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A nonrelativistic quantum-mechanical Glauber-Franco approximation for the inelastic 
scattering amplitude is used in an analysis of the energy losses due to the excitation and ionization 
ofatoms in an amorphous target by heavy particles carrying a unit charge. The results of 
calculations of the energy losses of protons in H and He targets are in good agreement with the 
experimental data. The agreement is due to an allowance for the nuclear dynamic shadow effect 
and for the redistribution of energy between electrons of the target atoms. Expressions are 
obtained for calculation of the energy losses allowing for the individual characteristics of 
occupancy of the electron shells of the target atoms. 

1. INTRODUCTION 

Extensive use of ion beams for the analysis of surface 
layers of materials and studies of the distributions of im- 
planted ions depend on detailed information on the energy 
losses in a wide range of energies, particle charges Z, e, and 
atomic numbers of the target material Z,. Due to certain 
experimental limitations, the data on the energy losses can 
be obtained only for limited ion-target combinations. On the 
other hand, there is no general theory which would make it 
possible to calculate the energy losses experienced by ions of 
all velocities and for all combinations of 2, and Z,. There- 
fore, a scaling relationship is used in systematic presentation 
of the data, because this makes it possible to represent the 
loss function as a product of two functions, one of which 
depends solely on the ion charge and velocity and the other 
depends on the ion velocity and on parameters representing 
the target material. It follows from the results of Refs. 1-4 
that this relationship is valid to within - 10% and that its 
application makes it possible to find the energy losses for 
different values of Z, and Z,, and for different energies uti- 
lizing the results of direct measurements for individual ele- 
ments. The experimental data used most frequently for this 
purpose are those on the energy losses of protons (Z, = 1 ) 
experienced by various substances, which are known to a 
high degree of accuracy and for a wide range of velocities. 
We therefore consider the energy losses of heavy particles 
with a unit (proton) charge. 

In general, the energy lost by a charged particle is gov- 
erned by a variety of processes, so that a theoretical descrip- 
tion becomes very complicated. However, the contributions 
of these processes to the total losses depend strongly on the 
proton velocity. At very low velocities ( E  5 100 eV) the 
losses are primarily through elastic scattering on the target 
atoms. The monograph of Gott5 gives the expressions for the 
calculation of the energy losses derived using the Thomas- 
Fermi-Firsov potential6 and other approximations for the 
potential energy of the interaction, and it is shown there t h a ~  
the contribution of elastic collisions to the total losses de- 
creases rapidly as the proton velocity increases. At moderate 
velocities, which are still less than the average velocity of 
atomic electrons, the energy losses experienced by protons 
are governed by the electron exchange process. As shown in 
Refs. 7-10, the energy losses are proportional to the velocity 
of a heavy particle. This is supported by the experimental 

data, although there are some deviations from this law (see, 
for example, Ref. 1 1 ) . 

If the proton velocity is much higher than the average 
velocity of atomic electrons (v, = e2/fi), the energy losses 
are determined by the processes of excitation and ionization 
of the target atoms. A detailed theoretical calculation of the 
losses in this range, based on the use of the first Born approx- 
imation for the inelastic scattering amplitude, was given in 
the monograph of Mott and Massey.I2 The use of the Born 
approximation implies that the amplitude of a wave scat- 
tered by atomic electrons is small compared with the ampli- 
tude of the incident wave. The condition for the validity of 
the Born approximation (Z,e2/fivg 1, where u is the proton 
velocity) allows us to ignore charge-exchange processes. If 
the proton velocity satisfies this condition, the expression for 
a calculation of the energy losses is 

where m is the mass of an electron; No is the number of 
atoms per unit volume; I, is the average ionization energy of 
an atom. An estimate of Iz obtained using the ThomasFer- 
mi model gives the dependence I, =: IoZ,, where I, is a con- 
stant whose value can be determined e~~erimental ly. '~  The 
model of local oscillators was used in Ref. 13 to calculate the 
values of I. for all the elements. However, one should men- 
tion serious discrepancies between the calculated and experi- 
mental values of this quantity.l4 

Equation ( 1 ) describes well the experimental data for 
fast particles. We can extend the range of validity of this 
expression by calculating the relativistic corrections as well 
as the corrections allowing for the shell structure of the 
atoms. The effect of an incident particle perturbing electrons 
was also allowed for in Ref. 15, which made it possible to 
derive a correction to Eq. ( 1 ) proportional to Z :. However, 
at a proton velocity comparable with the average velocity of 
electrons of the target atoms the Bethe-Bloch expression 
( 1 ) overestimates the losses (compared with the experimen- 
tal values) even when corrections are made. It is then neces- 
sary to use empirical expressions to calculate the losses (see, 
for example, Ref. 6) or fitting  parameter^^"^"' in order to 
ensure agreement with the experimental results. 

The use of empirical formulas and fitting parameters 
makes it difficult to understand the physical nature of the 
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energy loss processes. This is particularly true in the case of 
the Z2 oscillations. It  is known that when the velocity of a 
heavy particle is comparable with the average velocity of 
atomic electrons, the dependence of the losses on Z, and Z2 
become nonmon~tonic, '~~ '~ and the amplitude of the loss os- 
cillations increases as the particle velocity is reduced. The 
model of local  oscillator^^^ is used in Refs. 21 and 22 to cal- 
culate the energy losses employing the atomic wave func- 
tions. This gave a nonmonotonic dependence on the param- 
eters Z,  and Z,. However, the physical origin of this 
dependence remains unclear, since empirical parameters 
were used in the calculations. 

The expression ( 1 ) for the energy losses was derived 
using the first Born approximation for the scattering ampli- 
tude. Note that the Glauber approximation23 has been used 
successfully in the scattering theory in order to calculate the 
elastic and inelastic cross sections of collisions of electrons 
with atoms in the target.24925 The results of applying this 
approximation to slow electrons are in better agreement 
with the experimental data than those obtained employing 
the Born approximation.2"27 An important feature of this 
approximation is that it allows for the potential interaction 
between a passing particle and a nucleus in all orders of per- 
turbation theory and also that it satisfies the optical 
theorem. In calculating the cross sections by this approach 
we have to determine complex integrals,,' but since the ener- 
gy losses contain integrated information on the scattering 
process, the expressions should be relatively simple. Later 
we show that if we go beyond the Born approximation, we 
find that we can describe correctly the dependence of the 
energy losses on the proton velocity without introducing any 
fitting parameters and we can also allow consistently for the 
effects associated with the distribution of electrons in the 
target atoms, as well as provide physical interpretation of the 
results obtained. In the subsequent calculations we shall ig- 
nore both the electron exchange processes and the radiation- 
induced deceleration as well as the relativistic corrections, 
i.e., we shall consider only the losses due to the excitation 
and ionization of the target atoms. This limits the range of 
the relevant velocities of heavy particles to 

where c is the velocity of light. 

2. RELATIONSHIP DESCRIBING EFFECTIVE DECELERATION 

To calculate the energy losses experienced by a heavy 
particle with a unit charge moving at a velocity v we shall use 
a relationship for the effective deceleration, which is gov- 
erned by the sum of the products of the cross sections repre- 
senting the transition of an atom from its ground state to any 
excited state and the corresponding energy of the transi- 
t i ~ n . , ~  If we assume that the inelastic scattering by individ- 
ual atoms of the target material represents statistically inde- 
pendent events (which is not true of ordered media and 
structures), we obtain 

Equation (3) describes the effective deceleration in 
collisions in which the transferred momentum lies within the 
range from q, to q, . In Eq. ( 3 )  the quantities E, and E, are 

the energies of the ground and excited states of an atom, and 
f, is the amplitude of the inelastic scattering process. The 
summation should be carried out using a set of quantum 
numbers of states in discrete [a = (n,l,m, ,s,m, ) ] and con- 
tinuous [a = (p,pl) ] spectra; k, and k are the values of the 
wave vector of the heavy particle before and after the scatter- 
ing; q, = 2mv/fi is the maximum possible momentum 
transferred in the course of a collision; q, = (E, - E,)/fiv 
is the minimum possible transferred momentum. It should 
be pointed out that in general both q, and q, depend on E, . 

We divide the integration range in Eq. (3)  in terms of 
the variable q into two parts: q, <q<q, and q,<q<q,, where 
q, = I,/fiv and I, is the ionization energy of an atom. We 
then have 

dE -=(g)a ax +(%) 7 (4)  

where 

(E,-E~) j q dn I foa ( n )  1'. ( 5  
9= 

Equation ( 5 )  governs the energy losses due to the pro- 
cesses of excitation of an atom, whereas Eq. (6 )  represents 
those due to the ionization processes. Therefore, integration 
with respect to the momentum of an escaping electron is 
understood in Eq. (6),  whereas summation is carried out 
over the quantum numbers. As pointed out in the Introduc- 
tion, the inelastic scattering amplitude will be described by 
the Glauber-Franco In this approxima- 
tion we have 

1.0 (9) dr $a* (r) G (r, q) $0 (r), (7) 

where 

and the phase function r is of the form 
w 

In Eqs. (7)-(9) the quantities $, and $, are the wave func- 
tions of the excited and ground states of an atom, dependent 
on the 32, coordinates of the atomic electrons 
r = (rl ,r  2...,rz, ). Integration in Eq. ( 7 )  is carried out over 
the phase volumed~ = dr,dr ,... drZ2 ; V(b, r )  is the potential 
of the interaction between a passing particle and an atom. 
Substituting Eqs. (7)-(9) into Eq. (6)  and allowing for 
completeness of the wave functions in a continuous spec- 
trum as well as for the sum rule of the oscillator strengths, we 
obtain 

where 
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is the Hamiltonian operator of the atoms. After integration 
in Eq. ( 10) with respect to the set of variables r' and simple 
transformations, we obtain 

The summation in Eq. ( 1 1 ) is over the coordinates of all 
the electrons of the target atom. In the case of Eq. ( 5 ) ,  the 
integration is with respect to small values of the transferred 
momentum q, i.e., in a region defined by quo( 1. The small 
values of q correspond to the case when a heavy particle 
moves in such a way that the impact parameter of an atom is 
large. The perturbation of an atom by a particle flying past is 
small and the phase interaction function tan be expanded as 
a series in terms of a small parameter V(Ibl )a,,z,r)/E,, 
where E, is the kinetic energy of a heavy particle. If in this 
expansion we limit ourselves to the first two terms, we find 
that - 

Using the approximation of Eq. ( 12), we find that the 
inelastic scattering amplitude considered in the Glauber- 
Franco approximation is identical with the amplitude of the 
first Born approximation. Using perturbation t h e o r i e ~ ~ ~ v ~ ~  
in the dipole approximation, we can write down directly the 
expression for the energy losses due to the excitation of an 
atom: 

where I, is the average ionization energy defined in terms of 
the oscillator strength Fo, for transitions from the ground to 
an excited state (described by the set of quantum numbers 
a): 

where E, is the energy of an electron in the I th state. 
The oscillator strength is described by 

2m 
F,, = - 

(e f t ) ,  
(Ea-Eo) I do= I 2 7  

where do, is a matrix element of the dipole moment of an 
atom (assumed to be nonzero). In the investigated range of 
velocities of a heavy charged particle &,/I, =: 1 and later we 
shall ignore the contribution due to the energy losses as a 
result of transitions in a discrete spectrum, valid to within 
logarithmic accuracy). 

I t  follows from Eq. ( 11 ) that in this approach the ener- 
gy losses depend on the distribution of the electron density of 
an atom, i.e., the approach allows for the individual features 
of the occupancy of the electron shells and it is not assumed 
that the interaction with the individual atomic electrons is 
statistically independent, i.e., it is not assumed that dE /dx is 

proportional to Z, ,  but an allowance is made for a more 
complicated dependence. It is shown in Ref. 31 that when 
the proton velocity v is comparable with the average velocity 
of atomic electrons v,, the greatest contribution to the ener- 
gy losses comes from electrons in the outer shells of the tar- 
get atom. When the condition v )  v, is satisfied, the contribu- 
tion to the energy losses made by each of the shells is 
approximately the same and the energy losses are propor- 
tional to the number of electrons. 

3. BETHE-BLOCH RELATIONSHIP AND THE MODEL OF 
LOCAL OSCILLATORS 

The interaction between an atom with Z ,  electrons and 
a passing proton is described by the sum of the Coulomb 
interactions between the proton and the nucleus and elec- 
trons: 

z* 

where ri are the electron coordinates and R is the proton 
coordinate. Substituting Eq. ( 16) into Eq. (9) and integrat- 
ing over the longitudinal coordinate, we find that the phase 
interaction function is3, 

Z ,  

whereA = vo/v is the ratio of the electron velocity in the first 
Bohr orbit to the velocity of the passing particle; s, are the 
projections of the electron coordinates on a plane perpendic- 
ular to the direction of motion of the heavy particle. We can 
follow the interaction between the proton and many atomic 
electrons by representing the many-electron phase function 
of Eq. ( 17) as a combination of one-electron functions: 

where the one-particle phase function r0 is of the form 
I b-s I 

r o ( b , r ) = i - ( T )  . (19) 

We can interpret Eq. ( 18) as follows: the first term rep- 
resents the contribution of the scattering by Z ,  electrons, 
which is statistically independent because of individual in- 
teractions between the passing particle and the individual 
electrons of the target atoms; the second term is the contri- 
bution of double interactions with different electron pairs, 
and so on. If the condition 

is satisfied, the main contribution comes from the first term 
in Eq. ( 18). The condition (20) is identical with the condi- 
tion for the validity of the first Born approximation and 
shows that if we go beyond this approximation, we can allow 
for the process of the scattering of the heavy particle by 
atomic electrons (see Ref. 32). 

We also assume that the scattering phase is acquired 

685 Sov. Phys. JETP 71 (4), October 1990 Erokhin et a/. 685 



because of the single-interaction processes, i.e., 
2. 

The hypothesis corresponding to Eq. (21) imposes limita- 
tions on the proton velocity, which should be greater than 
the average velocity of atomic electrons. We assume that in 
this approximation the total phase is simply the sum of the 
single-particle phases and we should denote by p, ( r )  the 
density of the electron distribution in the jth shell. This gives 

The summation in Eq. (22) is carried out over all the filled 
shells of an atom: n, is the number of electrons in thejth shell 
(Zn, =Z2). 

We obtain the asymptotic expression for the energy 
losses in the limit of high proton velocities. If the condition 
;I g 1 is satisfied, the one-particle phase function ( 19) is of 
the form 

whereas the integral over the impact parameter b of the gra- 
dient with respect to the electron position is 

h t M  !! db exp (Qb) Y .r0 (b, r) = - exp (iqs) . 
q2 

Substituting Eq. (24) into Eq. (22) and integrating over the 
transferred momentum, we obtain 

where 4 is the energy of an electron in thejth shell of the 
target atom. 

If we introduce the average energy through 

which is independent of the position of the atomic electrons 
(see Ref. 29), we obtain-as expected-the Bethe-Bloch re- 
lationship, Eq. ( 1 ). It is clear from Eq. (25) that if the con- 
dition A 4 1 is satisfied, the contribution made to the total 
losses by electrons from different shells is the same (to loga- 
rithmic accuracy) and the atomic electrons can be regarded 
as free. 

If we assume that each element of the atomic volume is 
characterized by a frequency o, which is related to the local 
density of the electron gas by 

02=yu4ne'p (r) /m, (27) 

where yo is a constant of the order of unity,33 then in this 
model the value of 4 represents the excitation energy of an 
electron located at a point with the coordinate r, i.e., 
Zj = liw(r), and instead of Eq. (26) we now have 

Z21n(lz)=4n J?drlnlfio(r)lp(r). (28) 

If we assume that at low values of the argument (x 4 1 ) the 
modified Bessel function KO (x) obeys an approximate rela- 
tion 

2 
KO (x) = ln[ - srp (-C) ] , 

X 

where C is Euler's constant, we find that the energy losses 
considered subject to Eqs. (27 )-( 29) can be now expressed 
in the form 

where a ~ 0 . 5 6 .  
Equation (30) was derived in Ref. 20 using the local- 

oscillator model. In this model a moving particle creates a 
spatial charge distribution characterized by the frequency o. 
The electric field resulting from the space charge decelerates 
the moving particle. Calculations of the spatial distribution 
of the show that it depends weakly (logarithmi- 
cally) on the density of the electron distribution in the target 
atoms and the induced charges themselves are located near 
the path of the passing particle in a certain finite region of 
radius R,, which is a free parameter in the theory and is 
found by comparing the results of calculations of the energy 
losses with the experimental data. 

4. ENERGY LOSSES EXPERIENCED BY PROTONS IN 
HYDROGEN AND HELIUM TARGETS: NUCLEAR DYNAMIC 
SHADOW 

We use Eq. (22) to calculate the energy losses due to the 
excitation and ionization of atoms in hydrogen and helium 
targets. The distribution of the electron density of a hydro- 
gen atom in the ground state is 

Substituting Eq. (3 1 ) into Eq. (22) and integrating with 
respect to the longitudinal coordinate of an electron and 
with respect to the angular variables, we obtain 

where 

KO (z) and K ,  (z) are modified functions of the second kind, 
and I, (z) and I ,  (z) are modified Bessel functions of the first 
kind. At small values of the argument z-0 in Eq. (33) we 
find that W(z) -.zr2 and then Eq. (32), subject to the condi- 
tion A ( 1, yields the Bethe-Bloch relationship ( 1 ) for the 
energy losses in a hydrogen target. Curve 1 in Fig. 1 gives the 
results of calculations of the energy lost by protons, carried 
out using Eqs. (3 1 )-(33). For comparison, it also includes 
the results of calculations based on Eq. ( 1 ) (curve 2) and the 
data of Ref. 16. The energy losses of protons in targets made 
of practically all the elements are presented in a systematic 
manner in Ref. 16. According to Ref. 16, the errors in the 
values of the energy losses represent less than 1 % in the case 
of protons with energies exceeding 400 keV, and can reach 
10% at lower energies. Subsequently published measure- 
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FIG. 1. Energy losses experienced by protons in a hydrogen target [the 
ordinate gives the dimensionless quantity (m/4d2N, )dE /dx] : 1 ) calcu- 
lations carried out using Eqs. (3 1 )-(33); 2) calculations carried out using 
the Bethe-Bloch relationship ( 1 ); 3 ) calculations carried out assuming 
the delta-like electron density distribution; 0) data taken from Ref. 16. 

ments of the are in good agreement with the data of 
Ref. 16. We can see from Fig. 1 that some differences 
between the results of calculations and the experimental 
data of Ref. 16 at low proton energies are due to neglect of 
the electron exchange process. 

We now consider how the distribution of the electron 
density affects the energy losses. As an example we take the 
distribution of the electron density in the form of a Dirac S- 
function. This exactly localized choice implies that the elec- 
tron is at a distance a, from a nucleus. Curve 3 in Fig. 1 gives 
the results of calculations of the losses for this particular 
distribution. It is clear from this figure that in the region of 
the maximum of the curve the energy losses depend strongly 
on the nature of the distribution. As the energy of the passing 
particle is increased, the losses become less and less sensitive 
to the nature of the distribution and in the range of validity of 
the Born approximation they are practically independent of 
the distribution, which is the reason why the Bethe-Bloch 
relationship is universally valid. 

The next element in the periodic system is the He atom. 
Its ground state has the Is2 configuration, where both elec- 
trons are in the 1s state and the radial part of the wave func- 
tion is symmetric under coordinate transposition: 

We select $,, hydrogen-like functions with the effective 
charge parameters deduced from a variational principle. 
The results of calculations of the energy losses experienced 
by protons in a He target are presented in Fig. 2. For com- 
parison, this figure includes also the results of Ref. 16 and 
the calculations carried out using the Bethe-Bloch expres- 
sion. 

We can see from Figs. 1 and 2 that the energy losses 
calculated from Eq. (22) agree better with the experimental 
data than calculations carried out using the Bethe-Bloch 
expression. The reason for this agreement is that, as shown 
in Ref. 32, the scattering becomes weaker if we go beyond the 

FIG. 2. Energy losses experienced by protons in a helium target (the 
ordinate gives the same quantity as in Fig. 1): 1 )  calculated ignoring 
multiple collisions; 2)  calculated using the Bethe-Bloch relationship; 3) 
ortho-helium target (allowing for multiple collisions); 4 )  para-helium 
target (allowing for multiple collisions); 0) data taken from Ref. 16. 

perturbation theory framework. This weakening is because 
the Glauber-Franco approximation we have used for the 
inelastic scattering amplitude allows for the elastic interac- 
tion between the incident particle and the nucleus. This in- 
teraction can alter the initial direction of motion of a particle 
so it passes an atomic electron at distances such that energy 
transfer to the electron is impossible, i.e., the electron is in 
the dynamic shadow of the nucleus and is practically unin- 
volved in the elastic interaction with the particle. 

We now consider the characteristic size of this shadow 
region. Deceleration of a heavy particle due to the interac- 
tion with a single electron depends on the displacement of 
this electron in an atom during the collision time. If this 
displacement is small compared with the characteristic peri- 
od of the electron motion, then the binding forces have no 
significant influence on the energy transfer process. In the 
opposite case of a long collision time the atom can be regard- 
ed as experiencing a static field of forces. Then its state re- 
mains the same after a collision. Consequently, the binding 
forces limit from above the effective impact parameter with- 
in which the transfer of energy to bound electrons is still 
possible. 

A collision characterized by an impact parameter b 
lasts for a time of order b /v, which should not exceed the 
characteristic atomic period w-', i.e., we should have 
b,,, =:v/w. The motion of a particle carried by the maxi- 
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mum impact parameter corresponds to the minimum possi- 
ble transferred momentum. Consequently, the motion of a 
particle at distances b > b,,, from the nucleus should not 
result in its deceleration. The interaction of a particle with 
an electron at a distance R, from a nucleus is characterized 
by the impact parameter b + OR,, where O( 1 is the angle 
of deviation of the particle from the direction of its initial 
motion. Allowing for the relationship between the impact 
parameter and the scattering angle (in the Coulomb interac- 
tion case) given by 8z2Z2e2/Mv2b (Ref. 12), we find that 
the interaction between a heavy particle and an electron oc- 
curs at distances b exceeding the critical value 

which is the minimum possible distance in the particle-(nu- 
cleus)-electron system. If the condition b, >b,,, is satis- 
fied, electrons which at the moment of interaction are in the 
rear hemisphere of the atom cannot contribute to the energy 
losses, i.e., they are in the dynamic shadow of the nucleus. 
We can rewrite Eq. (35) in a more convenient form 

It follows from Eq. (36) that the characteristic size of 
the shadow region depends strongly on the velocity of the 
particle. For b, < R, the particle interacts with all the elec- 
trons in the atom and the influence of the nucleus on the 
inelastic scattering process is slight. The condition b 4  R, is 
identical with the condition for the validity of the Born ap- 
proximation in which the influence of a nucleus on the in- 
elastic scattering process is ignored.29 

Turning back to Figs. 1 and 2, it should be pointed out 
that the greatest difference between the results of calcula- 
tions carried out using Eqs. ( 1 ) and (22) occurs for slow 
protons in the region of the maximum of the loss curve. In 
this region the electrons of a target atom are in the dynamic 
shadow of the nucleus and this weakens the inelastic scatter- 
ing and reduces the energy losses. Moreover, in this region 
the losses depend strongly on the distribution of electrons in 
the target atoms. 

We illustrate this by the example of calculation of pro- 
tons decelerating in an ortho-helium target. The lowest state 
of ortho-helium has the configuration ls2s with the spin 
S = 1 and the radial part of the wave function is antisymme- 
tric under electron coordinate transposition. The results of 
calculations carried out using Eq. (22) ignoring a slight re- 
duction in the losses due to the process of transfer of a helium 
atom to the ground state are shown in Fig. 2 (curve 3 ) . It is 
clear from Fig. 2 that near the maximum of the curve the 
losses in para-helium are approximately 40% less than in 
ortho-helium. This can be explained by the fact that the aver- 
age radius of the He atom in the ls2s state is approximately 
twice as large as in the Is2 state, i.e., one of the electrons is 
almost outside the region of the dynamic shadow of the nu- 
cleus and it interacts effectively with the passing particle, 
which results in its strong deceleration. Since the ionization 
energy is less for ortho-helium than for para-helium, the pro- 
cess of momentum transfer begins at a lower proton energy 
and a maximum of the curve shifts toward lower velocities. 
When the proton velocity is increased, the dynamic shadow 
region becomes smaller [see Eq. (36) 1, some of the elec- 
trons are outside the shadow, and the energy losses are given 

by the Bethe-Bloch expression ( 1 ) . 
In comparing the results of calculations with the data of 

Ref. 16 we can see (Fig. 2) that there is a considerable dis- 
crepancy in the region of the maximum of the loss curve. The 
discrepancy is due to the fact that Eq. (22) ignores the scat- 
tering by different atomic electrons, i.e., only the first term in 
the expansion of the phase function of Eq. ( 18) is included. 
We can allow for this effect by applying the exact expression 
( 15) to the ground state of a two-electron atom 

We interpret Eq. (37) as an expression describing the 
energy lost by a proton due to its interaction with the "first 
electron" when it is partially dynamically shadowed by the 
nucleus, allowing for the pbssibility of simultaneous scatter- 
ing by the "second" electron [represented by the first term 
in the braces of Eq. (37) 1. A similar situation occurs also in 
the case of the "second" electron (represented by the second 
term). It follows from the principle of indistinguishability of 
electrons that the contributions by the first and second terms 
are identical. The results of calculations of the energy lost by 
protons described by the wave function of Eq. (34) are pre- 
sented in Fig. 2 (curve 2). It is clear from this figure that the 
agreement between the calculations and the data of Ref. 16 is 
now much better. 

5. CONCLUSIONS 

The quantum-mechanical approach and the Glauber- 
Franco approximation for the inelastic scattering amplitude 
were used to analyze the energy losses due to the processes of 
excitation and ionization of atoms in an amorphous target 
when it interacts with a heavy particle characterized by a 
unit charge. The results obtained without the use of empiri- 
cal and fitting parameters ensure good agreement with the 
experimental data. An analysis of the reasons for such an 
agreement shows that the influence of the elastic nuclear 
scattering channel is important near the maximum of the 
dependence of the losses on the velocity of a heavy particle. 
The deviation of the heavy particle from its initial direction, 
due to the Coulomb interaction with the nucleus, means that 
it may travel at such distances relative to an electron of a 
target atom that the transfer of energy to this electron is 
impossible, i.e., the electron is in the dynamic shadow creat- 
ed by the nucleus and in practice does not participate in the 
interaction with the passing particle. An estimate of the 
characteristic size of the shadow region shows that it is in- 
versely proportional to the velocity of this particle. 

In the case of slow particles (in the region of the maxi- 
mum of the loss curve) the influence of the dynamic shadow 
results in significant weakening of the inelastic scattering 
and reduces the losses, in agreement with the experimental 
results. In the case of fast particles the shadow region is small 
and the energy losses are given by the classical Bethe-Bloch 
expression. In addition to the dynamic shadow, the process 
of deceleration of a particle flying past is influenced also by 

688 Sov. Phys. JETP 71 (4), October 1990 Erokhin etal. 688 



multiple scattering by electrons in the same atom. Calcula- 
tions indicate that the contribution of this process is 10-15% 
in the case of slow particles and its inclusion improves the 
agreement with the experimental data. 

The proposed model is invalid in the case of very slow 
particles whose velocity is much less than the average veloc- 
ity of atomic electrons, because it ignores perturbation of the 
wave function of the target atom and deceleration due to the 
exchange of electrons between the colliding particles. 

The nuclear dynamic shadow effects in multiple elec- 
tron scattering effects must be taken into account in deter- 
mining how the effective charge of a moving particle affects 
its velocity, and also in analyses of the dependence of the 
energy losses on 2, and 2,. 
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