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The modulational interaction of two modes is analyzed in the particular case of plasma waves. It 
is shown that this problem can be formulated rigorously only in certain special cases. The 
modulational instability of two coupled waves is distinguished from that of a single wave in that 
interference terms arise even in zeroth order and cause a time variation of the spectrum. The 
appearance of an instability threshold for broad wave spectra is ascribed to interference terms. 

1. INTRODUCTION 

The modulational instability or, more precisely, modu- 
lation interactions play an important role in plasma physics. 
Although this instability was originally described more than 
25 years ago' (at about the same time that Gayitis showed 
on the basis of energy principles that the occurrence of the 
modulational instability is "advantageous" under certain 
conditionsZ ), and although the topic has since then been the 
subject of several  review^^-^ (and, more generally, an ex- 
tremely large number of papers), several aspects of interac- 
tions of this type have yet to be finally resolved, in our opin- 
ion. In particular, there is the question of the appearance of a 
threshold for the instability when the initial waves have 
broad spectra. 

It is well known that a monochromatic wave is always 
unstable from the modulational standpoint, while broad 
wave spectra introduce a threshold for the occurrence of this 
instability. In the WKB approximation, this threshold is de- 
termined by the following relation (Ref. 3, for example) in 
the case of plasma waves: 

where W, is the spectral energy density of the waves, 
W =  JdkW,, r,, = ( ~ , / 4 ? m ~ e ~ ) " *  is the electron Debye 
length (with the unperturbed density ne ), and Te is the elec- 
tron temperature. A similar expression for the threshold was 
derived by GaTlitisZ on the basis of energy considerations. 
On the other hand, a different expression has been given for 
this threshold in several papers (e.g., Ref. 6):  

This expression is obviously different from ( 1 ) (Ak is the 
width of the spectrum of plasma waves). 

One way to take a step away from the case of the modu- 
lational instability of a monochromatic wave in the direction 
of the instability of broad wave spectra might be to examine a 
model of the modulational instability of two monochromatic 
waves. For definiteness, we will discuss plasma waves. [In 
general, the harmonics making up the spectra in the case of 
broad wave spectra would have random phases, since ex- 
pressions (1) and (2) were derived for weak-turbulence 
conditions.] We would like to analyze the appearance of the 
threshold in this case and compare the resulting expression 
with ( 1 ) and (2). This formulation of the problem is also of 
interest in its own right, because of possible applications to 

beat-wave acceleration (BWA), since the plasma wave in 
BWA is excited by two electromagnetic waves, and a modu- 
lational instability of the latter would obviously impede at- 
tempts to achieve maximum acceleration rates. McKinstrie 
and Bingham7 offered the first analysis of this problem for 
the BWA application. In the present paper we will not touch 
on those aspects of modulational interactions, but we will 
bear in mind that results on the modulational instability of 
plasma waves may be applicable, with certain changes, to 
situations pertinent to BWA. 

2. FORMULATION OF THE PROBLEM 

The very formulation of the problem of the modula- 
tional instability of two waves requires some refinement (for 
definiteness, we will discuss plasma waves in a homogeneous 
and isotropic plasma). Before we begin the stability analysis 
of some state of a physical system, we need to "have" this 
state, and it must be a steady state (in a certain sense of the 
word). A stability analysis can also be carried out for so- 
called quasisteady states, in which the (expected) rise time 
of some possible instability is much shorter than the time 
scale of variations in the state of the system without this 
instability. In this situation, the interaction of the waves is 
described by an equation which is cubic in the  field^,^ 

where 

(kEk) 
k= (k, a), Ekf = - 

Ikl 

is the Fourier component of the positive-frequency (or nega- 
tive-frequency) component of the plasma-wave field 

dr dt 
E (I, t )  exp ( ~ i ~ ~ . f + i ~ f - i k r ) ,  (4) 

and 

Z;;:~=Z"" (k, kt, k2,  k3) 
is the effective third-order plasma response, which is sym- 
metric under the interchange k ,++k3  and which incorpo- 
rates effects of the interaction through virtual waves (longi- 
tudinal and, in general, transverse) at a low frequency 
w - w ,  and at the doubled frequency w - 0,. Finally, E,  is 
the linear longitudinal dielectric constant of the plasma. 
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As is well k n ~ w n , ~ - ~  Eq. (4) has an "equilibrium" solu- 
tion in the case of a single monochromatic plasma wave (in 
this case we will not take up the natural questions of the 
history of the "turning on" of the wave fields and so forth3 ), 
whose amplitude is spatially uniform and oscillates in time: 

E+ ( 1 )  =ED e ~ ~ ( i 2 ~ X i "  2 12) . (5)  

[For simplicity, expression ( 5 ) has been written for k, = 0, 
but it is clear that the expression for the equilibrium solution 
fork, #O will not differ in any fundamental way.] In a study 
of the stability of small deviations from this solution, we 
obtain the usual dispersion relations, which yield the growth 
rates of the modulational instability. In the particular case 
(but a case which holds for plasma waves) 

.ff EO = const (k, O) I 0-(0 p e , ~ ~ ~ ~ ,  

the change caused in the wave frequency by the nonlinearity 
of the plasma can be "assigned to" a renormalized density 
(the same throughout the plasma volume) 
ii, = n,(1 + Sn/n,): 

The steady-state nature (or quasi-steady-state nature) of the 
density perturbation Sn/n, justifies our calling the solution 
(5)  a "steady state" or "quasisteady state" of the system. 

Let us examine the modulational instability of t3vo mo- 
nochromatic plasma waves (with frequencies o, and w,, 
w, # w, ) . In this case, so-called interference terms arise in 
the expression for Sn/n, [since the superposition principle 
does not hold for the nonlinear equation (3)  1 : 

where So - w, - a , .  It is thus generally not possible even to 
correctly formulate the problem of the stability of two mono- 
chromatic waves with respect to modulational perturba- 
tions, since the spectrum specified in this manner is not 
steady, with a restructuring time scale on the order of Sw - '. 
In certain special cases, such an analysis can nevertheless be 
carried out. 

For example, since the nonlinear responses 8g5 and 
B$ depend on the angle between the propagation directions 
of the plasma waves with w, and w, (for electromagnetic 
waves, this would be a dependence on the polarizations of 
the waves with w, and w, ), in the case E, .El  = 0 we have 
865 = 8:5 = 0. In this case, the interference terms drop out 
of (7) ,  and the formulation of the problem of the modula- 
tional instability of two monochromatic waves is not funda- 
mentally different from that for a single monochromatic 
wave. 

We might also assume that the phases of the waves w, 
and w, are random and that only the density variation aver- 
aged over phase, (Sn/n, ), influences the interaction of these 
waves. In this case, however, we could no longer regard each 
of the high-frequency waves as monochromatic, because 
each would be smeared over a frequency interval T,,:, 
where T,,,, is the time scale of the phase disruption of the 
wave. In this case the problem essentially reduces to a study 

of the interaction of two wave packets, but under the condi- 
tion r ,f, gSw, y, where y is the instability growth rate, the 
waves can be regardedas "nearly monochromatic." Finally, 
the exact expression (7)  might be replaced by some approxi- 
mate expression in a situation in which the instability devel- 
ops rapidly, i.e., with y%Sw. Assuming then that we are 
interested in the behavior of the system at times T- y - ', we 
might replace the exponential function in (7)  by unity and 
study the instability of the quasisteady spectrum specified in 
this manner. It is clear on the basis of general considerations 
that the nature of the modulational instability would be 
analogous to that of the instability of a single "slightly 
smeared" mode. 

All the examples listed above are valid for nondecay 
situations, in which Sw does not coincide with the frequency 
of a natural low-frequency mode of the medium (in the case 
at hand, these would be ion acoustic waves; for two electro- 
magnetic waves they might be plasma waves in addition to 
ion acoustic waves). It is well knowns that two plasma 
waves excite ion sound if 

where v, = ( T,/m, ) "' is the ion acoustic velocity, and mi is 
the ion mass. In this case, it is also necessary to introduce the 
fields of the resonantly excited sound. In this formulation, 
the original state is not a steady state simply because, at reso- 
nance, the amplitude of the low-frequency (ion acoustic) 
wave which is excited depends on the time by virtue of the 
effect of the high-frequency (plasma) waves. If we set 
yrdec ) 1, however, where the time scale of the decay I- I + s 
is8 

(we are assuming / h i - l k ,  I, IE,I-IE, I), then the initial 
state can be regarded as quasisteady, at least from this point 
of view. In this case it is necessary either to derive a theory of 
modulational interactions involving preexisting ion sound 
or, under the assumption that the ion acoustic waves have 
not yet had time to appear, go over to a nonresonant analysis. 

In this paper we examine the modulational interactions 
of two monochromatic plasma waves in the absence of ion 
sound (taking into account the comments above regarding 
the formulation of the problem). In the three situations 
which we examine, the focus is on the conditions under 
which an instability threshold arises. In the Conclusion we 
present some arguments which we believe cast light on the 
reason for the appearance of a threshold in the case of 
"smeared" wave spectra. 

3. ZEROTH APPROXIMATION AND GENERAL FORM OF THE 
EQUATION FOR MODULATIONAL PERTURBATlONS 

Under the assumption that decays are forbidden, let us 
examine the modulational interaction of two monochromat- 
ic waves which is described by Eq. (3) .  In the zeroth approx- 
imation we set 

E,*=*E0("6 (krk,) kE,("6(k'Fk,). (10) 

Substituting ( 10) into (3) ,  we find 
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where Zi,j,,,m 3Zeff(ki,kj,k,,km), E ~ E E ~ , ,  i, j, I, m =0,1. 
The last term on the right side of ( 10) (and also the term 
found from it through the interchange 0-1 ) is an interfer- 
ence term and corresponds to beats in the density variation 
(7).  In the case 

there are no such beats, and from ( 11 ) we find an equation 
for the steady state of the wave E,, 

and also, via the interchange Owl, the corresponding equa- 
tion for El. 

We now set (EoEl ) = 0. In other words, we assume 
that the waves Eo and El  are propagating perpendicularly to 
one another. Using the fairly good approximation 

(14) 

for Z (we are incorporating the electron n~nlinearities,~ 
1w-w1141k- k,IuTe,vTe = (Te/me)"2), we can easily 
show that under the condition k, 1 1  k2 l k3  the value of Z$, is 
zero. However, it would hardly be possible to make expres- 
sions (12) exactly equal to zero. In particular, the small 
terms of the next higher order in the electron nonlinearities, 
which are proportional to'' 

may turn out to be nonzero. Their contribution, however, 
can be assumed small enough to be ignored (for example, at 
the level of the terms of fifth order in the field amplitude). 
Furthermore, in our model we might in principle have limit- 
ed the discussion to, say, the Zakharov system, which (Refs. 
3-5, for example) corresponds to a term 

on the right side of ( 14), when ( 12) is satisfied exactly with 
k, lk ,  . 

With b l k ,  we have [along with ( 12) ] 

within electron nonlinearities. Consequently, the contribu- 
tion from, for example, the response 8,,,,,, - , [El 12, which is 
on the order of 

can definitely be ignored in comparison with, say, 
20,0,,, - 1 IE, 1'- IE1 I2/4nneTe. 

In the zeroth approximation, the solutions are thus 

By virtue of the structure of the responses we can assume 

In general, Eqs. (20) depend on the way in which the fields 
Eo and El are "turned on," holding if the two fields are 
turned on in the same way (quasistatically, for example). 
Under conditions (20), the influence of nonlinear effects 
reduces in the zeroth approximation to simply a density re- 
normalization of the form (6) (two waves are involved, of 
course), which is the same through the plasma volume and 
the same for each of the waves. 

Let us examine the stability of a steady-state solution of 
Eqs. (18) and ( 19) with respect to small perturbations of 
the field. In place of ( 10) we adopt 

Substituting (21) into (3)  and linearizing, we find the fol- 
lowing equation (perturbations of the frequency, Am, and of 
the wave vector, Ak, associated with the modulational inter- 
action have been introduced in the standard way3 ): 

-X~+o,i,i,a-(1-0) (El) '6E,(1-6)=0, (22) 

where 
8- i + Zi,j.k,le 1 2  (Z<,j,k,l+Zi,k,j,l) 6~:+0+6=6~Ak+b+bk ) 

etc. 
To close the system of equations we need [in addition to 

(22) 1 equations containing E, - , , E, + , , &, - , and also 
+ + 6 and E, - (, - 6) . If it suddenly became necessary to 

add only equations which do not contain a dielectric con- 
stant with frequencies (and wave vectors) Ak + (k, + Sk), 
Ak - (k,  - 6k), then the system would be closed. The dis- 
persion relation for the modulational interaction would fol- 
low from the vanishing of the determinant of the ( 4 x 4 )  
matrix of the equation coupling four perturbations: at the 
frequencies Aw f oo and Aw f o, .  

The real situation is more complicated, however. Even 
in Eq. (22) there are perturbations of the fields at the fre- 
quencies Aw + (w, + Sw) and Am - (w, - So). Writing 
four equations containing E, + , and E, * , , we see that per- 
turbations arise in them at thepfrequencies Aw + (w, + So) 
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and Ao f (w, - So), for which we must also write corre- 
sponding equations. It ultimately turns out that in the course 
of the modulational interaction satellites are generated not 
only for modes with frequencies o0 and 0, but also for waves 
not present in the zeroth approximation (in our case with 
k l k ,  ): at frequencies w, + nSw, n = 1, f 2, f 3 ,... (or, 
equivalently, o, - nso, n = 1, f 2, f 3 ,..., since by defini- 
tion we have o0 - 2Sw = w, - Sw, etc. ) 

We thus obtain a system of a (generally infinite) num- 
ber of equations which describe an infinite number of cou- 
pled amplitudes (physically, however, it is clear that such a 
system will be finite, if only because the condition Sw(wo,, 
holds by virtue of the dispersion relation of the plasma 
waves). The matrix of this system is block-diagonal: 

The dots represent coefficients which are not zero. This ma- 
trix acts on the column 

Finding the determinant of such a matrix in its general form 
is a rather difficult problem. 

4. EQUATIONS OFTHE MODULATIONAL INSTABILITY IN 
THE CASE OF PERPENDICULAR PROPAGATION OF THE 
PUMP WAVES 

We first consider only those modulational perturba- 
tions which are directed perpendicular to both the wave with 
w0 and the wave with w, : Aklk,,, . Ignoring the electron 
nonlinearities and other corrections to the Zakharov re- 
sponse, i.e., assuming 

by virtue of the presence of angular dependences of the form 

in the responses we find (as in the zeroth approximation) 
that all the coefficients which contain field perturbations at 

result, the modulational interactions "tie" only the satellites 
of the fields at the frequencies wo and w, , and the matrix of 
the system becomes 

Eo+ -Eo El* 
Eo- 

-EIEo* ROEl 
Eo*El* --BOBl* (fll*)' 

where 

The dispersion relation det A = 0 is 

which is a natural generalization of the dispersion relation 
which describes the modulational instability of a single mo- 
nochromatic plasma wave:' 

In the case Aklk,,, we have 

and also, according to (24), 

From (28) we then find 

At the same time, we find from (29) (with Aklk, ) 

A o 2  
(A~'-A~'V:) ( 4 -  - 9AkLvb4 )= 6Ak6rd.2v,' ,-. k,' 1 Eo I Z  

09.2 4nn,T, Ak2+koz 

(33) 
In the very simple case Aklk,,, (in which all the interference 
terms are zero), the modulational instability of two plasma 
modes thus differs from that of a single mode only in that the 
following change occurs in the dispersion relation: 

We see that the spectra 1 Eo l 2  and I El I are effectively (in a 
sense) smeared out in k space (the same thing happens in the 
case of a single mode). Note that (as in the case of a single 
mode) no instability threshold arises, although the form of 
the solution of (33) [or, with a minor substitution, that of 
(32) 1, 

frequencies wo + nsw, n = 1, + 2, f 3 ,..., are zero. As a (34) 
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might lead one to believe that the condition 

determines a threshold. Actually, (35) is simply an equation 
from which we find the critical values of the wave vectors of 
the modulational perturbations (one for each pump level), 
i.e., the values above which there is no instability. 

We turn now to the case in which the wave vector of the 
modulational perturbations, Ak, is directed along the wave 
vector of one of the pump waves, e.g., k,, . In this case we have 
a matrix of an infinite system of the form (23) (with minor 

simplifications). However, we will again use a 4 x 4 matrix 
to estimate the instability growth rates in this case. We 
should bear in mind that the modulational interactions stud- 
ied in the preceding section of this paper are descrioed exact- 
ly (within the range of applicability of this approach) by the 
matrix (25), while a similar analysis for the case Akllk,, can 
be no more than an estimate, since in that case we are ignor- 
ing the satellites of the waves at the frequencies w, + nSw, 
n = 1 ,  &-2, f . 3  ,.... 

In the case Akllb,  the matrix (25 ) is replaced by the 
following matrix (taking into account the above com- 
ments) : 

where for E$ and E 1'' we have used the notation in (26), 
(27), and for 2: and zo we have 

Eo(*)e (ZA)'"Eo(*), (37) 

1 (Akrsk) 
Zarr=- . 

4nn.T.  so)^- (Ak=Mk)2v,2 ' 

In addition, we have adopted the following notation in (36): 

. . .  

We see that a distinction from the case Aklk, is that now the 
quantities ~ l f  acquire an additional nonlinear frequency 
shift [see the last term on the right side of (38) 1. Moreover, 
there is no smearing in k space for E, [see (37) 1. 

The dispersion relation determined by the condition 
det A = 0, where A is given by (36), is 

(40) 
where 

The nonlinear frequency shift due to the presence of a 
mode with a frequency w, remains in the dielectric constant 
in the second term on the right side of (40). This equation is 
now considerably more complicated than (28). To study the 
(possible) near-threshold behavior, we assume that 1 Awl is 
smaller than all the other characteristic frequencies of the 
problem. From (40), (41) we then find 

where 

It  can be concluded from the form of (42) that at small 

values of I Akl , such that the second term is dominant in the 
expression in square brackets, this equation has imaginary 
solutions. We also note that the upper limit IAkl,,, on the 
instability is of course set by the pump level, but actually one 
can always specify some I Akl,,, so that an instability is pos- 
sible under the condition I Akl < IAkl,,, , regardless of the 
pump level. We thus conclude that Eq. (42) is also free of an 
instability threshold. 

5. EQUATION OFTHE MODULATIONAL INSTABILITY IN THE 
CASE OF PARALLEL PROPAGATION OF THE PUMP WAVES 

Consider the situation in which the two waves Eo and 
El are parallel: k,, Ilk,. In this case, as was mentioned above, 
interference terms arise even in the zeroth approximation, so 
we will restrict the discussion to the quasisteady case, 
I AW I ) ISw 1. The "steady" state is now the following state, 
instead of the state defined by Eqs. ( 18) and ( 19) : 

eo+Zo, o, o, -oIEoIZ+Zo, ,, o, -,I Ei 1' 
+8,0. I ,  t IEi 12+Za.o-i, o, o, -IEoEI'=O, (44) 

ei+Zi, I,  i, -iIEiIz+Zi, o, i ,  -oIEoIZ 
+El, I ,  0, -olEo12+Zz.i-o, i,  i. -oEO.Ei=O. (45) 

In this case it is generally no longer possible to write the 
nonlinear frequency shift in the zeroth approximation as a 
renormalization of the density, since there are terms 
~ o ( i ) . i ( o ) , o ( i ) . - i ( o )  IEi(o) l Z=-EalEi(o) l a ,  

To simplify the discussion below, we assume ISwl4 JSkl v, 
(this condition is, generally speaking, the same as the re- 
quirement that ion sound not be excited) and also 
Ik,, I > Ik, I. The vectors k,, and k,  are in the same direction 
(hence lSkl< I k ,  1 ). Finally, we set E, = E l .  In thiscase the 
nonlinear frequency shift can be assigned to a density renor- 
malization (the same throughout the plasma volume) : 

6n -s3-42 0.0.0,-o . IEo 1'. 
n. (47) 

Now examining perturbations of the zeroth-order fields, 
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(21), and linearizing, we find an infinite system with a ma- lites correspond to the fundamental modes wo and w ,  . In 
trix whose structure is again that in (23). In this case, how- this case the satellite lying at a distance Aw + Sw from the 
ever, there is no need to ignore (as we did in the case fundamental wave is coupled specifically with the latter 
Akllk,,lk, ) the satellites of the beat waves. Using wave. We are thus in a sense "rot distinguishing" frequen- 
IAwl b ISw(, and limiting the discussion to the first four rows cies which differ by Sw, but we are distinguishing those 
in a matrix A of the form (23), we assume that these satel- which differ by 2Sw. We thus finally find the matrix 

where 

€,*=8ati-IEr 1'. (51) 

From (48) we find the dispersion relation 

Equation (52) is extremely complex. Examining the evolu- 
tion of the instability near the threshold, we consider (52) in 
the case of small values of Aw-smaller than nearly all the 
characteristic frequencies of the problem (except lSol). In 
this case we have I Am 1 < I A k 1 us and 

After some rather lengthy calculations we find the disper- 
sion relation 

in which we clearly see an instability threshold: 

Note the similarity between expressions (55) and (35) [to 
within the "broadening" of the spectrum, 
-ki/(Ak2 + k i ) ,  which is present in (35) because of 
Aklk,, 1. 

I 

6. CONCLUSION 

Expression (55) for the instability threshold makes it 
possible to answer the question of which inequality, ( 1 ) or 
(2),  gives a better description of the actual situation. To find 
this answer, we transform expression ( 1 ) (Ref. 3). The inte- 
gral ( 1 ) is determined in the case of a flat spectrum W, by 
the minimum possible wave number, 

while the total energy is determined by the maximum ~oss i -  
ble wave number of the spectrum, 

Condition ( 1 ) can thus be rewritten as 

Noting that the total energy of the two plasma waves of am- 
plitude Eo is 

1 a 
= - dk dk' - ( ~ L ) E . E , ~  erp ( i  (k+kl) r 8n do 

in this case, we find an expression for the threshold from 
(55): 

From the agreement of (58) and (60), to within a numerical 
factor, we can conclude that expression ( 1 ), which deter- 
mines the threshold, is more accurate than expression (2).  
We should of course recall that threshold condition (55) 
[and, correspondingly, (58) 1 was derived under some ex- 
tremely strong assumptions. 

From this analysis we can also determine the reasons 
for the onset of a threshold for the development of the modu- 
lational instability. We believe that the presence of the 
threshold is intimately related to the interference terms 
which appear in both the zeroth approximation and the dis- 
persion relation. Note, however, that the nonlinear frequen- 
cy shift is not responsible for the threshold. In the case 
Akll k2 lk ,  this shift is present in the expressions for E [see 
(40) and (41 ) 1, but no threshold arises. The suppression of 
the instability in the latter case, which we ascribe to the pres- 
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ence of interference terms, may occur because the low-fre- 
quency satellite of one of the pump waves (E,, say) oscil- 
lates out of phase with the high-frequency satellite of the 
other pump wave (E, , say). A qualitative picture of this sort 
was previously suggested by Dendy and ter Haar,6 but the 
quantitative analysis there, which seems to us to require 
some corrections, led to a less accurate expression for the 
threshold, of the type in (2) .  

We should also point out that even in the absence of 
interference terms in the zeroth approximation (in the case, 
for example, AkII k, lk, , there is an infinite set of frequencies 
of the type Aw + nsw, n = 1, + 2, + 3 ,..., in the modula- 
tional perturbations. In other words, satellites (formally, an 
infinite number of satellites) still appear on the "missing" 
frequencies w, + nsw. 

In conclusion, we repeat that the situation which we 
have studied here can be regarded as no more than an ap- 
proximate model (more or less adequate) for studying the 

modulational interactions of broad wave spectra-a topic of 
much interest in plasma physics and also other branches of 
physics (nonlinear optics, etc. ) . 
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The propagation of an electrostatic wave in a plasma whose density is varied slowly in time by 
some external source is investigated. It is shown that in such a system with variable composition 
the number of quanta is not an adiabatic invariant and is not conserved in time, so that wave 
damping (or amplification) is possible. The cause of nonconservation of the number of quanta in 
a nonstationary plasma is analyzed. 

1. THE PROBLEM 

We consider below a collisionless plasma described by 
the kinetic equation 

afplat+vafplar-eEafp/dp=Q ( t ,  r, p) , ( 1 )  

where f, is the electron distribution function and Q is an 
external source. We consider hereafter longitudinal electric 
fields, without a magnetic field in Eq. ( 1 ) . 

The number of particles in the source Q is assumed to 
vary with time: 

anlat + div nV=q ( t ,  r )  3 J d3p Q ( t ,  r ,  p) ZO, (2)  

where the electron density is 

n ( t , r ) =  I d 3 ~ f P ( t . 4 ,  

and the macroscopic velocity is 

The source Q with time-dependent particle density can de- 
scribe processes occurring in a plasma, such as ionization, 
recombination, and others. 

For simplicity we confine ourselves below to a nonsta- 
tionary but spatially homogeneous situation. We describe 
the source Q by 

i.e., we assume that the particles are created with zero mo- 
mentum and at an identical rate at each point of the medium. 
To meet the condition that the plasma as a whole be electri- 
cally neutral we assume for the ion component a source iden- 
tical with ( 5 ) in the right-hand side of the kinetic equation 
(whose only difference from ( 1 ) is that the ion charge + e is 
positive). 

The parameters describing our nonstationary medium 
with variable n ( t )  are functions of the time t. In particular, 
the dielectric constant of the medium E becomes time-depen- 
dent (we assume hereafter this dependence to be slow com- 
pared with the characteristic period of the wave propagating 
in the plasma, i.e., the source Q in (5) is in a certain sense a 
small quantity; more accurately speaking, we assume 17 1, 
where 7 = max{l/wT, l/Aw~}, w is the frequency of the 
propagating wave, Tis the characteristic time of variation of 
the parameters of our nonstationary system, and Aw is the 
characteristic scale of the dispersion dependence of the di- 
electric constant of the medium). As first noted in Ref. 1, the 

time dependence of E gives rise to an effective "supplemen- 
tary" imaginary increment to the dielectric constant of the 
medium even if Im E = 0. The appearance of such an imagi- 
nary additional contribution to the dielectric constant of a 
nonstationary medium leads to amplification (or damping) 
of the wave propagating in it. An investigation of this phe- 
nomenon (with an external source (5)  that changes the 
number of particles) is in fact the subject of the present pa- 
per. 

2. TIME DEPENDENCE OF THE DIELECTRIC CONSTANT 

The general equation for the (linear) dependence of the 
induction of a longitudinal electric field D(t,r) on the inten- 
sity E(t,r)  is 

dt' d3r' 
E ( t ,  t'; r ,  r l ) E  (t' ,  r') ; 

in a stationary spatially homogeneous medium, E depends 
only on the differences t - t ' and r - r': 

dt' d3r' 
( t ,  r )  = J e (t-t'; r-rr)E ( t f 7  r'),  

from which we have for the Fourier components 

where E,, are the Fourier components of the field 

E ( t ,  r )  = ,J dw d3k E.. erp (-iwt+ikr) (9)  

(and similarly for D).  The factor (27~) was added in (6 )  
and (7) for convenience-to eliminate "extra" factors 2 7  
from (8) .  

In a stationary (and a spatially homogeneous, as be- 
fore) medium the function E in (7)  should have besides the 
argument ~ = t  - t f  also a "slow" temporal argument de- 
scribing the time dependence of the dielectric constant of the 
medium. Beginning with Ref. 1, this second argument is 
usually written in the form of the symmetric combination 
( t  + t ' )/2 = t - ~ / 2 ;  in the case of a slow dependence of E 

on this argument, when expansion in the "short" time T is 
possible in the second argument of the function 
E ( T , ~  - ~ / 2 ) ,  the role of E,, is assumed by the quantity 
~ , , ( t )  + (i/2)d2&,, (t)/awat (see Ref. I ) ,  where 

E (T, t ;  Ar) exp (iwz-ikAr) . (10) 

The second argument E was chosen in Ref. 1 in the form 
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