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A theory of the generation of self-consistent structures is derived for a plasma with an anisotropic 
pressure. The theory is derived from the equations of rotational anisotropic electron 
hydrodynamics. Corresponding to this model is a qualitatively new type of vector nonlinearity. 
Conditions for the applicability of this model are formulated; its consequences in the case of large- 
scale vortex flows are analyzed. For the nonlinear analog of the Weibel instability, the equations 
of this model reduce to a system of equations for the magnetic field vector and the vector 
representing the anisotropy of the electron pressure. The degree of pressure anisotropy is 
conserved as the vortex motions evolve, and there is a local rotation of the anisotropy vector. The 
existence of toroidal vortex structures corresponding to 8-pinches, z-pinches, and magnetic-helix 
structures is pointed out. 

1. The dynamic theory of vortex electron structures in 
plasmas plays an important role in current research on the 
nonlinear dynamics of continuous media and on synergetics. 

Rotational electron flows and magnetic fields are 
known to arise as the result of an electromagnetic instability 
of a temperature-anisotropic electron energy distribution.' 
An analytic study of the nonlinear regime of the vortex 
structures which arise in the course of the Weibel instability 
has become possible only recently, however, thanks to a new 
model for the hydrodynamic description of anisotropic elec- 
tron plasmas which was proposed in Refs. 2-5. This model is 
based on equations for the first ten moments of the distribu- 
tion function. Corresponding to these equations of rota- 
tional anisotropic electron hydrodynamics is a qualitatively 
new type of vector nonlinearity [see Eqs. (22) and (39) 
below ] . 

Our purposes in the present paper are, first, to deter- 
mine the conditions under which this new model is applica- 
ble and, second, to analyze its consequences in the case (of 
practical importance) of large-scale flows, with a length 
scale greater than the electromagnetic length dm, , ,  where c  
is the velocity of light, and w,, is the electron plasma fre- 
quenc y. 

As we will see below, electron plasma flows simplify 
considerably when the irrotational components of the elec- 
tric field and the electron velocity are shall in comparison 
with the rotational components. The equations derived to 
relate the irrotational components to the rotational compo- 
nents in this case make it possible to write out explicit condi- 
tions for the applicability of rotational anisotropic electron 
hydrodynamics. 

We will identify a class of rotational motions which cor- 
respond to a nonlinear analog of the Weibel instability. For 

py vector always remains perpendicular to the magnetic 
field as the two evolve in time. Magnetic-helix structures can 
develop. 

We will show that self-similar solutions of the equations 
of rotational anisotropic electron hydrodynamics describing 
large-scale flows lead to explosive growth of the components 
of the magnetic field and the velocity in a certain bounded 
spatial region. This behavior is universal and is essentially 
independent of the magnetic field structure and the flow ge- 
ometry. The explosive singularity corresponds to a decrease 
in the length scale of the vortices and to a transition to a 
short-wave regime, in which collisionless dissipation may 
render the particle distribution isotropic. 

2. Restricting the discussion to the plasma dynamics in 
the case in which the ion motion can be ignored, we start 
from a hydrodynamic description of the electrons in the ten- 
moment approximation. We use the continuity equation for 
the electron density n, the equation of motion for the average 
electron velocity u, and the equation for the component P of 
the stress tensor: 

where e and m are the charge and mass of an electron, the 
braces mean that the corresponding tensor are symmetrized 
({A,) = A, + Aj, ), [PB]  is a tensor with the components 
[ P  B] ij = e,, 4, B,, and V is a vector with the components 
(VP) , = JP, /axj. Equations ( 1 ) must be supplemented 
with Maxwell's equations for the electric field E and the 
magnetic field B: 

these motions, the equations of this new model reduce to a aB 4nen 1 dE -=-crotE, rotB=-u+-- 
system of equations for two vectors: the magnetic field and B t  c c at ' 
the anisotropy of the electron pressure. As these rotational 

(2) 
div E=4ne (n-no), 

motions evolve, the degree of anisotropy of the electron pres- 
sure is conserved, while there is a local rotational of the ani- where no is the ion density. Equations ( 1 ) and (2 )  describe 
sotropy vector as time elapses. both irrotational and rotational motions. It is the rotational 

Spatially localized toroidal Spinch or z-pinch vortex flow in which we will be interested below in connection with 
structures may arise. For such states, the pressure-anisotro- our study of the nonlinear stage of the Weibel instability. 
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We write the velocity and the electric field as sums of 
irrotational components ul, El (curl ul = 0, curl E, = O), 
and rotational components u, , E, (div u, = 0, div E, = 0). 
Assuming lu, I 4 lu, I, ignoring the contribution fo u, to the 
equations of motion for u, and the equations for P, and also 
ignoring the change in the density (Ian/ 
nJ = 1 (n - no)/nol 4 I ) ,  we find the following system of 
equations in the case in which the displacement current is 
negligible: 

where fl = eB/mc is the electron gyrofrequency, and oLe 
= (41re2ndm) '" is the electron plasma frequency. Linear- 

izing Eqs. (3),  we easily see that they describe the Weibel 
instability for wavelengths 2 c/oL, with a growth rate cor- 
responding to the kinetic theory of Ref. 6. 

In a previous formulation of the model of rotational 
anisotropic electron  hydrodynamic^,"^ its range of applica- 
bility was not discussed in detail. We will accordingly first 
determine the conditions under which the irrotational com- 
ponents of the field and the velocity have no substantial ef- 
fect of the rotational motions which we will be discussing. 
For this purpose we denote by I and T characteristic length 
and time scales of the variation in the rotational motions. To 
ignore the displacement current 6' E, /at (in comparison with 
the conduction current) is to restrict our discussion to fairly 
slow motions, with a velocity scale up = 1 /T which is much 
lower than the velocity of light. By ignoring the convection 
u , ~  (in comparison with 8/6't), we are assuming that the 
irrotational component of the velocity is small in compari- 
son with u p .  By ignoring the component of the Lorentz force 
(e/c) [u, B] (in comparison with the electric force eE, ) we 
are assuming that u, is small in comparison with 
up (c/uLe 112. Putting all this together, we have the following 
restrictions 

ulKmin{vp ,  V , C ~ / O ~ , ~ ~ ~ ) ,  v P K c .  (4) 

Limiting the discussion to fairly slow processes, which 
take place over time scales greater than the period of plasma 
oscillations, so that the inequality 

holds, and applying the operator div to the equation of mo- 
tion for the component u, , we find the following expression: 

The tensor BB has been introduced in accordance with the 
definition of the components of the tensor AA used below. 
This tensor is constructed from two vectors A: (AA),, 
= AjAj. The irrotational components E, and u, can be de- 
termined from 

I aSn 
div E,=4neSn, div U, = - - - 

no a t '  
(7 )  

According to (6) the condition under which the density per- 
turbations are small, 1Sn/n0l4 1 imposes the following re- 
strictions: 

where rD = (P/mn,,a,e2)"2 is a characteristic electron 
"Debye length." 

Going back to inequality (9) ,  we note that there is actu- 
ally a more restrictive lower limit on the quantity I. The 
reason is that our hydrodynamic mode ignores kinetic ef- 
fects, which may dominate if the characteristic "thermal" 
velocity V ,  = rDoLe is not small in comparison with the 
characteristic "phase" velocity up.  For this reason, we 
should introduce v, % u, as a condition for the applicability 
of the hydrodynamic model. This condition takes the form 

According to (7)  the first of inequalities(4) can be re- 
written as a inequality for the magnetic field: 

B2/8nmnac2<min ( I ,  Z2oL:/c2), (11) 

which includes condition (8).  In the case I2 c/oL,, condi- 
tion ( 1 1 ) is somewhat trivial, since it does not allow relativ- 
istic values of the magnetic field. Such values could of course 
not be dealt with on the basis of our original nonrelativistic 
equations, ( 1 ). For this reason, the conditions for the appli- 
cability of the hydrodynamic model take the following sim- 
ple form for sufficiently long-wave perturbations, 12 c/oL,, 
which arise, for example, in the initial stage of the Weibel 
instability: 

For small-scale motions, I < c/o,, , the corresponding con- 
ditions for applicability are 

Having obtained relations between the irrotational 
fields and currents and the rotational fields, we have thus 
explicitly formulated the conditions under which the irrota- 
tional motions which arise from the nonlinearity do not have 
any substantial effect on the rotational motions which we 
will be discussing. Along with the limitations which follow 
from our ignoring kinetic effects, we therefore have condi- 
tions ( 12) and ( 13) for the applicability of the dynamic the- 
ory of the Weibel instability. These conditions are also im- 
portant for analyzing the results of numerical simulations of 
the Weibel instability, in which the physically real irrota- 
tional fields may be accompanied by effects of a numerical 
buildup of irrotational perturbations as a result of fluctu- 
ations. The appearance of electrostatic components has been 
mentioned in some numerical cal~ulations.'~~ 

3. In the case l%c/uL,, the equations of rotational an- 
isotropic electron hydrodynamics, (3),  simplify, reducing to 

a" 1 
-=-- 

a P  
rot VP ,  - ={ [ P O ] ) .  

at mno at 

We will use this system of equations to study self-consistent 
large-scale electromagnetic structures under the conditions 
for the Weibel instability. 
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At any time, and at each point in space, the symmetric 
stress tensor P can be diagonalized by the standard method, 
with the help of the rotation tensor 

Here D is the diagonalized stress tensor and R is a rotation 
tensor, characterized by, e.g., three angular variables 
RR - ' = I, where I is the unit tensor [ (I)ij = Sij I .  Using 
( 15), we easily see that system ( 14) has the three integrals 

Dzz (r, t) =P= (r), 

D,, (r, t) =Ps (r) . 
The integrals ( 16) correspond to the conservation of 

the pressure anisotropy in the course of the nonlinear relaxa- 
tion. This pressure anisotropy is generally determined by 
three electron temperatures. Consequently, only the direc- 
tions (or direction) of the pressure anisotropy undergoes a 
change in large-scale rotational flows. Consequently, the 
mathematical problem reduces to one of finding six func- 
tions: the three components of the vector and three inde- 
pendent components of the rotation tensor R. The corre- 
sponding equations are 

a -pa-- a ' rot P (RDR-*) , - R= [RP]. (17) 
at mno at 

The second of equations ( 17) describe a local rotation of the 
rotation tensor R with respect to the magnetic field, while 
the first describes the generation of a magnetic field by the 
rotational component of the pressure force. The diagonal 
tensor D is specified at the initial time t = 0 by the pressure 
PI ,  P,, P3, and it is conserved [see ( 16) ] in the course of the 
relaxation. In the long-wave limit, the generation of a spa- 
tially nonuniform magnetic field leads only to "mixing" of 
the pressure anisotropy, in the course of which the local tem- 
peratures (the pressures p,,,,, ) are conserved. 

To pursue this analysis, it is convenient to replace the 
tensor formulation (17) by a vector formulation. For this 
purpose we introduce two mutually orthogonal unit vectors 
n, and n,, which are functions of the coordinates and the 
time, and we write the tensor P a s  

Here P3 is the pressure in the direction across the plane 
formed by the vectors n, and n,, while P, and P, are the 
pressures along the directions of n, and n,, respectively. Us- 
ing the conditions 

we see that the tensor Pis  determined by six quantities (as is 
necessarily the case for a symmetric tensor) : three pressures 
and three independent components of the unit vectors n, and 
n,. By virtue of (16), the quantities P,, P,, and P, remain 
constant over time (i.e., they are integrals of motion). 

We restrict the discussion below to the case 
P l ( r )  = PI(') = const, P,(r) = P , ( O )  = const, P3(r)  
= P3(O'  = const. This case corresponds to the standard for- 

mulation of the problem of the excitation of the Weibel insta- 
bility in a homogeneous plasma with an anisotropic pres- 
sure.3 We can thus replace ( 14) by 

>(In, rot nil-n, div n,) 
at 

+ p:o) an,,, ([nz rot n,] -nz div n.) } , - = [n1,*P]. (20) 
mno at 

Equations (20), along with conditions ( 19), make it possi- 
ble to describe large-scale rotational flows in the case of 
three-dimensional (biaxial) anisotropy. The last two equa- 
tions describe local rotations of the anisotropy vectors in the 
nonuniform magnetic field. 

We restrict the discussion below to the usual case for the 
Weibel instability: uniaxial anisotropy of the plasma pres- 
sure. At the initial time, the plasma pressure PI"' = PI, 
along some selected axis n,(r,t = 0)  = no differs from the 
pressures in the plane perpendicular to this axis, 
p2(o)  = p (0) = p 

3 I '  

An important consequence of Eqs. ( 17) and (20) is the 
conservation of the local anisotropy of the plasma pressure 
as the magnetic field evolves. In the case at hand, this conser- 
vation means that the anisotropy of the local pressure re- 
mains uniaxial in the nonlinear stage of the evolution of the 
magnetic field, i.e., 

and Eqs. (20) can be written 
aQ P P 
= -  

an 
"- Lrot([nrotn]-ndivn), -=[nP]. (22) 

at mn, at 

A new type of vector nonlinearity, curl([ncurl n] 
- n div n), corresponds to the dynamic equations (22). 

This type of nonlinearity has not been seen previously in the 
theory of the nonlinear dynamics of plasmas and continuous 
media. Since we have In1 = 1 for any coordinate system 
which can be characterized by a unit basis (i,,i,,i,), we can 
use the following parametrization for the vector n: 

n= (n,, nz, ns) = (cos @.sin Y ,  sin @.sin Y ,  cos y ). (23) 

The problem thus reduces to one of finding five functions: 
three components of the magnetic field and the two angles '3 
and V, of the local rotation of the anisotropy vector with 
respect to the original direction of the anisotropy vector, no. 

Converting to dimensionless quantities in Eqs. (21 ), we 
find it convenient to transform to the following universal 
system: 

dB 
-= rot ( [n rot n] -n div n) , 
d t 

Here we have assumed PI, > PI. This assumption corre- 
sponds to a buildup of the Weibel instability in the direction 
transverse with respect to the original anisotropy direction 
no. The coordinates in (24) and (25 ) have been nondimen- 
sionalized with respect to the length scale of the Weibel in- 
stability, c/oLe, while n and t -  ' have been scaled by the 
characteristic growth rate (aLe /c) ( (PII - P, )/mno) ' I2 .  

Linearization of Eqs. (24) and (25) shows that these equa- 
tions describe the long-wave Weibel instability with a 
growth rate which depends linearly on the wave number. 
The primary nonlinear effect described by Eqs. (24) and 

71 1 Sov. Phys. JETP 71 (4), October 1990 Bychenkov eta/. 71 1 



(25) is the inverse effect of the magnetic field, increasing 
with time, on the electrons. This effect consists of a local 
rotation of the axis of the electron-pressure anisotropy, with- 
out a change in the degree of anisotropy. 

4. Let us illustrate Eqs. (24) and (25) in a specific ex- 
ample, which describes rotational structures of a magnetic- 
helix type. Introducing a cylindrical coordinate system, we 
have the following equations for the magnetic field, which 
depends on only the radial coordinate and which does not 
have a radial component: 

a a i d  
- Q v =  ---(rn,n,), 
dt dr r dr 

For n, = 0 (and thus R, = O), Eqs. (26) are an analog of 
the corresponding equations describing a self-consistent z- 
pinch. With n, = 0 (i.e., R, = 0), they become an analog of 
the equations for a O-pin~h.~ 

It was shown in Refs. 3 and 5 that for the self-similar 
variable 

the solutions for z-pinch and 8-pinch structures are singular. 
According to those solutions, the magnetic field can become 
infinite over a finite time interval (a peaking regime9). We 
will show that the solutions are again of this nature in the 
more general case described by system (26) with a radial 
dependence R (r,t) and n (r,t). 

Introducing the variable { as in (27), the rotation an- 
gles @ and * as in (23 ), the anisotropy vectors n, = n,, 
n2 = n,, n3 = n,, and the functions 6, = rfl,, 6, = dl,, 
we can rewrite (26) as the following system of equations: 

db v 2 =  f %[ sin 26 sin2 Y 

f "  1 V+f2(cosZ Y -sinz Y cos2 @) ] b, - - sin 2Y sin @ b, 
2 

E =C1 --sin 2Y cos @, 
2 

where C,  is an integration constant. The functions 6, and 6, 
have unbounded-growth singularities at a certain value 
f = lo. Near these singularities, where we have 

we find the following expressions with the help of Eqs. (29) 
and (30): 

v= 
b,=cZ [- -a cos 26 sin2 'Y 

f 

bz f Z  sin 2Y sin cD 
b, = - 

2 V+Ez (cosZ Y -sinz Y cosz 6) ' (32) 

Here C, is an integration constant. From the vanishing of 
the denominator in (3 1 ) we find the value ofgo. Introducing 
the deviations S@ and 6Y of the functions @ and * from 
their values at f = fo, and using Eqs. (28)-(32), we find the 
nature of the solutions near co: 

There is a singularity only for finite go#O. As time elapses, 
the magnetic-field thus develops a square-root singularity, 
as in the case of z-pinches and 8-pin~hes.~ The solution 
found here differs from that in Ref. 3 in that it describes a 
two-component magnetic field. It has been shown that the 
peaking is accompanied by a simultaneous explosive growth 
of both components of the magnetic field. 

5. Equations (24) and (25) have a class of solutions 
describing self-consistent vortex structures in which the 
magnetic field vector is orthogonal to the anisotropy vector: 
nfl = 0. In this case the problem reduces to one of solving a 
single nonlinear dynamic equation for the vector n 

Knowing n, we can easily find the magnetic field of a vortex: 

Linearizing (33), we see that this equation also describes the 
Weibel instability in the linear approximation. Toroidal 
structures serve to illustrate possible solutions of Eq. (33). 

We introduce toroidal coordinates a ,  r, p, specifying 
thez axis and a circle of a radius a-the toroidal axis-which 
lies in the plane perpendicular to the z axis. The coordinate T 
shows the distance from a selected point A to the toroidal 
axis in the plane passing through the z axis. The angular 
variable a( - r<a<r) is the angle between the radius vec- 
tors (in the same plane) which start from point A and go to 
two diametrically opposite points on the toroidal axis. The 
angle g, is the azimuthal angle. 

Equations (33) and (34) simplify for two simple geo- 
metric configurations, which correspond to toroidal analogs 
of thez-pinch and 8-pinch. In the former case, there are only 
a poloidal component of the magnetic field, 0 = (Ro,O,O), 
and a toroidal component of the current density. There is no 
poloidal component of the anisotropy vector: n, = 0 (Fig. 
1 ) . Using the two-dimensional analog of (23 ) , 
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n,=cos a), %=sin Q, (35) 

we find flu = - a@/dt from Eqs. (33) and (34). We also 
find the following equation for @, the angle through which 
the anisotropy vector is rotated with respect to the poloidal 
axis: 

a2a) 
-=-- -- 

,I 
g," sin a) 

atz (g,g,)'" d T  g," dz 

sin Q a +-- (gzg3)'cos O 1. (36) 
gz dz  

Here g, and g, are components (rr and pp) of the metric 
tensor for the toroidal coordinate system: 

a2 aZ shZ T 
gz = 

(ch z -cos (5)' ' g3 = (ch z - cos 0)' ' 
(37) 

According to (36), the solutions depend parametrically 
on the angular variable a. Equation (36) simplifies near the 
toroidal axis, i.e., under the condition 7% 1. In this case we 
have 

Since we are interested in the development of the singularity, 
we retain only the highest derivatives in Eq. (38). For the 
spatial variable x = 2ae ' we then find 

Equation (39) resembles one derived in Ref. 4, where it was 
shown that a self-similar solution of this equation, which 
depends on the variable 6 = Vt /x, leads to a square-root 
peaking of the poloidal magnetic field, a (6 - lo) - 

We turn now to the toroidal analog of the 6-pinch. This 
has a toroidal magnetic field fl = (O,O,fl, ) and a poloidal 
current, but the anisotropy vector has no toroidal compo- 
nent: n = (n,,n,,O). By analogy with (35), we make the 
substitution nu = cos @, n, = sin @. Here we have 
fl, = - a@/&, and in place of Eq. (36) we have 

a 
g,'" sin (I, - - g,'" cos @ 

d r  

d d 
x [- (gzg,)" cos Q + --(gzg3) "sin (I,]}. a o a r  

(40) 

FIG. 2. 
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For the solutions near the axis (7% 1 ), Eq. (40) is rewritten 
in the form 

ezT mll  = - [ (sin 2@) ..- (sin 2@),, 
8a2 

-2 (cos 2a)) .,+2 (cos 2@) .+2 (sin 2(D) ,I. (41) 

Examining singular solutions which are independent of the 
angular variable a ,  we see that Eqs. (41) reduces to (39) if 
we restrict the discussion to the higher derivatives with re- 
spect to x. Again in the case of a toroidal &pinch, we thus 
find a square-root singularity for the toroidal magnetic field, 
a (g - go) - 

The toroidal vortex structures (Figs. 1 and 2) which we 
have been discussing here are topologically different from 
the structures which we studied previ~usly.~-~ The nature of 
the peak in the magnetic field turns out to be the same as in 
straight  system^.^-^ The magnetic-field singularity arises 
first either at the axis, r- cc ( V/c0 > 0),  or at the boundary 
of the region under consideration, r1 < r ( V/c0 < 0). 

6. In summarizing these results, we wish to emphasize 
that the discussion above has proved that there may exist an 
explosive class of solutions describing nonlinear self-consis- 
tent toroidal vortex structures in the form of an magnetic 
helix under conditions corresponding to the development of 
the Weibel instability. This result has been established on the 
basis of the dynamic system of equations for the quasistatic 
magnetic field and the anisotropy vector. This description is 
valid for large-scale vortices ( I  > c/o,, ) . The evolution of 
these vortices results in a change in the direction of the ani- 
sotropy axis without a change in the degree of anisotropy. 

According to ( lo),  in the linear hydrodynamic stage of 
the Weibel instability the condition for a substantial pres- 
sure anisotropy should hold? 

In the stage of the self-similar singularity, condition (10) 
requires the satisfaction of the inequality 

since we have v, - V/{. If condition (42) holds in the initial 
stage of the peaking, then it will not be violated when the 
singularity forms (since we have I < 1 > lgo 1 ) . Explosive 
growth of the magnetic field corresponds to a decrease in the 
length scale I of the vortices; this decrease puts the evolution 
of the instability in a short-wave regime, in which a further 
peaking is p~ss ib le .~  In this case, however, the absence of 
conservation laws ( 16) indicates a change in the magnitude 
of the anisotropy (this suggestion is supported by the one- 
dimensional theory2). Correspondingly, as time elapses we 
would expect to find a transition to isotropy and an increase 
in the characteristic thermal velocity, with the result that the 
condition v, -v, would hold. That case requires a kinetic 
analysis. 

We note in conclusion that we have not taken up the 
transition of the solutions to a self-similar regime. It would 
be interesting in this connection to see a systematic study of 
this question, similar to that which has been carried out for 
the case of Langmuir col lap~e. '~ 

Bychenkov eta/ 713 



'E. W. Weibel, Phys. Rev. Lett. 2, 83 (1959). 
'V. Yu. Vychenkov, V. P. Silin, and V. T. Tikhonchuk, Fiz. Plazmy 15, 
706 ( 1989) [Sov. J. Plasma Phys. 15,407 ( 1989) 1 .  

'V. Yu. Bychenkov, V. P. Silin, and V. T. Tikhonchuk, in Proceedingsof 
International Workshop on Nonlinear Phenomena in Vlasov Plasmas, 
Cargese (Corsica, France) (ed. F. Doveil), Editions de Physique, Or- 
say, 1989, p. 57. 

4V. Yu. Bychenkov, V. P. Silin, and V. T. Tikhonchuk, Phys. Lett. A 138, 
127 (1989). 

'V. Yu. Bychenkov, V. P. Silin, and V. T. Tikhonchuk, Teor. Mat. Fiz. 
82, 18 (1990). 

6A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles 

714 Sov. Phys. JETP 71 (4), October 1990 

ofPIasma Electrodynamics, Springer, New York, ( 1984). 
'R. L. Morse and C. W. Nielson, Phys. Fluids 14, 830 (1971). 
'R. C. Davidson, D. A. Hammer, I. Haber, and C. E. Wagner, Phys. 
Fluids 15, 3 17 ( 1972). 

9N. V. Zrnitrenko, S. P. Kurdyumov, and A. P. Mikhailov, Scientifc and 
Technological Progress. Series on Modern Problems in Mathematics, Izd. 
VINITI, Moscow, 1987, p. 3. 

I0V. E. Zakharov, A. G. Litvak, E. I. Rakova, A. M. Sergeev, and V. F. 
Shvets, Zh. Eksp. Teor. Fiz. 94(5), 107 (1988) [Sov. Phys. JETP 67, 
925 (1988)l. 

Translated by D. Parsons 

Bychenkov eta1 714 


