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A theoretical model is proposed for considering the main characteristics of the luminescence 
emitted by phosphor molecules in polar liquid solutions allowing for thermal fluctuation 
inhomogeneities of reactive electric fields of the solvate sheaths of the molecules. The energy in 
these molecules in excess of the equilibrium value results in a torque which is additional to that 
obtained in the diffusion case. It is shown that the relevant kinetic equations can be solved 
analytically and that they give the time-dependent depolarization of the radiation. An analysis of 
the resultant solution is made and appropriate mathematical calculations are carried out for 
different values of the main parameters of the model. The results obtained are compared with the 
data yielded by high-temporal-resolution laser spectroscopy of liquid solutions of some organic 
phosphors. 

1. INTRODUCTION 

The structure and the motion of molecules in a liquid 
influence strongly the optical properties of a phosphor in a 
solution because of the van der Waals interactions. In partic- 
ular, these factors determine the statistical causes of the 
broadening of the spectra of solutions, which is called inho- 
mogeneous configurational broadening and is strongest in 
polar systems. It is responsible for the striking properties 
of these systems. 

The inhomogeneous configurational broadening was 
discovered in 1970 for systems with broad diffuse 
frozen by cooling to a temperature of T = 77 K, and later in 
1972 it was o b ~ e r v e d ~ . ~  in similar solutions frozen at lower 
(helium) temperatures. In the last two papers it was shown 
that at liquid helium temperatures one could observe, in- 
stead of the usual diffuse spectra, line fluorescence spectra of 
complex molecules with a resolved vibrational structure. 
The resolution was due to suppression of inhomogeneous 
broadening resulting from selective monochromatic excita- 
tion. This made it possible to achieve a much deeper under- 
standing of the nature of the electronic spectra of complex 
molecules and led to the development of new and finer-scale 
methods for the investigation of these spectra. 

Systematic studies of inhomogeneous configurational 
broadening have led to the development of new ideas on the 
nature of the spectra of complex molecules in solutions at 
various temperatures. General models of a solution allowing 
for the statistical causes of the broadening of the spectra 
were developedls2 and allowed the spectroscopic properties 
due to such broadening to be described satisfactorily. Analy- 
sis of the models led to the discovery of new spectroscopic 
effects and relationships. The majority of them were con- 
firmed subsequently by the work of many research teams. 

For example, it was demonstrated e~perimentall~' .~ 
that the inhomogeneous configurational broadening occurs 
not only in solid but also in liquid solutions. It is then of 
dynamic nature and as a rule can be detected only by kinetic 
spectroscopy techniques characterized by a high temporal 
resolution. This approach was found to be very fruitful and it 
revealed "upward" relaxation involving an increase in the 

energy of a photon emitted by a fluorescing molecule in the 
course of configurational relaxation of its solvate sheath. Ex- 
periments revealed9.10 directional energy transfer between 
the components of an inhomogeneous ensemble of complex 
molecules in solid solutions. This made it possible to explain 
such well-known phenomena as the Weber effect" and the 
concentration-induced red shift of the fluorescence spectra 
in these systems, and to understand better the mechanism of 
energy transfer in photosynthetic apparatus of plants. 

A result of fundamental importance was reported in 
Ref. 12, where "selective hole burning" was used to demon- 
strate that the homogeneous width of zero-phonon lines in 
an electronic-vibrational spectrum of complex molecules is 
very low at helium temperatures and corresponds to the ra- 
diation limit. 

One of the most interesting effects associated with the 
inhomogeneous configurational broadening was discovered 
relatively recently l 3  in a study of the kinetics of the anisotro- 
py of the polarization r ( t )  of phosphor molecules in a polar 
solution. This is the light-induced rotation of phosphor mol- 
ecules. It involves accelerated (compared with the classical 
Brownian) rotation of molecules during the first stages after 
excitation. It was established quite reliably that this light- 
induced rotation of phosphor molecules is related directly to 
the margin of the configurational intermolecular energy E, 
of the solvate in an excited single state S,, which is governed 
by the degree of inhomogeneity of the ensemble of luminesc- 
ing centers in the solution and by the frequency vex, of their 
excitation, transforming selectively to the luminescing state 
those solvates which have spectra in resonance with vex,. 
Therefore, such light-induced rotation of molecules is mani- 
fested by the dependence of the anisotropy kinetics r ( t )  on 
vex,. If the energy margin Ee is zero, the rotation is purely 
Brownian in nature. 

There are at least two mechanisms that can contribute 
to the light-induced rotation of phosphor molecules: 1 ) in- 
duced rotation of a phosphor dipole deflected, as a result of 
an excitation event, from its position in the ground state; 2)  
fast pulsed heating of the solvate, due to conversion of the 
configurational energy into the thermal energy in the course 
of relaxation. 
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The rotation of a dipole molecule was considered ear- 
lier14 using the Debye model of dielectric relaxation and al- 
lowing for the first of the mechanisms mentioned above. The 
second mechanism and the inhomogeneity of the solution 
were ignored in Ref. 14. 

Here we propose a model which makes it possible to 
obtain an analytic form of the time dependence of the anisot- 
ropy of the polarization of the luminescence r ( t )  of various 
members of an inhomogeneous molecular ensemble excited 
by a 8-like light pulse. This model provides a unified ap- 
proach that can be used to explain both mechanisms contrib- 
uting to the light-induced rotation of molecules, and also to 
account for the inhomogeneous nature of the members of the 
ensemble. 

Section 2 describes our model and gives the derivation 
of the relevant kinetic equation. In Secs. 3-6 we find the 
solutions of this equation for the polarization anisotropy. 
We discuss the results and draw the conclusions in Secs. 7 
and 8. 

2. DESCRIPTION OF THE MODEL. KINETIC EQUATION 

It is sufficient to use only an elementary theory of a 
polar s o l ~ t i o n ' . ~ ~ ' ~  in which the carrier of spectroscopic in- 
formation about the solution is an elementary cell (solvate) 
which includes a fluorescing complex molecule and its im- 
mediate environment consisting of the solvent molecules. 
The dipole electric moment p of the phosphor creates in 
each solvate the polarization of the immediate environment 
so that inside the cell a reactive electric field of intensity 
R, = xpg now appears; 7t is the susceptibility of the solvent. 

The inhomogeneous broadening factor is due to the 
thermal motion of molecules in a solution. For this reason 
the different solvates in the solution have somewhat differ- 
ent configurations of their own solvate sheaths and, conse- 
quently, different fluctuating (relative to the average value 
R , ) values of the reactive field R. Since the frequency of the 
0-4 transition in the activator molecule depends on the reac- 
tive field intensity, an inhomogeneous ensemble of mole- 
cules, which are distributed in a certain manner in respect of 
the frequencies of the 0-0 transition, exists in the solution. 
This type of distribution is the main characteristic of the 
induced broadening. 

In the model of a solution developed in Refs. 2 and 15 it 
is assumed that the state of the solvate is governed by the 
action of two forces: a polarizing force due to a permanent 
dipole moment of the activator molecule causing the appear- 
ance of a reactive field R inside the solvent, and a restoring 
force due to the action of the reactive field on the dipole 
molecule in the solvate sheath. The action of these two forces 
has the effect that the state of a solvate is characterized at 
any energy level by a parabolic dependence with a minimum 
correspbnding to the equilibrium value of the reactive elec- 
tric field. Thus, for example, in the case of the ground and 
first excited singlet electron states (g and e )  of the dipole 
molecule, these energies become 

where 

FIG. 1 .  Field diagram of the electron-configuration energy of the solvate. 

The diagram shown in Fig. 1 is similar to the potential 
energy of a molecule, but instead of a molecule we are now 
considering the whole of the solvate and, consequently, in- 
stead of the vibrational energy, we are now dealing with the 
energy of the configurational interaction of molecules in the 
solvate. The generalized coordinate can naturally be the 
field intensity inside the solvate. 

Such a diagram was introduced in Ref. 16 and is cur- 
rently employed widely in an analysis of the spectral proper- 
ties of solutions. It allows automatically for the inhomogen- 
eous broadening and each inhomogeneously broadened state 
is represented by a point on the R axis. As in the case of 
molecules, we find that the Franck-Condon principle is 
obeyed (since the structure of the cell and, consequently, the 
field of R do not change during the time needed for an elec- 
tronic transition), i.e., quantum transitions between both 
potential curves occur in this diagram along the vertical. 

In the case of unexcited solvates we find that usually the 
equilibrium Boltzmann distribution of the configurational 
energy is satisfactory. The distribution function of excited 
solvates, expressed in terms of the configurational energy, 
depends on the ratio of the lifetime of an excited molecule T, 
and the configurational relaxation time of the solvate 7,. 

TC 

then an equilibrium distribution of the configurational ener- 
gies of excited solvates is established, whereas for the oppo- 
site inequality 

the distribution is not in equilibrium and depends on the 
frequency of the excited light v,,,. 

In the case of liquid solutions we usually find that Eq. 
(4)  is obeyed. Therefore, the steady-state fluorescence spec- 
tra show no dependence on vex, . In other words, in this situa- 
tion the spectra behave as if homogeneously broadened. 
However, if we use the kinetic spectroscopy technique and 
determine numerous fluorescence spectra, then subject to 
the condition 
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(At is the time interval between the excitation and recording 
events) a liquid should exhibit, like a solid solution, a de- 
pendence of the position of the spectrum on vex,. 

Brief exposure to monochromatic radiation results in 
selective excitation of solvates which begin to relax to the 
most probable configuration. The simplest form of the relax- 
ation law can be described by the dependence 

where v::, is the position of the middle frequency in the 
steady-state luminescence spectrum, whereas v:!, is a spe- 
cial parameter of the solution which has the meaning of the 
frequency of the absorption maximum of solvates with a lo- 
cal field R ,, . 

Equation (7)  explains well the evolution of the spectra 
of an inhomogeneous solution when it is excited by pulses of 
different frequencies. It follows from this equation that ini- 
tially at t = 0 the position of the fluorescence maximum de- 
pends linearly on vex,, i.e., strong stimulated broadening of 
the spectra is observed. As time passes, the dependence of 
vlum on vex, becomes weaker, i.e., the stimulated broadening 
decreases and disappears completely when t- a. 

Therefore, in the case of a liquid solution the degree of 
inhomogeneous broadening decreases with time, i.e., the 
broadening is dynamic. If t - WJ , the fluorescence maximum 
tends to its equilibrium value governed by the frequency 
+:m. 

The nature of relaxation of the fluorescence spectrum 
has a strong influence on the excitation frequencies vex,, i.e., 
on the nature of the solvate subjected to selective excitation. 
Exposure to radiation of frequencies v, > v2; (continuous 
arrows in Fig. 1) causes a long-wavelength shift to the flu- 
orescence maximum during relaxation, whereas excitation 
in the frequency range vex, < v,*,, (dashed arrows in Fig. 1 ) 
has the opposite effect: the band shifts toward shorter wave- 
lengths with time. In all cases the fluorescence spectrum ap- 
proaches the same equilibrium value v::, . The characteris- 
tic frequency is v,*,, . The process of relaxation of excited 
solvates is related to this frequency. 

As shown in Ref. 8, all these laws governing the dynam- 
ic inhomogeneous broadening have been observed experi- 
mentally. 

We use these ideas about inhomogeneous solutions to 
develop a model describing rotation of the phosphor in the 
course of relaxation from an excited state. 

When a molecule is excited electronically, its dipole 
moment changes abruptly, followed by the process of relaxa- 
tion and modification of the solvate sheath with a character- 
istic time T,, . The initial field R, acting on the molecules in an 
ensemble, is excited selectively at the transition frequency 
vex, and begins to relax with time approaching firstly the 
equilibrium value R ,, corresponding to the excited elec- 
tronic term and, secondly, tending to become concurrent 
with the modified direction of the dipole axis. The mecha- 
nisms of relaxation of the field R and its transverse (relative 
top,  ) component R, are assumed to be identical: 

R ( t )  =KII+ARe-tI'2, R, (t) =R, (0) e-'I7*, 

The dipole transition of a molecule to an excited state 

corresponds to a polarization vector d (linear absorption 
oscillator). Its strong binding to a molecule makes it possible 
(in the case of a spherical molecule) to determine uniquely 
the orientation, in the laboratory reference system, of the 
angle 8 between the vector d and the vector e, of the polar- 
ization of an excitation light pulse. The initial anisotropy of 
the function representing the density of the distribution of 
the dipoles f(8,t) is characterized by the dependence cos2 8. 
Therefore, the initial condition is 

f 1 t ,o=c~n~t+  const P, (cos €I), ( 9 )  

where P, is a second-order Legendre polynomial. 
The quantity 27rf(B,t)sin 8d8 represents the density of 

absorption oscillators oriented in a belt (8,8 + do) of the 
phase surface. The rate of change 27r(df /at)sinu8d8 of this 
density is governed by the difference between the rates 
N(8  + dB) and N(8)  of the fluxes through the upper and 
lower boundaries of this belt: 

The quantity N(8)  is governed by two factors. First of all, 
there is the usual contribution of the isotropic Brownian ro- 
tational diffusion D(df/d8)27r sin 8. Moreover, there is a 
contribution due to the angular drift at the rate M(t)/f ,  
where M(t )  =p,R, ( t )  is the relaxing torque due to the 
nonequilibrium nature of the solvate and f is the viscous 
friction coefficient of the solution. The contribution to the 
rate of change of the flux corresponding to this drift is 
[M(t)/fLf( 8,t)27r sin 8. Bearing all these points in mind, 
we obtain the following kinetic equation: 

where the torque is 

M ( t )  =p,R, (0) e-'ITk. (11) 

Equation (10) is formally similar to the familiar Smo- 
luchowski equation. However, there is a difference: the sec- 
ond term is governed by the interaction of a dipole molecule 
not with the external field but with the reactive field R fluc- 
tuating over an ensemble. The corresponding induced 
torque M appears as a result of a change in the dipole mo- 
ment p, -p,  in the course of absorption of light by a mole- 
cule. The subsequent relaxation terminates in a new equilib- 
rium state of the solvate in which the reactive field R ,, acting 
on an excited molecule differs from R , if p, #p,. 

In the case of selective excitation of molecules at a fre- 
quency corresponding to the field R(0)  = R ,, + AR the 
transverse component of the field is 

R,(O) = R I ~ ( ~ + I ' )  sin 6, 

where T = AR / R  ,, is the dimensionless parameter repre- 
senting nonequilibrium of the system and S is the angle be- 
tween R(0)  and p,. If R (0 )  = R ,, , then p, IIR(0) follows 
from minimalization of the equilibrium energy. Therefore, 
sin S vanishes simultaneously with the parameter T. In the 
case of a small deviation from equilibrium (low values of T )  
and, consequently, in the case of small angles S the sines of 
these angles are of the same order of magnitude as T. There- 
fore, we shall assume subsequently that R, (0)  
= R,, ( 1  + T ) T  (Fig. 2).  
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FIG. 2. Relative positions, in the plane of the diagram, of the reactive field 
R, of the dipole moment of the ground (p, ) and excited (p ,  ) states of a 
molecule, and of moment of the transition Ap on excitation with light 
polarized along thee, direction. The angle 0 defines uniquely the orienta- 
tion of a spherical molecule in the laboratory system: a: vex, = v,, 
(r = 0). The reactive field R = R,, does not create a torque rotating the 
molecule and relaxation to the equilibrium isotropic distribution occurs 
due to the Brownian motion; b: vex, #v , ,  (TfO). The torque M 
= [u, X R] differs from zero and the rotation caused by it is superim- 

posed on the Brownian diffusion. 

The kinetic equation ( 10) can be written conveniently 
in terms of reduced (dimensionless) quantities. We shall ex- 
press the time in units of Brownian diffusion time 
rD = 1/20: 

T=~/TD. (12) 

Then, instead of Eq. ( 10) we obtain 

I I a 
f-hI'(1-kr)e-"-- [ f (0,~)sin01,  (13) 

2 sin 0 30 

where the dimensionless interaction constant is 

(we have used here the Einstein relationship D l  = k T ) ,  
whereas the parameter 

represents the ratio of the configurational and rotational- 
diffusion relaxation rates. 

In view of the azimuthal symmetry of the distribution of 
spherical molecules, the solution of the kinetic equation 
( 13) can be found in the form of a sum of Legendre polyno- 
mials: 

Allowing for the normalization and for the condition ( 9 ) ,  
we find that the density of the initial distribution of the excit- 
ed molecules is given by the function 

As pointed out already, the light-induced rotation of 
molecules appears in the kinetics of the anisotropy of the 
polarization r ( r )  of the luminescence emitted by solutions. 
It is therefore necessary to establish the relationship between 

the kinetics of r and the kinetics of the nonequilibrium distri- 
bution ( 16) of the phosphor molecules discussed here. 

3. REPRESENTATION OF THE POLARIZATION ANISOTROPY 
IN TERMS OF HARMONICS OF AN EXPANSION OFTHE 
DISTRIBUTION FUNCTION f ( 0 , ~ )  

It follows from the Levshin-Perrin relationship that the 
maximum degree of anisotropy of the luminescence of the 
molecules modeled by linear absorption d, and emission d, 
oscillators, oriented in a molecular coordinafe system at an 
angle a relative to one another, is 

Rotation of molecules means that at a moment r the polar- 
ization of the molecular luminescence d, (7) makes an angle 
y ( r )  # a  relative to the direction of the absorption polariza- 
tion d, (O), as shown in Fig. 3. In view of the statistical scat- 
ter of the orientations of the molecules in our ensemble, it is 
necessary to carry out averaging of these orientations, so 
that 

2 
r (7) = - <Pa (cos 7 (T) ) >. 

5 (19) 

Rotations of a molecule can be followed by observing the 
rotating vector d,. Then, the statistical averaging in Eq. 
( 19) is carried out using a distribution function f(6,r) of the 
values of the angle 6 between the initial position of the vector 
d, (0)  and its current position d, (7).  Using the expansion 
(16), we obtain 

cc 211 IL 

Application of the addition theorem," transforms Eq. (20) 
to 

FIG. 3. Distribution of the axes of the absorption and emission (lumines- 
cence) dipoles (identified by the indices a and e, respectively) at the initial 
d(0)  and subsequent arbitrary d ( r )  moments in time, plotted for a mole- 
cule rotating in a laboratory reference system characterized by the angu- 
lar coordinates 0 and q. 
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r ( r )  = f A; ( I )  J dcp J d0 sin 0 { P ,  (COS 0)Pz ( C O S  01) 
1=0 0 0 

x { P I  (cos 0 )  Pl (cos 02) 

(2\) 
where ( B,p), ( 8 ,  , p ,  1, ( O2,p2) are the angular coordinates of 
thevectors d, ( T ) ,  d, ( 0 )  and d, (0) in the laboratory coordi- 
nate system (Fig. 3  ). In evaluating the integrals we allow for 
the fact that 

[and that it vanishes since m # O  in Eq. (21 ) 1, 

2 (2+m)!  J plm (cos 0 )  P , ~ ( C O S  0 )  sin 0 = - - 
0 5 (2-m)!  

61.2. 

The result is then 

Once again we apply the addition theorem, which yields 

with a constant factor 

Therefore, the kinetics of polarization of the instanta- 
neous luminescence spectra is governed entirely by the time 
dependence of the second harmonic in the expansion ( 16),  
the initial condition for which is 

Specifying the values of r ( 0 )  and of the angle a between 
the oscillators, we then use Eq. ( 2 5 )  to obtain the initial 
value A,(O) and to calculate the anisotropy of the polariza- 
tion from the expression 
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It follows from Eq. ( 2 6 )  that we can find r if we know A 2 ( r ) ;  
the latter can be obtained by solving the kinetic equation 
( 13 ), which we now do. 

4. CLOSED SYSTEM OF EQUATIONS FOR HARMONICS OF 
THE EXPANSION f ( 8 , ~ )  

We substitute the expansion of Eq. ( 16) into the kinetic 
equation ( 13) bearing in mind that the Legendre polynomi- 
als are eigenfunctions of the Laplace operator 
[AP, = - n(n  + l )P , ]  - rn 

where y  = cos 8.  
We now convolve both parts of equation with 

PI ( y )  (where the orthonormalization condition for the 
polynomials is J? ,  P, ( y ) P ,  ( y ) d y  = 2 / ( 2 1 +  1 ) 8,): 

The overlap integrals J,, occurring in the system ( 2 8 )  are 
1 

Our calculations show that these integrals decrease rapidly 
on increase in the difference n - I :  

l,o%'I,571; I,,=-0,589; I,,=-0,024; 

121% 1,178; I=,=-0,098; 125%-0,015. 

It therefore follows that in the case of the first harmon- 
ics we can limit ourselves to the closed system obtained from 
Eq. ( 2 8 )  allowing for the smallness of the overlap with the 
other harmonics: 

d.40 
-= 
d z  0, 

subject to the initial conditions 

[A,(O) is given by Eq. ( 2 5 )  1. 
In the work referred to aboveI4 the depolarization of the 

luminescence in a solution is divided into two stages: kinetic 
and stochastic, which occur independently of one another. 
During the first stage the rotation occurs only under the 
influence of the reactive field with a characteristic dielectric 
relaxation time T ~ .  During the second stage, when the field 
has reached its equilibrium value, the governing factor is the 
diffusion mechanism with a characteristic time G. There- 
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fore, the two-exponential nature of the kinetics of depolar- 
ization is assumed right from the beginning in Ref. 14. 

In our model no such initial assumption is made. For 
example, in the second equation of the system (29) we can- 
not ignore the first diffusion term for small values of T even 
in the range of strong fields A ) 1, since for these values of T 

the second harmonic obeys A, ) [ A ,  I .  Therefore, the splitting 
of the process into two stages adopted in Ref. 14 should be 
regarded simply as the zeroth approximation. 

The system of the first-order equations (29) can be re- 
duced in the usual manner to one second-order equation for 
the function 

which represents the ratio of the anisotropy to its time de- 
pendence in the pure Brownian diffusion case 
[ r D  (T) = r(0) e - 3 r ] .  The equivalent equation can be con- 
veniently written in terms of a variable x = e 

subject to the initial conditions 

The effective interaction constants are 

It is important to note that the coefficients in Eq. (32) are 
quadratic in terms of the parameter r and ,  consequently, the 
nature of the solution of this equation is independent of the 
sign of the transverse component of the field R, . 

We shall now consider the procedure used in obtaining 
the solution of Eq. (32) in the general case, and also for the 
most typical and interesting case f l  = 1 because then the so- 
lution method is simplest. In both cases we shall show that 
an analytic solution can be obtained. 

5. SIMPLEST CASE (f3 = 1) 

In the case f l  = 1 ( T ~  = rk ), substitution for the re- 
quired function of 

modifies Eq. (32) to the equation for forced harmonic oscil- 
lations: 

9" ( x )  + kzq ( x )  = - (: I Z  
subject to the initial conditions 

It is useful to consider directly the nature of the solution 
at the initial moments (when T is small). Expanding p (x )  as 
a Taylor series in the vicinity of the point x = 1, retaining 
only the quadratic terms, and defining q, " (x) on the basis of 
Eq. (35), we find that 

Therefore, 

We can see that during the initial stage the process of relaxa- 
tion is known to be faster than the Brownian diffusion and, 
moreover, in the anti-Stokes range ( r > 0)  it is faster than in 
the Stokes case ( r < 0). 

We now consider the solution for arbitrary values of T. 
The general solution of a homogeneous equation corre- 
sponding to Eq. (35) is 

cpo ( x )  =ak cos ( k ~ )  +bk sin ( k x )  , 

whereas the particular solution of the inhomogeneous equa- 
tion (35) is 

In evaluating the last integral we obtained the sine inte- 
gral (Si (x) = S: (sin t /t) dt) and the cosine integral 
(Ci(x) = - S," (COS t /t) dt). We then have 

+ [ ~ i  ( k x )  - ~i ( k )  ]sin ( k x )  }. 

It follows from the initial conditions given by Eq. (36) that 

( k  cos k  - sin k )  ( k  sin k  + cos k )  
ak=Az (0)  

k  , bk=Aa(O) 
k  

We have therefore 

and the solution for the harmonic A, (7) is 

A* (4 =e-2T[90 ( x )  +(PI ( x )  I .  
Using next Eq. ( 26), we obtain 

+ [S i  ( k x )  - S i ( k )  ]sin ( k x )  ). (37) 

It is interesting that this exponential decay with time is "hid- 
den" in the arguments of the oscillatory functions. 

6. GENERAL CASE OF ARBITRARY VALUES OF 

We introduce the function p ( x )  = xvF(x) ,  for which 
Eq. (32) can be rewritten in the form 
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We select the index v so that the numerical coefficient of the 
first derivative q, ' ( x )  in Eq. (38) is unity: 

AS a result'of this solution we obtain an inhomogeneous Bes- 
sel equation: 

with an exponent Y and with a variable 

subject to the initial conditions 

The general solution of the homogeneous Bessel equa- 
tion is a superposition of the Bessel Jv and Neumann Nv 
functions. Variation of the arbitrary constants yields the so- 
lution of the inhomogeneous Bessel equation (40) in the 
form 

E 
( t - r v ~ t z  71 

( 1 )  [ C  - ( )  - 5 ~ . ( t ) t - ( ~ + ' ~ ) ~ ~  d t ]  
2 k,2 

By definition, the expression 
f E 

se..(E)= +[N"(E) l ~ . ( t ) t ~ d t - ~ ~ ( ~ )  S N . ( ~ ) P  a t ]  (44) 
0 0 

represents the Lommel functions.18 Using these functions 
and also the relationship that follows from Eqs. (31) and 
(34) 

A, (z) =e(Bv-3)scp (E)  , 

we find that 

where 

The constants Cl and C2 are found from the conditions 
(42) and are given by 

It should be pointed out that if P = 1, then v = 1/2, 
J,,, (6) = ( 2 / ~ 6 ) ' / ~  sing, N,,, (6) = - ( 2 / ~ 6 ) ' / ~  cos f 
and we come back to the solution (37). 

FIG. 4. Dependence of the anisotropy of the luminescence polarization r 
on the reduced time T for a = 0, /1 = 13, r (0)  = 0.4, and the following 
values of 8: a)  P = 1; b) P = 2; c )  P = 0.1. The continuous curves repre- 
sent excitation in the Stokes part of the spectrum (r  = - 0.3), whereas 
the dashed curves correspond to the anti-Stokes part ( r  = + 0.3). 

7. DISCUSSION OF RESULTS 

Figure 4 shows graphically our analytic solutions given 
by Eqs. (37) and (45); they are plotted for different values 
of the parameters of the model on the assumption that the 
absorption and emission (luminescence) oscillators of a 
molecule are parallel (a = 0)  and that the initial anisotropy 
is typically r (0)  = 0.4. 

A common feature of all the cases plotted there is the 
absence of a simple monoexponential relaxation with time. 
It is quite clear that the solutions can be represented by two 
exponential functions, one of which represents rapid decay 
of the anisotropy at the initial moments and the other repre- 
sents slowing down during the final stage of the relaxation 
process. For example, for P = 1 and r = 0.3 (Fig. 4a) and 
within the time interval O<T 5 0.4 the decay is exponential 
with the argument 3 . 2 ~  (it is faster than the case of pure 
Brownian diffusion), whereas after T >  2 the argument is 
1.47 (slower compared with the diffusion case). 

For all values of 0 there is a characteristic difference 
between the relaxation processes on the Stokes (r  < 0)  and 
anti-Stokes (r  > 0)  sides of the spectrum. The latter corre- 
sponds to higher values of the reactive field (R > R ,, ) than 
the former (R < R ,, ). Therefore, we can estimate the role of 
the field intensity. We can see that during the initial stage the 
field imparts rotation to molecules which is additional to the 
Brownian motion and relaxation on the right-field side 
(r > 0)  is faster, as pointed out already in Sec. 5. However, 
the situation then changes and in high fields the polarization 
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decays more slowly with time than in weak fields. This is due 
to the orienting effect of the field, which imparts an addi- 
tional "rigidity" to the system. This "rigidity" is manifested 
most clearly for low values of the parameter 0 (7, 47, ) 
when, on the scale of the diffusion time 7- 1, the quantity R ,  
remains practically constant. 

The graphs in Fig. 4c show a characteristic plateau, 
which is due to the fact that if r S 1/P, the almost constant 
reactive field of the solvate orients (like a static external 
field) the dipole along its own direction and there is no sig- 
nificant depolarization of the luminescence in this range of 
values of r. Naturally, in the anti-Stokes range of the strong- 
er fields the orienting effect is manifested more clearly than 
in the Stokes range (higher plateau). If T > l/D, the non- 
equilibrium orienting moment begins to decay and r ( r )  
tends to zero. 

We can readily obtain the solution of Eq. (29) in the 
limiting hypothetical case P = 0, when the plateau extends 
to any time, no matter how long. We then have 

r(O) qZ lim r ( ~ )  = -- 
r-r- A2(0)  k2+3 ' 

For the specified parameters [a = 0, r (0)  = 0.41 we find 
that r (  CG ) = 0.6. It is interesting to note that in this case the 
relaxation processes enhance the anisotropy compared with 
its initial value. 

The relationships illustrated in Fig. 4 discussed so far 
apply, as pointed out already, to the parallel orientation of 
the absorption and emission (luminescence) oscillators 
(a  = 0). However, r ( r )  should depend fairly strongly on a, 
because r(O)/A,(O) in the solution given by Eq. (45) de- 
pends on a in accordance with Eq. (25). Figure 5 shows the 

isochronous curves for different values of the angle a of the 
phosphor molecule (which is a characteristic analog of the 
polarization diagrams). In the range a>40" we observed be- 
havior which is qualitatively new compared with the a = 0 
case: the polarization anisotropy becomes negative. Natu- 
rally, the change in the sign of r tends to increase the angle 
between the directions of polarization of light absorbed and 
emitted by a molecule. 

Moreover, as a increases, the two-exponential nature of 
the time dependence r(7)  becomes even clearer. For exam- 
ple, in the case P = 1 and r = 0.3 under discussion, but on 
the assumption that a = 90", we find that the initial stage 
corresponding to T 5 0.2 is characterized by an exponential 
decay with an argument -- 107, whereas beginning from 
r- 1 the argument becomes =: 1.367. 

The following comments should be made about the se- 
lected value of the interaction constant A = p, R, ,  /kT. We 
had in mind a polar solution of 3-amino-N-methyl-phthali- 
mide (3ANMP) in glycerin, for which the two-exponential 
kinetics of the anisotropy was observed, among other solu- 
tions, in Ref. 19 by the method of selective laser spectrosco- 
py with nanosecond resolution. In this case we havep, =: 5 D 
and R ,, = (3-5) X 10' V/cm. Then, at room temperature 
we obtain A - 13-1 8. 

8. CONCLUSIONS 

This analytic solution for the anisotropy kinetics of 
molecules of the dipole solution reflects correctly the main 
physical relationships of the light-induced rotation of mole- 
cules of some of the investigated polar solutions. Naturally, 
all the observed features apply only to dipole molecules in 
polar solvents. In the case of nonpolar solvents the induced 
torque M in Eq. ( 10) is small and the constant is A < 1. In 
this case the usual diffusive nature of the kinetics of depolar- 
ization of the luminescence is retained. 

Our model works best in the following two situations: 
1 ) molecules of a phosphor are nearly spherical, so that it is 
necessary to generalize these results to the more complicated 
case of nonspherical molecules, which should make it possi- 
ble to carry out a more detailed quantitative comparison 
with experimental data; 2) heat evolution in the immediate 
molecular environment of a phosphor does not affect strong- 
ly the rotational diffusion coefficient D. In the case of real 
systems this condition may be satisfied quite well. Neverthe- 
less, heat evolution in a solvate after excitation of an activa- 
tion center with light can be allowed for also on the basis of 
the above model. It appears in particular in the time depend- 
ence of the temperature T and, consequently, in the time 
dependence of the interaction constants A ( T )  
= p,R ,, /kT(r) ,  which are given by the solution of the 

problem of a point pulsed heat source in the surrounding 
thermostat. In the final analysis this mechanism is also due 
to the induced torque M ( r ) .  

FIG. 5. Isochronous curves representing the anisotropy r for the case 
when p = 1 and r = + 0.3. The numbers alongside the curves identify 
the corresponding moments in time T. An increase in T makes the depend- 
ence of r on the angle a between the absorption and luminescence oscilla- 
tors stronger (this is true right up to TZ 1 ) and then the slope of the curves 
decreases and the curves themselves approach the abscissa with increasing 
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