). 

The parameters describing our nonstationary medium 
with variable n ( t )  are functions of the time t. In particular, 
the dielectric constant of the medium E becomes time-depen- 
dent (we assume hereafter this dependence to be slow com- 
pared with the characteristic period of the wave propagating 
in the plasma, i.e., the source Q in (5) is in a certain sense a 
small quantity; more accurately speaking, we assume 17 1, 
where 7 = max{l/wT, l/Aw~}, w is the frequency of the 
propagating wave, Tis the characteristic time of variation of 
the parameters of our nonstationary system, and Aw is the 
characteristic scale of the dispersion dependence of the di- 
electric constant of the medium). As first noted in Ref. 1, the 

time dependence of E gives rise to an effective "supplemen- 
tary" imaginary increment to the dielectric constant of the 
medium even if Im E = 0. The appearance of such an imagi- 
nary additional contribution to the dielectric constant of a 
nonstationary medium leads to amplification (or damping) 
of the wave propagating in it. An investigation of this phe- 
nomenon (with an external source (5)  that changes the 
number of particles) is in fact the subject of the present pa- 
per. 

2. TIME DEPENDENCE OF THE DIELECTRIC CONSTANT 

The general equation for the (linear) dependence of the 
induction of a longitudinal electric field D(t,r) on the inten- 
sity E(t,r)  is 

dt' d3r' 
E ( t ,  t'; r ,  r l ) E  (t' ,  r') ; 

in a stationary spatially homogeneous medium, E depends 
only on the differences t - t ' and r - r': 

dt' d3r' 
( t ,  r )  = J e (t-t'; r-rr)E ( t f 7  r'),  

from which we have for the Fourier components 

where E,, are the Fourier components of the field 

E ( t ,  r )  = ,J dw d3k E.. erp (-iwt+ikr) (9)  

(and similarly for D).  The factor (27~) was added in (6 )  
and (7) for convenience-to eliminate "extra" factors 2 7  
from (8) .  

In a stationary (and a spatially homogeneous, as be- 
fore) medium the function E in (7)  should have besides the 
argument ~ = t  - t f  also a "slow" temporal argument de- 
scribing the time dependence of the dielectric constant of the 
medium. Beginning with Ref. 1, this second argument is 
usually written in the form of the symmetric combination 
( t  + t ' )/2 = t - ~ / 2 ;  in the case of a slow dependence of E 

on this argument, when expansion in the "short" time T is 
possible in the second argument of the function 
E ( T , ~  - ~ / 2 ) ,  the role of E,, is assumed by the quantity 
~ , , ( t )  + (i/2)d2&,, (t)/awat (see Ref. I ) ,  where 

E (T, t ;  Ar) exp (iwz-ikAr) . (10) 

The second argument E was chosen in Ref. 1 in the form 
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( t  + t ')/2 to maintain the number of quanta as an adiabatic 
invariant in time (more below). 

Another approach to the problem however is possible. 
We forgo the phenomenological description of the electro- 
dynamics of the medium using the function e whose argu- 
ment is determined by postulating the familiar quantum- 
number conservation theorem2 in a weakly stationary 
medium with a variable number of particles. Instead, we can 
ascertain, by a detailed microscopic analysis of the dynamics 

. of the medium ( 1 ), the actual time dependence of the dielec- 
tric constant E, and then investigate the evolution of the 
number of quanta with time. The substantial influence of the 
specific type of microprocess producing polarization cur- 
rents and charges in the medium on the character of the 
dependence of E on the "slow" time was pointed out in Ref. 
3. This analysis for a collisionless weakly turbulent plasma 
described by ( 1 ) , performed in Ref. 4, yielded 

D(t, r) = 8 (t-t', t'; r-rl)E(t', r'), (11) 
(2n)' 

where 

where a, is the unperturbed time-dependent electron distri- 
bution function. 

Let us describe briefly the essence of the in~estigation,~ 
on the basis of the kinetic equation ( 1 ), of the time depend- 
ence ofe. We resolve the distribution function fp (t,r) into an 
unperturbed part 0, (t)  and a small perturbation 
Sfp ( t , r  = fp - @,. The dependence of @, is defined, ac- 
cording to ( 1 ) , by the equation 

ac~ , / a t=~ ,  (13) 

and for Sfp we have, linearizing ( 1 ), 

a6fp/at+va6fD/ar-eEacP,/ap=O. (14) 

When resolving ( 1 ) into Eqs. ( 13 and ( 14) we have assumed 
that the external source Q has a "purely regular character," 
i.e., the source Q alters the unperturbed regular distribution 
function a , ,  but has no random (fluctuating) component 
and does not act on Sf,. Of course, not all sources satisfy this 
requirement; under certain conditions, however, ionization 
can be such a regular source (in the case of ionization Q does 
not depend at all on the electron distribution function). 

The solution of ( 14) is (following a Fourier transform 
and then its inverse) 

dt' dsr' exp[ik(r-r')-iw (t-t') ] 
65. (t, r) =is jdo d8k - 

w-kv+iO 

a x E (t', r') - cP, (t') . 
ap 

The pole in ( 15) is bypassed in accordance with the casualty 
principle. 

Finding next the polarization P of the medium (from 
div P = eJd 3pSf, ) and the induction D = E + ~ P P ,  we ar- 
rive at relations ( 1 1 ) and ( 12). 

The second argument of E in ( 1 1 ) is t ' = t - T and is 
not equal to the one chosen in Ref. 1. The resultant "effec- 
tive" imaginary increment id 'e/dwdt to the dielectric con- 
stant differs therefore by a factor of two. 

Formally, of course, any function e of two arguments 
can be written in the form of another new function of an 
arbitrary combination of these two arguments, but the 
choice of the arguments t - t ' =T and t ' for E in ( 12) is not 
simply arbitrary: we see that according to ( 15) this choice is 
mathematically correct in the sense that it ensures factoriza- 
tion of ( 15) into a product of functions that depend only on 
the fast time T and a slow function of t ' = t - T. It is this 
natural separation of the "fast" and "slow" time depen- 
dences which makes possible the expansion in terms of small 
T in a function that depends on the "slow" argument 
t l = t - T .  

The result ( 15), the obvious difference notwithstand- 
ing, does not by itself contradict, generally speaking, the 
phenomenological theory of Ref. 1: after specifying in Eq. 
( 1 ) the nature of the quantity Q that is responsible for the 
nonstationary behavior of the medium, we must take into 
account, besides the ensuing increment id *e/dwdt, also the 
"direct"contribution of Q to Im e, i.e., that not due to the 
nonstationary behavior (if this contribution exists). Under 
the conditions of Ref. 1, when the dynamics of the system is 
described by a Hamiltonian H(A ) and with a slowly varying 
parameter il = il ( t ) ,  the simultaneous allowance for these 
two contributions to the total "effective" dielectric constant 
can lead to conservation of the number of quanta (as was the 
case, for example, in Ref. 4, where Q corresponded to quasi- 
linear interaction). However, by no means do all types of 
source correspond to the conditions of Ref. 1 (and conserves 
correspondingly the number of quanta); in particular, the 
source (5)  which we consider here does not conserve the 
number of quanta (more below). 

In this and following sections we consider only the elec- 
tron contribution to the dielectric constant, assuming the 
ions to be infinitely heavy and to make no contribution to e. 
The role of the ions reduces here to neutralization of the 
electron charge that increases in accordance with ( 13), so as 
to keep the medium as a whole electrically neutral. On the 
other hand, we do not consider at all an equation similar to 
( 14) for the perturbed part of the ion distribution function, 
and assume that mi b me; the subscript e labeling the quanti- 
tiesf,, n, V, etc., is omitted for simplicity. (In principle, the 
analysis of the ion motion is perfectly analogous to that of 
the electron component and can be easily carried out. ) 

3. CHANGE OFTHE AMPLITUDE 

Consider a longitudinal Langmuir wave propagating in 
a nonstationary plasma having the dielectric constant ( 12). 
Let the unperturbed distribution function @, be isotropic, 
and let the characteristic velocity v of the particles of the 
distribution QP be much lower than the phase velocity of the 
wave, kv4w. There is then no Landau damping, i.e., no 
imaginary part of e connected with the pole of w - k-v  = 0 
in ( 12), and the evolution of the wave amplitude is deter- 
mined only by the effects connected with the time-dependent 
character of the medium. 

We express the wave field, in the geometric-optics ap- 
proximation, in the form 

t 

E (t, r) =E, [w (t') +il (t') ]dtt} 
t 

=E. (t) exp[ ikr-i j w (t' ) at'] , (16) 
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where the field E of the longitudinal wave is parallel to k. 
The wave amplitude E, ( t )  r Eo exp(Jydt), which can be 
chosen to be real, and the frequency w(t) both vary slowly 
with time. We substitute ( 16) in ( 11 ) and write down the 
wave propagation condition: D=O (there are no external 
charges or currents). We represent o ( t )  and y(t) by expan- 
sions in powers of the small parameter 7 indicative of the 
time-dependent character of the system: 

In the zeroth approximation in 7, the equation D = 0 ( 11) 
yields a dispersion equation relating the wave frequency to 
the wave vector: 

We expand the quantities E,, w, and e that depend on 
the slow time argument t - T in powers of the small quantity 
T and gather terms of order 7'. We find then that the change 
in the frequency is w'" = 0 and the rate of change of the 
wave amplitude is 

(see Ref. 4 for details). 
In the case of interest to us, of small k (kv <w ), we ob- 

tain from (12), (17), and (10) the dielectric constant 

&or ( t )  =i-oP"t) /a2, (19) 

where m =me is the electron mass. Thus, the wave propaga- 
tion frequency is equal in first order to the electron plasma 
frequency, w(t) = w, (t),  and the rate of change of the am- 
plitude E, ( t )  =-- 1 E, (t) ) is 

, !?o( t ) /~o( t )=y( t )  =-h(t)/2o ( t )  =-fio(t)/4no(t). (22) 

These relations can be simply verified without any use 
of the concept of dielectric constant of a nonstationary medi- 
um. In the limit of small k the wave propagation can be 
described with the aid of the hydrodynamics equations, the 
first of which is Eq. (2) ,  which takes the following form after 
resolving n into a sum of an unperturbed density no and a 
small perturbation Sn in the wave field: 

d6m/at+no div V=O. (24) 

The source q ( t )  enters only in (23) but not in (24) (see 
above ) . 

Multiplying the kinetic equation ( 1) by v and integrat- 
ing over d 3p, we obtain a second hydrodynamic equation: 

a (nVi) /at+afl,/ar,==- (elm) nEi, (25) 

where nu = Jv,v,&d 3p. Linearizing (25), we can replace n 
in the left- and right-hand sides by no; as for dnu/arj, in the 

limit when the (thermal) spread of the particle velocities in 
the unperturbed distribution a, this term is much less than 
the perturbation phase velocity o/k and can be left out of 
(25) (this can be verified by obtaining lIv from the solution 
Sf, of the kinetic equation). Equation (25) takes thus the 
form 

Note that the second hydrodynamic equation we use must be 
just (26) and not a linearized Euler equation (without a 
term describing the pressure, since 
kv < a)  : a V/d = - (e/m) E, since no depends on t. In fact, 
Eq. (25) is equivalent to the Euler equation only when the 
continuity equation holds; in our case, however, the continu- 
ity equation contains in the right-hand side the source q(t) ,  
and when (25) is reduced to the Euler form it will likewise 
contain an additional term with q(t);  the form (26) is there- 
fore more suitable. 

The set (24) and (26) of equations of cold collisionless 
hydrodynamics, together with the equation 

div E=-4ne6n (27) 

describes the propagation of a longitudinal perturbation in a 
time-dependent plasma. On the basis of this system, in anal- 
ogy with the previous kinetic treatment, we can obtain Eq. 
( 11) with the dielectric constant ( 19). We shall derive (22) 
disregarding the concept of dielectric constant altogether. 

We differentiate (24) with respect (22) and expressing 
Sn in terms of E according to (27) and d(n0V)/at according 
to (26 ), obtain an equation for E: 

dZE/at2=-op2 ( t )  E (28) 

(the same equation holds for Sn but not for V) .  
Substitution of ( 16) reduces (28) to 

whence, in the zeroth approximation in 7, we obtain 
w ( t)  = w, ( t ) ,  and in the next approximation 
y(t) = - h(t)/2w(t), which corresponds to (22). 

4. WAVE ENERGY 

The energy W of the electric field in a dispersive medi- 
um averaged over the period of the oscillations, is given by 
the well known expression (see, e.g., Ref. 5)  

w= (1/16n) E.l ( t )  a(oeUk)lao. 

A natural generalization of this equation to the case of a 
slowly varying medium can be the expression frequently 
used by many workers 

(to determine the energy we must change over to the real 
field E,,, ; we assume that E,,,, is given by the real part of 
(9): Ere,, = ReE = ( E  + E*)/2). Actually, however, it is 
not so simple to define the concept of wave energy in the 
general case of a nonstationary and/or dissipative dispersive 
medium (more below). Strictly speaking, relation (30) is 
valid only in the case of a stationary medium with Ime = 0, 
when it yields little information because it does not describe 
the dynamics (growth or damping) of the wave energy. 
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Let us consider this question in greater detail. For the 
dielectric constant ( 19), the energy (30) is equal to 

W=Ea2 ( t )  /8n. (31) 

The energy obtained above by means of the dynamic descrip- 
tion n developed above 

(to the required accuracy we must put n = no, in the first 
term since SnV2 is proportional to the third power of the 
perturbation) agrees with (3 1 ) when averaged over the os- 
cillation period 21~/0. In fact, in the set of equations (24), 
(26), (27) only two, (24) and (26), are dynamic; the third, 
(27), contains no differentiation with respect to time and 
describes a connection. Eliminating it with the aid of Sn, we 
obtain a set of two equations, (26) and 

for the two quantities E and V. Expressing V in terms of E 
with the aid of (33) and substituting to the required accura- 
cy in (32), we get 

[we use theequality w(t) = w,(t)]. 
We note in passing that to this accuracy ( -7') the 

energy (32) is equal to E:/8n even without averaging over 
the time: it is easily seen that to this accuracy the oscillating 
terms from the first and second components of (32) are mu- 
tually canceled, just as the nonoscillating contributions from 
these two components add up in (34). 

We define the number N of the quanta (in units of f i )  as 

[we have used (17)l.  
The energy (30) [or (31) 1 is not conserved in time. 

Differentiating (31) we have, with allowance for (22), 

The number N of the quanta is likewise not conserved in 
time. Differentiating the general expression (30) [with ac- 
count taken of ( 17) and ( 18) 1, we find that 

x ) -'I + 2y ( t )  
m = m ( t )  

=- 
d o d t  

If the second argument of E were not t '  but the average 
( t  + t ' ) / 2 ,  as in Ref. 1, the second term in ( 18) would be 

twice as large, and in place of (37) we would get dN /dt = 0, 
i.e., the number of quanta as defined by (35) would be con- 
stant in time. 

In the limit ko<w, expression (37) reduces to 

which coincides, naturally, with the result of differentiating 
(35) with the energy (31 ). (The factor 2 has been intro- 
duced into the definition (38) of r to agree with the results 
of Refs. 4 and 6, and also because of r and yare equal in the 
case of a stationary medium, when the growth of the ampli- 
tude is due to the nonzero Im E) .  

We interpret the nonconservation of the number N of 
the quanta (35) as the presence in the plasma of a parametric 
instability capable of amplifying (damping) the Langmuir 
wave. This nonconservation of N does not contradict the 
general theorem of Ref. 2. In fact, let us rewrite the set of 
hydrodynamic equations (26) and (33) with new symbols: 

In this notation, the system (26) and (33 ) takes the form 

and the energy W (32) is equal to 

The theorem2 on the adiabatic invariance of the number N of 
quanta is not valid in this case because the energy W (in a 
system with variable particle composition) is not the Hamil- 
tonian for Eqs. (40); in other words, G and J are not canoni- 
cally conjugate variables (coordinate and momentum). In 
fact, if (41) is taken to be the Hamiltonian for the "coordi- 
nate" G and the "momentum" J (or vice versa) the equa- 
tions of motion will be not (40) but J = + G and 
G = + J/w; ( t )  (the + or - sign depends on which is the 
coordinate and which is the momentum). 

The system (40) conserves the "phase volume" 
d 3Jd3G and a Hamiltonian can be chosen for it (more be- 
low); it will not, however, coincide with the energy (41 ). 

The wave energy in a time-dependent system, generally 
speaking, is a rather difficult concept and cannot be unam- 
biguously defined (at least in a linear theory). We shall not 
analyze here the various aspects of this question and the var- 
ious approaches to the definition of the wave energy (see, 
e.g., Ref. 7 and the literature therein). If the wave energy W 
is defined by (31) as above, then relations (36) and (38) 
describe correctly the time dependence of the wave energy W 
and of the number of quanta N = W/w.  

The following arguments favor the choice of (3  1 ) as the 
quantity corresponding to the wave energy: first, the wave 
energy (30) is then defined by a natural generalization of the 
expression for the energy in a stationary medium; second, 
one can reduce to the same expression the energy (32) writ- 
ten in the dynamic description of the medium in terms of the 
variables E and V. 

The total energy Uof the system is the sum of the kinetic 
energy of the particle motion and the electric-field energy: 

U = Idap fpmv2/2+E2/8n, (42) 

where f, should be the solution of the kinetic equation ( 1 ) . 
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As the unperturbed-distribution temperature vanishes, 
T, +O, the first nonvanishing contribution is made to (42) 
by the unperturbed-distribution-function correction 
Sf :') =Sfp (15) that follows the first correction linear in the 
field and is proportional to the square of the field E. This 
correction Sf can be calculated by a standard iterative solu- 
tion of the kinetic equation ( 1 ) by perturbation theory. S f  r) 
is expressed in terms of Sf  il) of ( 15) just as the latter is 
expressed in terms of @, , using the same equation ( 14 ); the 
Fourier component of Sf  :) is given by 

Substitution (to the required accuracy) of the solution 
of the kinetic equation in expression (42) for the energy does 
not yield the result (32). The difference A between the kinet- 
ic energies "in kinetics" and "in hydrodynamics" 

differs from zero if the medium is not stationary (i.e., if we 
have no#O). Substitution of the solution (43) of the kinetic 
equation ( 1) in (44) leads in the case of a "cold" @, to the 
following result for the time variation of A(t) : 

Recognizing that mn, p / 2  is half the wave energy w [see 
(34) 1, and that dnddt  can be expressed in terms of y in 
accordance with (22), we can rewrite (45 ) in the form 

dA/dt=2yw. (46) 

As seen from (36) and (46), the total energy U = w+ x i s  
conserved, dU/dt = 0, a perfectly natural result because 
d($d 3rU)/dt (the integration with respect to r is over the 
final normalization volume of the system) is equal to the 
work A performed (per unit time) by the external source. In 
turn, it can be shown by differentiating (42) with respect to 
time that the work A is equal to mv2/2 - eq,) .Qd 3pd 3r plus 
an analogous expression for ions, with opposite sign of the 
charge and with omission of the kinetic-energy term, since 
we have mi %me r m ;  the ion kinetic energy was left out of 
(42) for the same reasons (q, is the potential for the field 
E:E = - gradq,). The terms with the potential cancel out in 
the expression for A, since the charges of the electron and ion 
are opposite, and the external source generates equal 
numbers of electrons and ions; on the other hand, the term 
with the kinetic energy, $ (mv2/2) Qd 3pd 3r, is equal to zero 
for a source (5) that generates particles with zero momen- 
tum. 

Let us find also the electromagnetic-field energy in a 
nondissipative dispersive nonstationary medium described 
phenomenologically with the aid of the dielectric constant 
( 1 1 ). We determine the field energy in the medium by start- 
ing with the general equation 

a ~ / a t =  (114n) EaDlat, (47) 

in which the connection between D and E is given by ( 1 1 ). It 
is important that the expression for the field energy U ob- 
tained from (47) also depends on the character of the rela- 
tion (1 I ) ,  i.e., on the specific dynamics of the micropro- 
cesses that polarize the medium in an electric field. It can be 
found that Eq. (47) for the "slow" time argument of the 
function E in the form t ' [Eq. ( 1 1 ) ] gives rise to an expres- 
sion that differs from the "extrapolation of the equation for 
the stationary case" (30) : 

(the intermediate steps have been left out). The quantity 
in (48) is given by (30); (48) was derived by substituting in 
(47) the electric field in the form of the real part of ( 16) (but 
not necessarily corresponding to the natural-mode field sat- 
isfying the equation D = 0). 

The energy U (48) of the field in the medium actually 
agrees with the energy of the system (42 1, also designated by 
Uand calculated in the kinetic description. This can be easily 
verified by substituting (19) and (48) and comparing with 
(45). Incidentally, the conservation of U (48) in the case of 
the wave field is obvious at any rate, since D( t )  0 for the 
wave and (47) reduces to the identity dU/dt=O. (We note 
in passing that this statement is valid for any form ofthe time 
dependence of E in ( 6 ) ,  so that for the choice (in Ref. 1 ) of 
the slow argument in the form ( t  + t ')/2 the expression 
(47) likewise does not yield (30), since the latter depends on 
the time and is proportional to w(t) under the conditions of 
Ref. 1 ). 

We emphasize once more in this connection that the 
choice of any expression to describe the wave energy in a 
dispersive nonstationary and/or dissipative medium is 
somewhat arbitrary. Indeed, in the context of (47) we shall 
always have for the wave energy u = 0 and hence U = const. 
Thus, for example, for Landau damping (or for any nonlin- 
ear wave interaction etc.) the right-hand side of (47) will 
contain two terms that add up to zero: one proportional to u 
= 0 and the other to U = const. At the same time, it is natu- 

ral to regard as the wave energy not the (constant) sum U 
the quantity W (30) (regarding their difference 
A = U - W as part of the plasma-particle energy). Equa- 
tion (47 1 will mean then that the rate of change d I E, I2/dt 
of the wave energy is equal to the rate, proportional to 
Im E' IE, 12, of energy transfer from the wave to the plasma 
particles-it is this which constitutes the natural interpreta- 
tion of Landau damping. 

The energy U can be expressed in terms of the wave 
amplitude: 

where to is the instant when the external source (5) is turned 
on: q(t) = 0 at t <to, q(t) #O at t > t,. The energy U is con- 
served in time and, like W, is not a Hamiltonian for Eqs. 
(40). Accordingly, the ratio M U/o(t) ,  i.e., "the number 
of quanta calculated for the energy U," is also not an adiaba- 
tic invariant, since U = const and o ( t)  = w, ( t )  f const; 
Thus, M varies like M(t)  cc w; '(t) cc n, "2(t). 

The choice of U as the quantity indicative of the wave 
energy is less desirable than the choice of W, for a number of 

726 Sov. Phys. JETP 71 (4), October 1990 



reasons, some of which were mentioned above [ W is the 
energy (32) expressed using the dynamic description (26) 
and (33)]; in addition, the total system energy U does not 
describe the dynamics of the wave variation in time, since 
U = const independently of the evolution of the amplitude 
E, (t), 

Expressing (naturally, quite arbitrarily) U as a sum of 
the wave energy Wand of the quantity A (43), we conclude 
that in the course of variation of E, ( t )  the wave exchanges 
energy with the particles in the medium. Furthermore, since 
Uis constant, a decrease of W( t) leads to an increase of A(t) 
(and vice versa), where A ( t )  is the "supplementary" kinetic 
energy of the medium not included in the energy of the "col- 
lective" wave motion (32). This energy exchange Ws A 
between the wave and the medium is reversible and differs 
from dissociation in ordinary absorbing media. The quantity 
A (more accurately, A)  is also proportional to the square of 
the wave amplitude. 

Note, finally, that if we assume the wave energy to be 

then H will be, for the "coordinate" G and "momentum" J 
[after rescaling the latter by a factor @(to) 1, the Hamilto- 
nian that gives rise to Eqs. (40). Accordingly, the new 
"number of quanta" H(t)/w ( t)  will be conserved [this 
number of quanta is equal, accurate to within a factor w (to), 
to the conserved energy U] . It is difficult, however, to ad- 
vance any arguments in favor of using ( 50) to describe the 
wave energy. 

5. CONCLUSION 

We have considered here the propagation of a Lang- 
muir wave in a slowly varying plasma with a regular external 
source (5) that alters in the course of time the number of 
particles in the system. The main result of the investigation 
are relations (36) and (38), which show the variation of the 
wave energy Wand of the number of quanta N with time. 

We have considered above a time-dependent but spa- 
tially homogeneous medium. The methods developed can be 
naturally generalized to include the case of weak spatial in- 
homogeneity of the medium. 

Results similar to (36) and (38) can be obtained also 
for the propagation of electromagnetic radiation in a nonsta- 
tionary plasma. Omitting the intermediate calculations, we 
present the final result for a transverse electromagnetic 
wave: under the same conditions as above, with an external 
particle source ( 5), the change of the number of quanta N,, 
is given in the limit ugw/k( 2 c )  by the relation 

[the dispet3ion of the electromagnetic wave is given by 
02( t )  = k2c2{+ w:(t).] 

We make one more remark concerning the assumed 
"regular character" of the external source Q. According to 
this assumption, Q enters in Eqs. ( 13) and (23) for the un- 
perturbed part of the distribution function but does not af- 
fect Sf, (or Sn). Such a source can correspond to ionization 
(no  > 0), when Q may be altogether independent off, . As 
seen from (38), however, great interest attaches to the case 
of recombination, when no < 0 and I? > 0, i.e., the wave is 
enhanced. The recombination of charged particles is not de- 
scribed by such a "regular" source, since for recombination 
the value of a d a t  depends on the particle density n itself, 
and accordingly also contains a component that must be tak- 
en into account in Eq. (24) for the perturbation. In the sim- 
plest case, recombination can be described with the aid of a 
source 

d n ,  hit=-gn.lzr, (52) 

where p is a constant (see, e.g., Ref. 8). One can verify, 
however, that by writing down the collisionless cold hydro- 
dynamics equations linearized in small perturbations for the 
electron and ion components, with the source ( 5 2 ) ,  we ob- 
tain for 6, -an, - Sn, (we assume as above an ion charge 
z = 1 ) and for u = V, - Vi a system of equations fully analo- 
gous to (24), (26), and (27), with the natural replacement 
of me =m by p=memi/(me + mi)  =me. The main results 
(36) and (38) can therefore be used also to describe recom- 
bination in a plasma. 
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