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An analysis is made of steady-state and dynamic transformations of Gaussian electromagnetic 
waves, propagating along an interface between linear and nonlinear media, into nonlinear surface 
waves (NSWs) . A steady-state model (for a medium with a cubic nonlinearity) is used to 
demonstrate the feasibility of excitation of a stable NSW in two ways: direct excitation of an NSW 
by optimization of the beam parameters and excitation of an unstable NSW followed by its 
transformation into a stable wave. A relationship between the parameters of an NSW and the 
parameters of Gaussian beams is established. The excitation efficiency is determined numerically; 
it is close to 100% for optimal beams. A dynamic model is used to investigate the excitation of an 
NSW at an interface with a medium having a relaxation nonlinearity. It is shown that in the case 
of direct excitation we can reach steady-state conditions corresponding to the creation of an 
NSW. The characteristic excitation time is determined. It is shown that an attempt to excite an 
NSW via an unstable branch as a result of transformation creates a steady-state beam which is 
emitted by the interface and enters the linear medium. 

1. INTRODUCTION 

A classic example of an open system guiding electro- 
magnetic radiation is a planar interface between two insulat- 
ing media. In the case of linear and isotropic media the TE 
radiation is not confined to the interface. However, if the 
permittivity of the medium which is less dense increases in 
the presence of the field (i.e., in the case of a medium with a 
focusing nonlinearity), it is possible to use this property to 
generate a nonlinear surface wave (NSW) which represents 
a solution of the Maxwell equations localized at an interface 
between linear and nonlinear media (Refs. 1 and 2) .  I )  

It would be desirable to determine the conditions for 
generation of NSWs because of the interest in the interaction 
of high-intensity beams incident on an interface between lin- 
ear and nonlinear media at angles exceeding the total inter- 
nal reflection angle"' and also because of the current activ- 
ity in the development of surface polariton spectroscopy 
(see Ref. 9 and the literature cited there). 

An analysis of the dispersion relationship for NSWs 
shows that at an interface between linear and nonlinear me- 
dia we can expect propagation of two waves with the same 
running power but with different propagation constants. 
Which of these two waves is obtained can be determined by 
investigating their stability and finding the efficiencies of the 
various excitation methods. A numerical investigation of the 
stability of NSWs in the presence of perturbations of their 
transverse structure has showns that waves with propaga- 
tion constant increasing as a function of the power are stable. 

The ability of electromagnetic beams to excite NSWs 
has been analyzed theoretically on many occasions for the 
case of Gaussian beams incident on an interface at angles 
exceeding the total reflection angle;ba however, contradic- 
tory conclusions on the possibility of exciting such waves 
were reached in Refs. 6 and 8, on the one hand, and in Ref. 7, 
on the other. This happened partly because the properties of 
NSWs have not been investigated sufficiently thoroughly 

and it has been found subsequently that beams with optimal 
parameters are needed for the excitation of NSWs. A meth- 
od for determining the parameters ofthese beams by numeri- 
cal calculation is proposed in Ref. 8. Deviation of the beam 
parameters from the optimal conditions leads to the appear- 
ance of reflected and transmitted beams, which usually split 
into separate filaments."' 

Our aim was to investigate steady-state and dynamic 
transformations of a Gaussian beam propagating along an 
interface between two media into an NSW. 

We formulate the problem in Sec. 2. A steady-state 
model is discussed in Sec. 3 in the approximation of a cubic 
nonlinearity which is used to describe media with Kerr, pon- 
deromotive, thermal, relativistic, and other nonlinear mech- 
anisms. In Sec. 4, we use the method of momentsI0 to obtain 
analytic estimates of the parameters of optimal beams. In 
Sec. 5 we compare the analytic results with those obtained by 
numerical calculations. The dynamics of excitation of an 
NSW at an interface with a nonlinear medium with a relaxa- 
tion-type nonlinearity, used to describe the Kerr nonlinear- 
ity (see, for example, Refs. 1 1 and 12 1 ) and also of the pon- 
deromotive nonlinearity in an isothermal p l a ~ m a , ' ~ . ' ~  is 
studied for the first time in Sec. 6 .  The conclusions deal with 
the applicability of the results to real physical systems. 

This investigation may be useful in analyzing the excita- 
tion of nonlinear steady-state and dynamic structures and of 
more complex systems guiding electromagnetic radi- 
ation."-Is 

2. FORMULATION OF THE PROBLEM 

We assume that the half-space x < 0 is filled with a me- 
dium characterized by a permittivity E = &,, whereas the 
half-space x > 0 is filled by a nonlinear medium E = E, + AE, 
where AE is the wave-induced perturbation of the permittivi- 
ty which can be described by 
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Here E, is a characteristic nonlinear field and T is the relaxa- 
tion time of a perturbatim ( T  = 0 corresponds to a nonlin- 
earity with an instantaneous response). For z = 0, the field 
distribution oscillates with time and, for example, it can be in 
the form of a Gaussian beam2' 

E=yoEo (t) exp[ - (x-x,)'/20'] exp (-tot). (2)  

We have to determine the conditions under which NSWs are 
excited when the transformation (2)  takes place in a region 
defined by z > 0 at times t > 0. 

It is natural to begin an analysis of the possibility of 
excitation of NSWs by Gaussian beams with the steady- 
states case. 

3. MAIN EQUATIONS IN THE STEADY-STATE 
APPROXIMATION 

In the steady-state case the relationship between a non- 
linear perturbation of the permittivity and the field causing 
the perturbation is described, as in the case of a medium with 
an instantaneous-response nonlinearity, by an expression 
derived from Eq. ( 1 ) subject to dA~/dt  = 0: 

We seek the solution of the wave equation for the field in 
the form 

Then, the amplitude E(x, z), which varies smoothly on a 
scale of 1, = 2n/h, is described by the following average 
equations: 

where k, = o/c is the wave number and c is the velocity of 
light in vacuum. 

We supplement Eqs. (5) and (6) by boundary condi- 
tions which specify continuity of the tangential components 
of the electric field E, and of the magnetic field Hz of the 
wave and reduce, in the selected geometry, to the continuity 
of the function E and its derivative dE/dx at x = 0. The 
solutions localized in x can be selected by imposing the con- 
dition that the field vanishes in the limit 1x1 -. oo . 

We consider the case when h > k :E, and E ,  > cZ, and 
we go over to dimensionless variables in Eqs. (5) and (6)  by 
means of the following expressions: 

X = X ( ~ ~ - ~ ~ ~ E ~ ) " ' ,  Z=Z (h2-kOzsi)/2h, 

E=koE/E,(h"ko"ei)'/', a2= (h2-k,2~,)/(h2-ko%e,). ('1 
Then Eqs. (5) and (6) become 

The boundary conditions remain the same when expressed 
in terms of dimensionless variables. 

Equations (8 )  and (9) with these boundary conditions 
have a solution homogeneous in z (dE /dz = 0) : 

E =  { t2(a2-1) ]lh exp(x), XCO, 
2"a ch-'[a (x-x,) 1, x>0, (10) 

which is called a nonlinear surface wave. '.* When the propa- 
gation constant differs from H by an amount such that 
Ah <h, we can seek the solution of Eqs. (8)  and (9)  in the 
form 

E=A (x) exp (iyz) , 
where the precision of the average description is ensured by 
imposing the following conditions on the dimensionless 
propagation constant y: 

Then, we can find A (x ) from 

which have the following solution that satisfies the boundary 
conditions: 

[2(a2-l)]'"exp[ (l+y)'"x], x<O, 

2'"(a2+y)'hch-i[(a2 + y ) ' i 2 ( ~  - xo)1, x>[) (14) 

where 

Equation (14) describes an NSW with a propagation con- 
stant different from that used in averaging the wave equa- 
tion. Naturally, Eq. ( 14) reduces to Eq. ( 10) if y = 0. 

It should be noted that in terms of the variables 

we can reduce Eqs. ( 12) and ( 13) to Eqs. (8)  and (9) where 
dE /dz = 0 if we introduce a, such that 

a n = [ ( a z + y ) / ( ~ + ~ ) ]  ". (15) 

We can therefore say that the properties of NSWs are 
governed by the only parameter a,, which can be expressed 
in terms of linear parts of the permittivities of the media and 
its propagation constant. 

In the case of the field distributions (8)  and (9)  local- 
ized in x we have 

co 

I =I I E (x) 1 '  dx = const, 
-m 

(16) 

which is proportional to the integrated power in the wave. In 
the case of an NSW with y#O, this integral is 

a2-I 
J = - -  + 2[ (l+y)'"+(a2+y) "I 

( 1.-+y) 'I2 
(17) 

and one value of Jand a corresponds to two possible values 
of y. The results of an investigation of the stability of NSWs 
carried out in Ref. 8 shows that the waves characterized by 
a, < 2 are stable, whereas those with a, > 2 are unstable. 
Since, asiseasily shown, we havedJ/dy> Oifa, < 2 anddJ/ 
dy<O if a, >2, this NSW stability criterion agrees, as 
shown in Ref. 8, with the Kolokolov-Vakhitov criterion for 
self-focused solutions in an infinite medium. l9 
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4. ANALYSIS OF STEADY-STATE EXCITATION OF 
NONLINEAR SURFACE WAVES 

We can estimate analytically the parameters of the 
Gaussian beams which are optimal for the excitation of 
NSWs on the basis of the method of moments used in Ref. 10 
to find the field distribution. For example, the equation for 
the first moment of the field distribution (center-of-mass 
position) 

m 

z =J X I E ( X )  I2ax 
- m 

(18) 

follows from Eqs. (8) and (9)  and can be written in the form 

where Eb = /E (x  = O)(. It  follows from Eq. (19) that a 
beam moves as a whole along an interface if the field E, 
excited at this interface is equal to the field of an NSW at the 
same interface, i.e., if 

We can easily show that of the two equilibrium positions of a 
beam with a Gaussian profile the stable position is that 
which corresponds to a positive amplitude gradient, i.e., to a 
beam with the field maximum in a nonlinear medium. We 
note that if E, > E,, the beam is "attracted" to the nonlinear 
medium. 

The definition of the path of a Gaussian beam of a given 
width within the framework of Eq. ( 19) reduces to an analy- 
sis of the potential 

as a function of the beam amplitude (Figs. la-ld). Here, 

is the integrated beam power and 
2 

0 ( x ) = ( 2 n ) - " j  e r p ( - y 2 / 2 ) d y  

is the normal distribution function, whereas the beam pa- 
rameters are assumed to be dimensionless here and later. 
The main results of our analysis are as follows. 

The potential well exists if x>O, provided E, > E, 
(Figs. lb, lc, and Id).  The condition under which such a 
well traps beams described by Eq. (2)  and characterized by 
Ix, ( g a i s  (Fig. lc)  

This condition can be refined for beams with the field maxi- 
mum in a nonlinear medium (x, < 0),  as shown in Fig. lb: 

In the case of beams propagating in a nonlinear medium (x, 
> 0) there are no restrictions on the amplitude (Fig. Id). In 
the case of beam localization it is necessary to ensure that it is 
close to the bottom of a potential well of width - a ,  while the 
position of the maximum is 

xc=2"o (-ln (E , /Eo)  )'". 
However, if x, >a (E,& E, ) we cannot ignore the change in 
a (z)  in an analysis of U(x ,  ) and we have to provide a self- 

consistent description of the evolution of the quantities x, 
(z) and a(z) .  

Of greatest interest from the point of view of excitation 
of NSWs by beams incident on an interface is an analysis of 
the first two cases when a considerable proportion of the 
beam power is concentrated initially in the linear medium. 

In this case an analysis of the equation for the second 
moment of the field distribution (square of the effective 
beam width) 

m m 

- 
at,,=! x'~E~'~x 

- m 
(26) 

makes it possible to write down the condition that the beam 
confined to the interface does not experience spreading: 

which can be rewritten in the form 

o>2"/Q," (2xc /o )  E,. (28) 

It should be noted that the integrated power in a beam 
deduced from Eqs. (22), (23), (27), and (28) exceeds the 
NSW excitation threshold: 

On the other hand, there is naturally a limit to a from above. 
The maximum value of a can be estimated, for example, 
from the condition that an initial distribution (2) "creates" 
in a homogeneous nonlinear medium only one steady-state 
channel (soliton) :" 

If Ix, I (a ,  the inequalities of Eqs. (28) and (30) can be 
written in the form 

FIG. 1.  Profiles of the potential U ( x , )  plotted as a function of the field 
amplitude in a Gaussian beam: 1 )  E, < E,; b) E, < Eo < 1.13 E,; c)  E, 
< E ,  < 2 1 / ~ ~ , ; d )  E ~ > E , .  
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en. The initial (z  = 0) field distribution was selected in the 
form of either a Gaussian beam field when investigation was 
made of the transformation of the beam into NSWs or an 
NSW field whose stability was investigated. 

The parameters of a Gaussian beam were selected by 
numerical calculations based on the above scheme using 
analytic estimates given by Eqs. (3 1 ) and (32). Figure 3a 
shows a variant demonstrating the trapping of a beam in an 
NSW corresponding to a stable branch. 

fc When use was made of a beam with the parameters sat- 
isfying the conditions for the excitation of NSWs belonging 
to the unstable branch (a > 2), it was found that NSWs were 
generated again for z )  1. It is obvious that these waves are 
stable and the values of y for them satisfy a, < 2 (see Fig. 
3b). The relationship between the parameters of an NSW 
and the parameters of a beam is then obtained by assuming 
that this NSW is a result of decay of an unstable NSW creat- 
ed by the beam. This assumption was confirmed also in an 
investigation (by the numerical scheme outlined above) of 
the nonlinear stage of the instability of an NSW. It was found 

f c Z ~ E ,  E, that typical evolution of an unstable NSW is its transforma- 

FIG. 2. Ranges of the parameters of the optimal beams. Here, tion into a stable NSW retaining, to within a few percent, the 
a I - - a - 1 - a 2 - - 2314(a' - 1 )'I2 , J I -  - 2'I4(a2 - 1 )1lZ, integrated power J, which agrees with the-results of Ref. 8. 
J2 = 8v(a2 - I ) ' /> .  The condition that J be conserved in the course of such a 

transformation readily yields the following expression for 
the propagation constant y of a stable NSW: 

Failure to obey the conditions for the excitation of NSWs 
results in the emission of the beams from the interface. Their 
subsequent evolution is described by the familiar solutions of 
the homogeneous linear and nonlinear problems. 

Figures 2a and 2b give the ranges of the amplitudes and 
widths and the amplitudes and powers of the beams which 
are optimal for the excitation of nonlinear surface  wave^.^' 

The above analysis is supported by numerical calcula- 
tions reported below. 

5. NUMERICALCALCULATIONS OF PARAMETERS OF 
STEADY-STATE EXCITATION OF NONLINEAR SURFACE 
WAVES 

Our numerical calculations were carried out using the 
difference approximation for Eqs. (8) and (9)  using with 
the Crank-Nicholson scheme. The passage of the beams to 
infinity was modeled by smooth introduction of decay of the 
field [addition of a term iP(x)E to Eqs. (8) and (9)  at the 
limits of the interval - L <x < L where the calculation was 
carried out]. The length of the interval L and the decay pa- 
rameters P ( x )  were selected from the condition that the 
electromagnetic wave not reflect and that it decay sufficient- 
ly at the limits of the interval, so that zero boundary condi- 
tions can be used in Eqs. (8) and (9). The boundary between 
the media was placed in the middle of the calculated interval. 
The selected scheme ensured the continuity of E and dE /ax 
everywhere, including at the interface between the rpedia, so 
that the boundary conditions were satisfied "automatically" 
at x = 0. In each medium the same number of sites was tak- 

The expression (33) can be generalized'to the case when the 
value of y for the unstable branch differs from zero. It should 

FIG. 3. Initial (z = 0, curve 1) and "final" (zp 1, curve2) distributionsof 
the field amplitude in the cad of direct excitation of a stable NSW 
( a  = 2"', y = 0.15, a, < a )  by a beam with the parameters E,, = 2"', 
a = 1 . 7 , ~ ~  = 0 (a) andexcitationviaanunstablebranch ( a  = 3, y = 4.8, 
a, =1.54,Eo=4,a=O.57,x ,=O) (b).  
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FIG. 4. Results of calculations of the excitation efficiency q (a )  for beams 
described by Eq. (35) (curve 1 )  and the dependence q(a) for E, = E,, x ,  
= x,, and a = 2"' (curve 2), and a = 3 (curve 3). 

be noted that variation of the spectrum of initial perturba- 
tions imposed on an unstable NSW can yield the regime of 
Ref. 8 with emission of an NSW into a linear medium, which 
however is not observed when a wave is excited by a beam 
described by Eq. (2). 

The excitation efficiency can be represented in a natural 
manner by the ratio of the integrated power J in the wave to 
the integrated power in an exciting beam J,  : 

Curve 1 in Fig. 4 shows the dependence ~ ( a )  for beams with 
the following parameters: 

(beam width is deduced from the condition that the integrat- 
ed power in a beam equal to that of an NSW with the param- 
eters a = 0 and y = 0). The discontinuity in the dependence 
~ ( a )  is due to the fact that we are in the vicinity of the limit 
of trapping of a beam by a wave defined by Eq. (27) and the 
beam width is only a few percent higher than the maximum 
permissible value {see the inequality of Eq. (28) 1. For ex- 
ample, if P = E,, then a is given by Eq. (33) and x, = 0 
represents the limiting points of a discontinuity on a which 
assume the following values: a,  = 1.37, a, = 3.41. In gen- 
eral, the excitation efficiency is a function of given param- 
eters and can be improved by optimization. By way of exam- 
ple, Fig. 4 gives the q ( a )  for E, = E, and c, = 0 when 
a = 2'12 (curve 2)  and a = 3 (curve 3), demonstrating that 
the maximum values of 7 (a) for beams with the critical am- 
plitude are observed near the limits of the trapping interval. 

6. DYNAMIC EXCITATION OF NONLINEAR SURFACE WAVES 

We investigate the dynamics of excitation of NSWs by 
Gaussian beams on the assumption that the characteristic 
relaxation time of the nonlinear medium is r%r,, which is 
the time taken to establish an electromagnetic field (or, in 
the adopted dimensionless units it amounts to r> 1). This 
condition makes it possible to describe the field by steady- 
state equations which, in the normalization described by Eq. 
(7) are 

and we can retain the time derivative only in the equation for 
AE: 

d AE 
- + A E = I E J ~ ,  
at 

(37) 

where we shall introduce a new time t ,  = t / r  in the nonlin- 
ear perturbation 

k,2 AE 
A& = 

(h2-ko2&,) . 
The boundary conditions for the field equations are the same 
in the dynamic formulation of the problem as in the steady- 
state case. 

To integrate Eqs. (26) and (37) we used an implicit 
scheme based on the use of the discrete Fourier transforma- 
tion. Since the spectral method imposes artificial boundary 
conditions of periodicity, the limits of the calculation inter- 
val L ( - L<x(L) were selected so that the fields at the 
limits were small and had practically no influence on the 
solution near the interface between two media. The reflec- 
tion effects can be suppressed, as in the calculations carried 
out using the steady-state model, by introducing artificial 
decay which is weak near the interface and rises smoothly to 
the edges of the calculation interval. To smooth the spectra 
of the solution the discontinuity of the permittivity is 
"smeared out" by means of a transition function 
[tan- ' (Sx) , S > 1 1 .  The field of a Gaussian beam described 
by Eq. (2) grows smoothly with time at the front of the layer 
(X = 0) .  There are no initial perturbations of the permittivi- 
ty. 

An important problem in the dynamic formulation is 
the determination of the steady-state regimes established 
above. Earlier calculations suggest that the use of the relaxa- 
tion equation for the description of the evolution of a nonfin- 
ear perturbation results typically in the attainment of the 
steady-state situation for t>  1, although initially the tran- 
sient regime may be very c~mplex ."~ '~  If we allow for the 
possible attainment of a steady state, the parameters of the 
beams used to excite NSWs can be selected in a natural man- 
ner on the basis of the results of the steady-state problem. 
Figures 5a-5c give the data on the excitation of NSWs dem- 
onstrating the dynamics of the field and of the perturbation E 

corresponding to the trapping of such a beam by an NSW. 
The characteristic excitation time T of an NSW, which we 
define as the time taken for the wave intensity to reach a 
certain fraction of the steady-state value, can be approximat- 
ed satisfactorily for the intensity levels 0.4-0.9 by the expres- 
sion T = k, L,, where k, -- 1.5 (L, s 1). The excitation time 
can be defined in terms of the ratio of the integrated energy 
flux through a section with a coordinate L, (which is trans- 
ferred by the NSW) and the flux through a section charac- 
terized by z = 0 (transferred by the beam): 

In this case the result gives a good fit to the straight line 
T = k2 L,, where k, z 2.5. It should be noted that estimates 
characterized by k,, z 1 can be obtained directly assuming 
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FIG. 5. Dynamics of excitation of the stable branch of a nonlinear surface FIG. 6.  Excitation of the unstable branch of a nonlinear surface wave 
wave ( a  = 2"', Eo = E,, u = 1.7, x,  = 0). ( a  = 2'12, Eo = E,, u = 1.7, x,  = 0)  resulting in the emission of radiation 

into the linear medium. 

that the medium-field system evolves simply both in space 
and time. 

Attempts to excite an NSW by excitation of the unsta- 
ble branch do not give the desired result. The steady-state 
regimes obtained in this case correspond to the emission of 
beams in a linear medium (Figs. 6a-6c, where a = 2.25, E, 
= 3.0, a = 0.75, andx, = 0.75).4' Note that in all these var- 

iants of calculations of the dynamics of the unstable branch 
of NSWs, subject to various initial conditions and on the 
assumption of a nonlinear perturbation of the permittivity, 
an NSW is emitted into the linear medium, but further inves- 
tigations are needed to check whether this is generally valid. 

7. CONCLUSIONS 

An important topic outside the framework of our mod- 
els is the influence of the finite beam width in the transverse 
(y) direction on the stability and excitation of NSWs. It is 
known that in a homogeneous nonlinear medium an 
allowance for the two-dimensional localization of the beam 
causes it to collapse in a finite distance. lo It is shown in Ref. 
21 that a solution homogeneous in y is linearly unstable in 
the presence of perturbations in this direction and should 
split into two-dimensionally confined beams with a scale 
corresponding to the maximum unstable growth rate. 
Steady-state two-dimensional localized beams are obtained 

672 Sov. Phys. JETP 71 (4), October 1990 Bogomolov et al. 672 



in Ref. 18 and these are confined to a layer of a linear insula- 
tor located within a nonlinear medium characterized by a 
cubic nonlinearity and saturation of this nonlinearity (these 
beams include also an asymmetric mode of this waveguide 
whose structure is close to that of a beam confined by the sole 
interface). The dependence of the power of this beam on the 
propagation constant in a medium with saturated nonlinear 
suggests that it should be stable. 

These theoretical results may be subjected to an experi- 
mental check, for example, at the interface between crystal- 
line quartz and nitrobenzene whose permittivities differ in 
the optical range anywhere between the third and fifth deci- 
mal point. The threshold integrated power for the excitation 
of NSWs is - lo6-lo8 W/m. 

"In Ref. 3 it is suggested that these waves be called nonlinear surface 
polaritons. 

"The initial condition for the field is also the NSW field. 
"The parameters of the optima1 beams incident on an interface8differ by 

less than a factor of 2 from the parameters of the optimal beams propa- 
gating along an interface between two media. 

4'The parameters of NSWs excited by this beam under steady-state condi- 
tions are a = 2.25 and y = 2.8, which corresponds to J = 11.6 for 
v =  97%. 
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