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In the Boltzmann (and consequently nonquantum) approximation we prove in the case of spatial 
homogeneity an H-theorem for chemical reactions of the form A + B 3 C and A + B + C 3 D 
taking place in gases. We assume the molecules to have internal degrees of freedom. After we have 
chosen the bound state region we analyze in detail the various contributions from the molecular 
associations and dissociations to the time derivative of the entropy density. 

1. INTRODUCTION 

It is well known that Boltzmann introduced an equa- 
tion, named after him, and proved the H-theorem assuming 
that there were no chemical reactions in the gas (see, e.g., 
Refs. 1-3). The same assumption is the basis of the more 
detailed theory of processes in gases with a moderate density 
developed by Bogolyubov, Green, and C~hen . '~  It is natu- 
ral to pose the problem of generalizing those theories to the 
case of chemical transformations. Simplest is the generaliza- 
tion of Boltzmann's theory to the case of bimolecular reac- 
tions of the form 

(see Refs. 7-9 in this connection). In Ref. 9 the H-theorem 
was also proved (under some assumptions which restricted 
the generality) for the case when the number of molecules in 
a single interaction process is not conserved, but the number 
of molecules up to the interaction and after it is two or more, 
as, for instance, in the reaction A + B s C  + D + G. We 
consider here the special case of an associative reaction lead- 
ing to a single molecule and a spontaneous dissociation of the 
form 

In the usual approximation for physical chemistry one 
can describe reaction ( 1. la)  by the equations 

Here n, ,  n,, and n, are, respectively, the number of A, B, 
and C molecules per unit volume and k + and k - are kinetic 
constants. Our problem will be to prove the H-theorem for 
this case in the Boltzmann approximation. 

Note that the theory proposed below cannot be applied 
to the dissociation or association of a hydrogen atom, i.e., to 
thep + e s H  process. The fact is that it is well known that 
for the association ofp  and e one needs a third body since 
otherwise one cannot satisfy the momentum and energy con- 
servation laws at the same time. This process should there- 
fore be written in the form p + e + M F? H + M, where M is 
the third body, i.e., this process differs from ( 1. la) .  The H- 
theorem for this case was proved in Ref. 10 by an interesting 
method, namely, without introducing independent distribu- 
tion functions for all three particles, H,p, e (M was the same 
as one of these particles). 

According to Eq. ( 1.2), in the case ( 1. l a )  we must have 
an exponential spontaneous decay: 

This is possible only if at least one of the molecules A or B is 
complex. It is then possible to simultaneously satisfy the mo- 
mentum and energy conservation laws for association and 
dissociation. 

The analysis of the case ( 1. lb)  is, in principle, carried 
out by the same method as in the case ( 1. l a ) .  It is true that 
here one must overcome additional technical difficulties 
connected with the multidimensionality of the combined 
space, the coordinates of which are the combined arguments 
of the distribution functions. 

We note that the theory proposed here requires a quan- 
tum generalization, especially with respect to the internal 
degrees of freedom of complex molecules. The justification 
for presenting a classical discussion is that the present paper 
is the first on this topic and also that in the classical approxi- 
mation the features of the method applied stand out clearly. 

2. INTERNAL AND EXTERNAL DYNAMIC VARIABLES 

Let k, be the number of particles which make up the 
molecule Ei (El  = A, E, = B, E, = C). It is clear that for 
( l . l a )  we have k, = k, + k, where (in agreement with the 
complexity of the A and B molecules mentioned above) we 
have k, 23. Moreover, let the ki particles of the molecule Ei 
have the coordinates and momenta qii), pii' ,...,qg', pg'. It is 
convenient to transform the dynamic variables. We intro- 
duce new coordinates 

ht 

where we have p:' = m:)/M,, Mi = m j" + ... + m"', m:) 
k, 

is the mass of the a th  particle of the ith molecule, and ri is the 
center of mass radius vector of the Ei molecule. The coordi- 
nate transformation (2.1 ) induces a momentum transfor- 
mation and the simultaneous transformation of the coordi- 
nates and the momenta is a contact or canonical 
transformation. Using the definition of the momenta qne can 
prove easily that for a linear coordinate transformation 
q' = Lq the momenta are transformed by means of the in- 
verse and transposed matrix: p' = (L - ') >. The momen- 
tum transformation must thus be the following: 
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Both the transformation (2.1 ) and (2.2) have a unit Jacobi- 
an. To simplify the notation it is convenient to denote the set 
of internal variables qh , ph ,...,qLi, p:,, by li. The distribu- 
tion function of the E, molecule will then beJ. (ri,Pi,gi). 

We must note that all Eqs. (2.1 ) and (2.2) for all i = 1, 
2, 3 can be used both when the molecules A and B are far 
from one another and when they are combined into C. Clear- 
ly the following relation holds: 

M1 M2 - - r + - r P,=P,+Pz. " MM, MM, 
We also introduce the notation 

The transformations (2.3) and (2.4) are the same as (2.1) 
and (2.2) if we take instead of ki, qii', pii', qF), pii', respec- 
tively, 2, r, , P I ,  r,, P, . From the properties of the transfor- 
mations (2.1) and (2.2) mentioned earlier one concludes 
easily that the variables q;, ,...,q;,, can be expressed in terms 
of r;, q;, ,...,q;,, , q;, , qik2 through a linear transformation 
with a Jacobian equal to unity. The same also holds for the 
variables p;, ,..., p;,, and P;, p;, ,...,pi,, , p;, ,..., p;,*, while the 
combined transformation is canonical. As the internal vari- 
ables of the C molecule we can thus take together with 6, the 
variables ( ; = (r; ,P; , l ,  ,12 ). 

In the following we shall assume that the condition of 
spatial homogeneity, aJ./i?r, = 0, i = 1,2,3, is satisfied. The 
distributions can then be written as f, (PI ,<, ) =f, ( 1 ), 
f , ( p , , l 2 )~ .&(2 ) , f3  ( P 3 , 5 ; ) ~ f 3  (3).  

3. BOUND STATE AND EXPONENTIAL SPONTANEOUS 
DECAY 

In our case it is important that the decay of a C molecule 
be spontaneous, i.e., caused by the nonquantum dynamic 
evolution of the particles making up the C molecule when 
they are combined. To check that such a decay can proceed 
following the exponential law ( 1.3) it is useful to consider 
the following auxiliary model of a bound state. Let there be a 
rectangular well with ideally elastic walls in which some par- 
ticles move. In the wall of the well there is a small hole 
through which particles cannot pass out which are inside 
and which have a rather large radius, but a special particle 
Po can move in and out. We shall assume a state to be bound 
if Po is inside the well and unbound in the opposite case. We 
can finally simplify this system by assuming the well to be 
two-dimensional, the particles inside the well to be fixed "co- 
lumns," and the moving particle to be a point mass in the 
plane. Even in this simple variant the motion of the Po parti- 
cle in the well is self-randomizing, i.e., there occurs dynamic 
chaos (mixing). 

We assume that there is a statistical ensemble of identi- 
cal wells with "columns," each of which corresponds to a Po 
particle being inside or outside the well. Thanks to the self- 
randomization for any velocity distribution of Po particles 
moving into the well (it is only important that it not be a 
delta function) there will rapidly be established inside the 

well a quasistationary distribution of the form 
f(r,p,t) z c ( t )  wo (r,p), where w, (r,p), which is a time-inde- 
pendent probability density, is normalized to unity. Thus, 
due to the fact that the hole is small the shape of w, of the 
distribution f is kept constant and the time-dependent coeffi- 
cient c decreases exponentially thanks to the fact that the 
form is constant, i.e., we have the exponential decay (1.3), 
produced solely by dynamic processes. 

The self-randomization of the dynamic process in the 
model described here, for which the C molecule must be 
sufficiently complex, is similar to the cause of the exponen- 
tial spontaneous decay of the molecule in the model. More- 
over, it is necessary that the time for self-randomization be 
much shorter than the decay time constant. Furthermore, it 
is necessary that the probability density w, (r,, ,P; ,f, ,f, ) be 
concentrated far from the boundary of the bound state re- 
gion and on it take relatively small values. Here 
w, (r,, ,P; ,{, ,c2 1, which is established as a result of the self- 
randomization, is the probability density occurring in the 
following expression for the quasistationary distribution 
function: 

We note that apart from P,, in (3.1 ) we should relate the 
other integrals of motion, namely the angular momentum 
M, of the C molecule to the arguments of the probability 
density w,. Correspondingly we should retain among the 
arguments of the density w, only the other variables. This, 
however, would complicate the notation. 

The density w, is concentrated in the region r,, -rint, 
where rin, is the interaction radius, and it decreases rapidly 
with increasing r,, . It takes very small values (as compared 
with the maximum ones) for r,, %rin,. This fact must be 
taken into account when we define the bound state region R, 
i.e., when we define which states must be considered to be a 
C molecule. Finally, the choice of the boundaries of this re- 
gion is connected with some arbitrariness but the freedom of 
choice is unimportant for the theory. For instance, we can 
define this region by the condition 

rzl=Gro, Pzr, El, Ez - arbitrary, (3.2) 

where r, is a quantity determined by the inequalities 

Here v = V / N ,  is the average volume pertaining to one C 
molecule. A choice of the value of r, satisfying ( 3.3 ) is possi- 
ble since we have the inequality r,,, 4 ~ " ~ .  We bear in mind 
that the basis of the Boltzmann approximation is the condi- 
tion 

rint <v%< h, (3.4) 

where A is the mean free path. We assume that the inequal- 
ities (3.4) are satisfied for all molecular shapes and forms of 
the interaction. As an actual possible value we can take 
r, = r ,!,:2u'/6. It is more convenient for us to choose the 
means of determining the bound-state region in a somewhat 
more complicated way than (3.2), i.e., we take instead of a 
sphere the cylinder 
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FIG. 1. 

(see Fig. I),  where n = v , , / v , ,  is a unit vector directed 
along the vector v,, = P, /M2 - P,  /MI = ( M  ; ' 
+ M ;  ')P; and a,, = r,, - n(n.r,, ) is the component of 

the vector r,, transverse to n. Apart from a,, we shall con- 
sider the two-component vector s,, corresponding to it. If 
m, and m, are unit vectors perpendicular to n and to one 
another, we can define s,, as (m, .r,,,m, .r,, ), i.e., 

= (sZ1 , 'm, + (s,, 1, -m2. 
For different acceptable choices of the bound state re- 

gion R and also of ro values the differences Sn, in the number 
of particles per unit volume 

are relatively small, viz., Ian, I (n,, by virtue of the condi- 
tion (3.3). Among the number n, of C molecules apart from 
long-lived molecules we count some number of short-lived 
formations. The number of short-lived formations is much 
smaller than the number of long-lived molecules, just be- 
cause their lifetime is short. 

4. DERIVATIVE OF THE ENTROPY DENSITY 

We turn to a consideration of the entropy and its time 
derivative. To begin with we assume that there are structure- 
less particles of one kind. The total entropy of N particles in 
some large volume V is given by the formula proposed by 
Gibbs, 

S=-k J w ( r l , p i  ,..., r N , p N ) l n w c i r i d p  , . . .  d r N d p N ,  (4.1) 

in which the combined probability density of all coordinates 
and momenta appears. When there is a small parameter 
E = r  ,!,, /U we can write the entropy (4.1) in the form of an 
expansion in that parameter: 

where the first term in the expansion has the form (see Ref. 
1 1 ,  and also Ref. 3, p. 26) 

In the spatially homogeneous case we have 

In (4.2) in the Boltzmann approximation we can neglect the 
terms in the expansion of higher order in comparison with 
(4.4).  Boltzmann himself considered the functional 

r 

connected with the entropy density S / V =  - kH, which 
differs from (4.4). When there are no chemical reactions the 
number of molecules VJLdp of each kind remains un- 
changed, i.e., the difference S ' I '  - 3 is constant and it then 
makes no difference whether we take Eq. (4.4) or the quanti- 
ty - kH as the definition of the entropy in the proof of the 
irreversibility of the process. When we admit chemical trans- 
formations of the molecules the difference between these ex- 
pressions becomes important and we must use Eq. (4.4) and 
not the functional H. 

Expression (4.4) can be generalized in an obvious way 
to the case of different molecules and the presence of internal 
degrees of freedom, i.e., we have 

for each of three kinds of molecules, A, B, and C ( i  = 1,2, or 
3 ) . As we have noted, we can take 6 ; instead of 6, for s, . The 
total entropy density s is equal to the sum s, + s, + s, and 
therefore 

Apart from the molecular association and dissociation 
( 1.  la) there are at the same time molecular collisions which 
do not lead to transformations, namely, collisions of A with 
A, A with C, B with B, B with C, and C with C. We.can split 
the increase in entropy into parts caused by the different 
processes 

According to the usual Boltzmann H-theorem we have 

Su>O, tc>O, S B B ~ O ,  8Bc>O, 8Cc)O. 

The required inequality S)O will thus be proved if we can 
prove the inequality S,, + S,, )O. We can thus forget the oth- 
er collisions mentioned above and concentrate our attention 
on S,, and S,, . By virtue of (4.6) we then have 

5. EVALUATION OF CONTRIBUTIONS DUE TO ASSOCIATION 
AND DISSOCIATION 

The part of the derivatives off, ( 1 ) and f ,  (2) which 
corresponds to association, i.e., the disappearance of A and 
B molecules, is given by the term in the Boltzmann collision 
integral with the minus sign, namely 

f i ( I ) . .  = - j f1 (1 ) fZ(2)V2i  ds21 d2. 
K 

(5.1) 
f2 (2 ) . .  = - j f I ( l ) f 2 ( 2 ) v z i  dsZi d l .  

K 

Here K is that part of the plane perpendicular to v,, which 
corresponds to the formation of bound states. Taking into 
consideration the bound-state region (3.5) and also the fact 
that we have la,, I = I S , ,  I we see easily that K is a circle for 
s,, ( l o .  Using (5.1) and (4.5) we find 

H = J dp f l  ( p ) l n  f i  ( P )  , Turning to S, we have by virtue of (4.5) 
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where s( f )  = - k (In f - I )f. When we neglect the colli- 
sions of the C molecules with A, B, and C ,  the distribution 
function f satisfies the Liouville equation 

f s  ( P s ,  \ s l ) = L s f s = - 6 s '  V i n f s ,  ( 5 .4 )  

where L ,  is the Liouville operator of the internal variables of 
an isolated C molecule and V ,  denotes the gradient with 
respect to the internal variables 6 ; .  The Liouville theorem is 
then valid: 

v ing3'=o. (5 .5 )  

Because of (5 .3)- (5 .5)  we have 

or, using Stokes' theorem, 

where r is the surface of the bound state region R, and 
({; ), is the component of the vector 6 ; along the external 
normal to r. Using also the form (3 .5 )  of the region R indi- 
cated earlier we change (5 .6 )  to the form 

We bear in mind that for v,, . r , , /v , ,  = - ro,  i.e., at the 
entrance to the bound state region, the molecules do not yet 
interact with one another, since we have ro Ri,, . Hence we 
have [ f3 ] 0121 = - ,O = f 3  t P3 ,a2]  - ro n9P; ,11 ,12 1 
=A ( P I  ,{, I f 2  ( P ,  ,12 1, where we have a,, = (s , ,  , m l  
+ (sz1 ) ,m,;P3,  P; and P I ,  P, are connected with one an- 
other through the transformation P, = PI  + P,, P; 
= ( - M,Pl + M ,  P , ) / M ,  [see (2 .3 )  and ( 2 . 4 ) ]  with a 

unit Jacobian. Hence d  P,d P; = d  P I  d  P, and 
d P , d P ; d ( , d ( ,  = d  l d 2 .  Moreover, for n.r ,  = r,,i.e., at 
the exit from the bound-state region the arguments of the 
function& in turn can be expressed in terms of the variables 
1 and 2, i.e., we can write f; =&(G( 1,2,s2, I), where & 
(G(1,2,s2, 1) = f 3 ( P 1  + P2,u2, + ron , (MIP,  - M2P1 )/ 
M3 ,(, ,{,). Thanks to the previous result (5 .7 )  can be writ- 
ten in the form 

After the decay of a C molecule the variables of the A mole- 
cule are in general correlated with the variables of the B 
molecule so that we cannot use the factorization f ;  = f ;  f  i. 

One sees easily that the expression 

determines the number of C molecules per unit volume with 
dynamical variables within the volume element 
d  P,d P ; d f ,  d l ,  leaving the bound state region through the 
surface element ds,, per unit time. Formally speaking, the C 
molecule then instantaneously decays into an A molecule 
characterized by the variables P I  = (M, /M3 )P ,  - P; and 
{ ,  and a B molecule characterized by the variables 
P, = ( M ,  /M3 ) P, + P; and c2. The variables 6, and l2 
remain in this case unchanged. One understands easily that 
for the first molecule the dissociative part of the time deriva- 
tive of fl  is equal to 

When integrating over P,  and P; we replace the function 
f 3 ( P 3 , 1 ; )  byf3(G(1,2,szI ) ) = f ;  and wethenget 

A similar formula also holds for j", (2Idis.  The complete 
equation for f ,  is the following: 

where I,, and IAc are Boltzmann collision integrals of no 
interest to us, and L ,  is the Liouville operator for an isolated 
A molecule. Dropping I,, and I,, and using (4.5 ) and also 
the stability of the molecule, we get 

where we must substitute (5.1 ) and ( 5 . 9 ) .  Similarly we find 
a relation f o r h  and S,. Apart from (5 .2 )  we find thus the 
dissociative contributions 

( s l ) d i s +  ( i z ) d , s =  -k ,fdi d2 1 d S z l U z 1  l n ( f , f z )  f.'. (5.11 ) 

Summing ( 5 . 2 ) ,  ( 5 . 7 ) ,  and (5 .11)  we finally obtain 

Taking f ;  from inside the bracket we can write the inte- 
grand in the form 

This expression is nonnegative because the function 
y - 1 - ln y is nonnegative. This proves the inequality 
S,, + S,, >O and hence also S>O. 
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6. THREE-PARTICLE COLLISIONS AND THE BOUND-STATE 
REGION 

We now turn to considering the ( 1. lb)  reactions. It is 
necessary in this case to give details of the three-particle col- 
lision in which A, B, and C molecules combine into D. In the 
classical approximation the dynamics of the three particles 
is described by the combined Hamiltonian 

where r, = ri - r , ,  H I  is the Hamiltonian of an isolated A 
molecule, and so on. To begin with we assume the molecules 
to be structureless. 

In order to describe in detail the three-particle collision 
integral which corresponds to removal of the A, B, and C 
molecules, it is useful to compare it with a collision of two 
particles moving in six-dimensional configuration space. 
Thus, a particle characterized by position and momentum 6- 
vectors p, = (r, , r; ), P, = (p, ,p; ) collides with a particle 
characterized by the position and momentum vectors 
po = (r2,r3 ), P,, = (p2,p3 ) and we assume that the addi- 
tional conditions r; = r , ,  p; = p, are satisfied. Let the dy- 
namics of these particles be characterized by the Hamilto- 
nian 

where Vo is some potential while H I ,  H,, and H, are the 
same as in (6.1). Writing down the Hamiltonian equations 
corresponding to (6.2) we check easily that when the condi- 
tions r; = r, , p; = p, are satisfied initially they will remain 
satisfied in what follows. Using these conditions and also the 
statistical independence of the B and C molecules it is natu- 
ral to take the following particle distribution function in six- 
dimensional space: 

Fl(pi, nl)=fi  (ri, P ~ ) ~ ( ~ ~ ' - ~ ~ ) ~ ( P I ' - P I ) ,  

The collision integral of two particles in the six-dimensional 
case can be written by analogy with the usual collision inte- 
gral: 

-F1 (p,, nl)F0(pi, no) IgdSdno. 

Here g = (vi, + v:, )'I2 is the magnitude of the relative ve- 
locity vector g = (v,, ,v3, ), and S is a five-dimensional vec- 
tor indicating the position of the point [with radius vector 
pol - n(napol 1, where pol = (r,, ,r3, 1, n = g/gl on the hy- 
persurface perpendicular to g. Substituting (6.3) into (6.4) 
and integrating over r; and p; we find 

It is clear that the same equation must also hold for the Ham- 
iltonian (6.1 ) and the ternary collision. Therefore, the part 
of the derivative]; which is caused by the removal of an A 
molecule through association can be written in the form 

1 

and similarly forj", andh . Here 7 is the region of five-dimen- 
sional space including those points S for which association 
occurs. We changed in (6.5) to considering molecules which 
have internal degrees of freedom. 

We need a more detailed identification of the vector S 
and the region T. Let n, v ,  ,..., V, be an orthonormalized set 
for the six-dimensional space of the vectors pol .  We then 
have I 

I = l  

where the vector S has the components (v, pol ), ..., ( v ,  pol ). 
If we introduce orthogonal three-dimensional unit vectors 
m, and m, , perpendicular to v,, and orthogonal unit vectors 
m; and m; perpendicular to v,, , four of this set of vectors 
can be defined as 
vl= (mi, 0) ,  v2= (m2, 0)  , v3= (0, mlf)  , VF (0, mZr). 

(6.6) 
One easily checks that they are orthogonal to one another 
and to the vector n = g/g. The fifth vector v, is sought in the 
form of a linear combination of the vectors (v,,,O) and 
(O,v,, ). Using the orthogonality condition v, an = 0 one 
finds easily 

where n, = v,,/u,,, n, = v,,/u,, . Knowing the vectors 
(6.6) and (6.7) one easily identifies the differential 

I 

which occurs in (6.5).  Using pol = (r,, ,r,, ) we find by 
means of (6.6) 

Here s,, = (m, .r,, ,m, .r,, ) is the two-dimensional vector 
used in preceding sections, and s,, = (m, .r;, ,m, .r;, ) is a 
two-dimensional vector which indicates a point in the plane 
perpendicular to v,, in r,, space. Moreover, using ( 6.7 ) we 
can introduce the parameter 

~ = ~ 5 ~ 0 1 = g - ~ ~ 2 1 ~ 3 1  (nlr21/v21-n2rsi/vSi), (6.9) 

so that (6.8) takes the form d S = ds,, ds,, dl. The expres- 
sion n, .r,,/v,, = t, (r,, ) has the meaning of the time re- 
quired to move with a velocity i,, = v,, from the point r,, to 
the point of closest approach of the A and B molecules, if 
their interaction would not destroy the uniformity of the 
motion. Similarly, n, .r,, /v,, = t, (r,, ) is the time for uni- 
form motion from the point r,, to the point of closest ap- 
proach of the B and C molecules, if there were no interac- 
tions. The parameter (6.9) is proportional to the time 
difference t, - t,. One checks easily that the difference 
t, [r,, ( t )  ] - t2 [r,, ( t )  1, likes,, and s,, , is a constant of the 
motion, i.e., is independent of t  when the A, B, and C mole- 
cules are not yet interacting. 
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Using S = (s,, ,s3, ,I), we define the bound state region. 
Allowing a certain amount of arbitrariness we shall assume 
that A, B, and C combine into D, if 

and do not combine in the opposite case. Here ro is the quan- 
tity introduced earlier, defined by the inequalities (3.3 ). We 
must then take for the five-dimensional region  in (6.5) the 
region defined by the conditions s,, <ro, ~ 3 ,  <ro, Ill <ro 
where we can write the first two inequalities in the form 
s,, EK and s,, EK. Thus, (6.5) takes the form 

Moreover, 
ro 

and similarly for f3 (3)),, since the expression 

is equal to the number of processes (per unit time and per 
unit volume) where the three molecules A, B, and C with 
dynamic variables which lie, respectively, in the ranges d 1, 
d 2, and d 3 disappear simultaneously. By virtue of (6.11 ), 
(6.12), and (4.5) we get 

7. OTHER CONTRIBUTIONS TO THE DERIVATIVE OF THE 
ENTROPY DENSITY 

Other contributions to S, +id, can be found by the 
same method as was used for the A + B = C reaction. We 
can apply Eqs. (2.1 ) and (2.2) also to D molecules, if we set 
i = 4. In that case 

where the transition from r,  , r,, r,, P ,  , P,, P, to r,, r;, r;, 
P,, P i ,  Pi is a contact transformation. For the internal vari- 
ables of the D molecule we can choose not only the variables 
6, = ( ( Q ~ ~ , P ~ ~ , U = ~  ,..., k,), but also 6; = (r,,,r,,,P;,P;, 
6, 762963 1 and we have.& (P4,64 =f, (4). 

By analogy with (5.6) the formula 

holds where r' is the hypersurface in the space of the 6; 
variables which encloses the bound state region (6.10) 
where instead of s,, and ~ 3 ,  we must take the magnitude of 
the vectors a,, = r,, - n, (n, .r,, ) and u,, = r3, - n, 
(n, . r,, ), and ( ... ) , denotes the component along the exter- 
nal normal. Only those sections where the hypersurface r' is 
orthogonal to the vector 6; are important (in other places it 
is parallel to this vector) in the integral (7.2). These sections 
are the entrance region where 

( ~ ~ ~ r ~ , + v ~ ~ r ~ ~ ) / g = - r ~ ,  oz,<r0, o3,<ro1 [ l I ~ r ~ ,  

Pi, . . . , gs - arbitrary, 

where the external normal is directed in the opposite direc- 
tion to 6;, and the exit region where 

(v2tr2t+v3irsi)/g=rol ozt<ro, a3,Grol Ill<rol 

Par, . . . , E3 - arbitrary, 

where the external normal is directed in the same direction. 
Using this we can transform (7.2) to the form 

Changing the integration variables and using the fact that in 
the entrance region, i.e., before the molecules interact, we 
have f, = f, fJ3, we find from this 

where f; =f, [G( 1,2,3,s2, ,s3, ,I) 1. The latter means that 
the arguments P, , Pi and P; of the function f, are expressed 
in terms of P ,  , P, , and P, [see (7.1 ) ] and r,, and r,, are 
expressed in terms of s,, , s,, and I: 

We still must consider (S, ),, + (S, ),, + (S, ),,. By 
analogy with (5.9) we have 
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and similarly for (2),, and (3),, . Hence, using (4.5 ) 
we get 

We now add (6.13), (7.3), and (7.4). This gives 

where the function F(y) equals y - 1 - In y. As it is nonneg- 
ative we have S,, + S,, 20, and hence S>O. 

8. CONCLUDING REMARKS 

1. In the foregoing we defined the bound-state region so 
that among the C molecules we had not only long-lived, but 
also short-lived formations. One can modify the theory so 
that short-lived states are eliminated. We explain how this 
can be done. We introduce a time T, which is much shorter 
than the time l/k - for the decay of a molecule and much 
longer than the mean free time of the interaction sphere, i.e., 
the time ri,,/u2,, where u,, = (v,, ) is the average relative 
velocity. We assume that a C molecule is formed if the life- 
time T of the (A, B), formation is longer than r, and that no 
molecule is formed, if T < 7,. Analysis of the dynamic inter- 
action enables us to distinguish on the s,, plane the region 
K ', which depends on P, , 6, and P, ,6, such that C is formed 
when s2,EK1. The remaining part of the plane can be de- 
noted by K" and on it impact vectors s,, occur for which 

there is no C formation. Instead of using (3.5) we must then 
define the bound state region by the formulae In.r2, I<ro, 
s,, EK'. Corresponding to this in Eqs. (5.1 ) and (5.2) and in 
a number of others we must replace the circle K by K '. For 
such a modified theory on the right-hand side of Eq. (5.10) 
we must write for the collision integral 

I.. = j d2 ds2,v2, (l,'ll'-Ah). 
K' 

Similar changes must be introduced in the discussion of the 
three-particle collisions, i.e., in the two preceding sections. 

2. We can consider molecular association and dissocia- 
tion not only in the Boltzmann model, but also in more accu- 
rate approximations, generalizing the theory of Bogolyubov 
and others to the case of chemical reactions. It is well known 
that the basis of such a theory is the Bogolyubov-Born- 
Green-Kirkwood-Yvon chain of exact equations. These 
equations can be generalized to the case where chemical re- 
actions occur. However, that material goes beyond the 
framework of the present paper. 
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