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The mass operator Mof the electron in a homogeneous magnetic field H close to the critical field 
Ho = 4.41 X 1013 Oe is investigated. The real part ofM (containing information about the 
anomalous magnetic moment of the electron) and the imaginary part of M (related to the 
probability of emission ) are calculated in the form of series in powers of 7 = H /Ho for all values 
of the principal quantum number n. For the emission intensity a general expression valid for 
arbitrary 7 and n is obtained, together with its asymptotic expansions. It is shown that the series 
for 7 & 1 is asymptotic. The region 7 2 1 is analyzed, and, in particular, the radiative corrections 
to the ground state for 7 % 1 are calculated to within algebraic corrections. Explicit expressions 
are obtained for the intensity and probability of emission in this region for n) 1. 

1. INTRODUCTION 

It is generally accepted that the magnetic field of neu- 
tron stars (pulsars) attains values H-4X 1012 Oe (see, e.g., 
Ref. l ) ,  close to the critical field Ho 
= m2/e = (m2c3/efi) = 4.41 X 1013 Oe. It has been estab- 
lished recently that in flaring y-ray sources, which, evident- 
ly, are also neutron stars, the magnetic field has magnitude 
H - 2 x  1012 Oe (Ref. 2).  In view of this, it seems worth- 
while to obtain an adequate description of radiative effects in 
such fields. These effects include the emission, and also cor- 
rections to the mass and to the anomalous magnetic mo- 
ment. In other words, we are speaking of the determination 
of the corrections - 7 = H /Ho to the formulas of quasiclas- 
sical quantum electrodynamics in an external field,3 which 
gives a simple and effective description of electromagnetic 
phenomena that is exact in the parameterx = y7 ( y = d m )  
and ignores terms proportional to 7. 

Since the characteristic lengths of formation of the pro- 
cesses indicated above ( If - /1 , /~)  are much shorter than the 
scale of the gradient of the magnetic field of a neutron star, 
the calculation can be performed assuming a constant mag- 
netic field H. An exact expression for the mass operator of 
the electron to order cr in a constant magnetic field was ob- 
tained in Refs. 4 and 5. It is a double integral of a surprisingly 
compact expression, which, however, contains oscillating 
functions. For this reason, direct use of this expression for 
the calculation of radiative effects turns out to be extremely 
difficult. 

In this paper, we perform the expansion of the mass 
operator and calculate corrections to the quasiclassical ap- 
proximation for arbitrary values of the parameter y. The 
results are expressed in terms of single integrals and make it 
easy to follow the structure of the mass operator as one 
passes from the nonrelativistic to the ultrarelativistic limit. 
For the emission intensity we obtain an exact expression that 
is a function of 7 and the quantum number n. Using this 
expression, we find asymptotic expansions of the intensity in 
various regions. The region 17 2 1 for n$1 is investigated 
separately, as is the region 77> 1, which is of undoubted theo- 
retical interest. The correction to the electron mass in the 
ground state n = 0 in an ultrastrong field (77% 1 ) is calculat- 
ed to a finite order in the power-series expansion. 

2.THE MASS OPERATOR IN FIELDS BELOW THE CRITICAL 
FIELD 

We use the expression of diagonal form obtained in Ref. 
5 for the mass operator of the electron in a homogeneous 
magnetic field: 

(1) 

Here 

a ( x )  = arctg uc ( x )  
x ( 1 - u s ( x ) )  ' 

sin x  
c ( x ) = I - c o s x ,  s ( x ) = l - - ;  

X 

For 7 & 1, values ux 5 7 & 1 make a contribution to the inte- 
gral ( 1 ). Expanding the functions a ( x )  and A - ' (x)  in the 
quantity ux gives 

u3c"x) 
a ( x )  - - uC [ 1+us ( x )  + u2s2 ( x )  ] - -- 

x  35: ' 

A-' (x) c 1 4 - 2 u ( l - u ) s ( x )  

The possibility of further expansion of the exponential in ( 1 ) 
is connected with the magnitude of the parameter p 7 2 = ~ 2 .  
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For p 5 1 and q ( 1 the parameter x is always small. In the 
ultrarelativistic limit ( p  % 1 ) a contribution to the integral 
( 1 ) is given by values x 5 l /p"2 4 1; then we have 
p [a(x) - ux/2 ] /77 - u3x3p / q  SPq2 = x 2 ,  and the expan- 
sion of the corresponding exponential can be performed only 
for x 4 1. Since the limit p 1 has been well studied for all 
values of the parameterx (see, e.g., Ref. 3 ) ,  we shall consid- 
er the case x 4 1 for arbitrary values of the parameter p. In 
this case, keeping terms -# inclusive, we obtain 

As is well known, the imaginary part of the mass opera- 
tor is connected with the probability of emission of a photon 
by the following relation: 

2 
W=--1mM. ( 5  

Y 
A contribution to the integral over u for the imaginary part 
of the mass operator is given by values u ( 1, and the region 
u - 1 is exponentially suppressed. This makes it possible to 
extend the integral over u to a,, which significantly simpli- 
fies the subsequent calculations. The physical meaning of the 
exponential suppression of the emission probability for u - 1 
is as follows. Since the quantity Mis invariant under Lorentz 
transformations, we go over to a reference frame in which 
the longitudinal (along the magnetic field) momentum is 
sufficiently large (p , ,  / m  -+ ). Here, both the magnitude H 
of the magnetic field and the value of the parameter 
p = p : / m 2  remain unchanged. However, in this frame we 
have y% 1 and the variable u is uniquely related to the fre- 
quency of the emitted photon by u =a/&. On the other 

o 20 4-0 62 BG / 

FIG. 1. 

hand, it is well known that in the classical region, for ~4 1, 
the emission of frequencies w - E  is exponentially sup- 
pressed. Performing the integration over u with allowance 
for what has been said above, we obtain for the probability of 
emission of a photon the following expression (see the Ap- 
pendix) : 

where 

Plots of the functions f , f , ,  and f2  are presented in Fig. 
1. The calculation of Re M is a more complicated problem, 
since a contribution to the real part of M comes from the 
entire region of integration over the variable u. After the 
elementary integrals over u have been taken, the remaining 
integral over x in the region q 4 x  ( 1 contains terms propor- 
tional to dx /x ,  which lead to the appearance in Re M of the 
factor In( 1 / 7 7 ) .  To identify explicitly the terms with the log- 
arithm it is convenient to divide the range of integration over 
x into two parts, choosing as their boundary a value x, satis- 
fying the condition 1 S x ,  % q .  As a result, we obtain (see the 
Appendix) 

where 
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We find the mass operator in the nonrelativistic limit 
p ( 1, keeping terms - $. The corresponding expansions of 
the functions f and e, in this case have the form 

Taking into account also that y, ;= 1 + p/2, we obtain 

We note that in the leading order in 7 the emission probabili- 
ty is determined entirely by the value of the orbital quantum 
number no and does not depend on the electron spin. For 
Re M, which determines the corrections to the mass and also 
the anomalous magnetic moment of the electron, we have 

The expansions ( 10) and ( 11 ) coincide with the asymptotic 
forms obtained in Ref. 4. 

The asymptotic forms of the functions f forp) 1 are as 
follows: 

Substituting these values into Eq. (6), we obtain 

We give the corresponding asymptotic forms of the func- 
tions ~ ( p )  : 

We than have the following expression for Re M for p )  1: 

The asymptotic forms of Re M for n - 1 [see ( 11 ) ] and for 
p )  1 [see ( 15) ] have been calculated previously by different 
methods and were independent expressions. Now, however, 
Eq. (8)-gives a unified description of the entire region 7 & 1, 
and, in particular, describes the behavior of the anomalous 
magnetic moment of the electron in a field. 

3. THE EMISSION INTENSITY 

Important characteristics of the emission are its spec- 
tral composition and intensity. In the operator technique, 
the differential probabilities of processes are usually ob- 
tained with the aid of projection operators onto the corre- 
sponding states. We distinguish states with a definite photon 
frequency w and with a definite projection of the photon 
momentum onto the axis e, IIH: 

The calculation of the mass operator in Ref. 5 was per- 
formed by means of an exponential parametrization of the 
squared electron propagator and the photon propagator. In 
the integra~d in the integral over d 4k we shall be interested 
in thetermkexp( i sX) ,whereX= (P2-  2 8 k ) u  + k2.  
Its product with the factor exp ( - ikg) can be represented in 
the form 

where x = k - 6 /2s. After the integration ovFr d x the ex- 
tra term in the matrix structure has the form {(c, + c,aF); 
in a magnetic field, the matrices $ and aF commute. The 
average value of the additional term in the mass operator on 
the mass shell can be calculated using the following anticom- 
mutators: 

Noting that the eigenvalue of the operator R is gw, we 
obtain 

When (19) is taken into account the integral over g of the 
expression ( 17) is Gaussian: 
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1 ie2 By multiplying dWby w we obtain the spectral distribution - j d ' ~  ( I .  ~ ~ ) e r p ( i p g - i u ~  - -) 
( 2 4 '  4s of the emission intensity in the undulator limit. Performing 

the integration over w(u), we obtain the following expres- 
= b ( l ,  is) e ~ p [ l ( q - u p ) ~ s ] ,  p = (e,O,O, p , ) .  (20) sion for the total emission intensity: 

n 
As a result, we obtain for the mass operator the following 

m 1 

iam2 dx udu 
covariant expression: I = -  J -  J T e x p { - E + q a ( z ) - z ] }  

w I 2n -_ x-10 , 29 9  2  
ad2q dx du iux ix(q-up)' 

d ~ = -  J - J u h e x p [ - - +  29 2qum2 I x { [ ,  - ( l f p ) u  - 31 (c+u(s-c)  1 
2n2m 29 , x 

i rl 
x { e x p  [ P [ $ ( L ( ~ ) - $ ) ] [ ( ~  -2-) [c+u(s-c)  1 +aitrlu [ I - .  ----I ( I + P ) x  

+icylu ( I -, E y ) ( :  -- sinx +it uy , - -  Pq ) (1-s )  ( me, 

The simplest form of the spectral distribution of the 
emission probability for arbitrary values of the parameter p 
is obtained in the infinite-momentum frame (p, - rn ). (We 
note that for p , / m ,  1 the classical motion of the particle in 
the magnetic field is the same as in a spiral undulator.) In 
this approximation we have y = d m )  1 and a contribution 
to the integral over d 2q is given by the values q, - q, -go/"/. 
With relativistic accuracy, we obtain 

We multiply the expression for dMby the factor i / y  and 
extend the integration over x from - rn to rn . In the theory 
of the emission, in the integration over the angles of emission 
of the photon [or, as in (21), over d 2q] ,  integrals of the 
following form arise: 

We note that the expression (23) has an invariant form and 
does not depend on the reference frame in which the calcula- 
tions were performed. 

We now perform the expansion of the emission intensity 
in powers of g for g < 1, X 2  = pg2 < 1, as was done above for 
the probability of the process. A s  a result, we have (see the 
Appendix 

+ ~ 1 ~ [ 8 ( 4 ~ + 1 ) ( ~ + ~ ) + 6 ( 1 + p ) ' " l 5 ( ~ ) ] } .  (24) 

where 

In the expression for the emission probability the subtrac- 
tion that is contained in the mass operator ( 1 ), and that also x2 

4-3 - -(12p+7) 
arises in the integration over d 'q, can be ensured by displac- 4 
ing the contour of integration a little below the real axis. 
Changing now in (21) to the variables go - q, 1 c 3 
zq2/2q,, q, w and performing the integration over d *q + - l + ~  [ q l - s  p3 - -+ x2 s (1 - s ) (  I - - ( l + p ) ) )  P 

and the variable u, we obtain for the spectral distribution of 
the emission probability the following expression: 

1 xZ 
rx -- 

iam2a'w "sio{[ + -(15p+11) I}. 
2 24 

(25) 
dW7= -- 

2n.5"- x du 
Plots of the functionsf, and f, are presented in Fig. 2. 

In the limit of nonrelativistic transverse motion (p  < 1 ), we 
( I + p ) x  du have 

2 11 
I , ( p ) = - - - -  

16 
P7 f 5 ( O ) = - - .  

3 
(26) 

In this case, with allowance for corrections - 7 ,  we obtain 
(22) for the emission intensity the following expression: 
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FIG. 2. 

In the case of ultrarelativistic transverse motion (p)  1 ), but 
when the parameterx = 7p"* is nevertheless small (x< 1 ), 
we obtain 

- 

We note that the expansions (24), (27), and (28) are 
asymptotic, and this leads to large magnitudes of the nu- 
merical coefficients in them and, correspondingly, decreases 
their ranges of applicability. For example, in the case p ) 1, 
even for x = 0.1 the emission of unpolarized particles is 
weaker by a factor of approximately 2/3 than the classical 
intensity I,, = 2am2x2/3 (Ref. 6).  For the same reason, for 
7 -0.1 Eq. (27) [i.e., the expansion (24) ] becomes inappli- 
cable, even for the lowest levels (e.g., for no = 1 and 
c=  - 1). 

The characteristics of the emission with a spin flip are of 
great interest, since this process can preferentially polarize 
the particles. The corresponding probability and intensity of 
the emission for nonrelativistic transverse motion (p  4 1 ) 
can be obtained from the expressions ( 10) and (27) by tak- 
ing into account that the desired quantities in this case do not 
depend onp and by setting no = 0 in these expressions. As a 
result, we obtain, e.g., for the probability of emission with a 
spin flip, 

The probability of emission with a spin flip for p)1, xg  1 
can be obtained in quasiclassical theory (see, e.g., Ref. 3): 

Recently, the problem of the radiation from an electron 
in an arbitrary external electromagnetic field has been 
solved with allowance for the first quantum correction.' In 

the emission problem the quantum corrections appear as an 
expansion in powers of the parameters ,y and 7 (if the elec- 
tric field satisfies E = 0). In this sense, a way of finding the 
first term of the expansion i n x  or in 7 was formulated in Ref. 
7. The quasiclassical expressions that we are using are ex- 
act1) i n x  (but require 7 = O), while Eq. ( 1 ) is exact both in 
x and in 7, i.e., contains all quantum effects exactly. It 
should be borne in mind that in our earlier paper5 the mass 
operator (and hence the emission probability) was found in 
a constant external field of arbitrary configuration (with ar- 
bitrary fields H and E), so that the generalization of (1) to 
this case follows directly from Ref. 5. As regards transitions 
with a spin flip, it should be taken into account that the spin- 
flip amplitude is proportional to f i  (more precisely, to 
& / E ) ,  and, consequently, from the outset the expression for 
the probability contains the necessary power of fi. Therefore, 
to calculate the leading term in this case it is sufficient to 
perform the calculations on the classical trajectory. By vir- 
tue of what has been said, the last formula in Ref. 7 agrees 
with that obtained earlier in Ref. 9. 

Above, we considered the regionx < 1, for arbitrary val- 
ues of the parameterp, including the lowest states n - 1. For 
x 2 1 in a weak field (7 4 1 ) the transverse motion of the 
particle is certainly ultrarelativistic (p = x2/v2) 1 ). In this 
case, in the calculation of radiative effects the quasiclassical 
theory of emission first formulated by two of the present 
authors for the case of a (generally speaking) inhomogen- 
eous magnetic field (see Ref. 3) is applicable. In the frame- 
work of this theory3 the anomalous magnetic moment of the 
electron and corrections to the electron mass in an external 
field were considered. Taking into account that the quasi- 
classical theory has been described in detail in textbooks and 
monographs (see, e.g., Refs. 10 and 11 ), we shall not dwell 
on this region ( y (< 1, x 2 1 ), but give only the results. In the 
quasiclassical theory, an integral representation of the mass 
operator that is convenient for obtaining the series in x for 
x 4 1 and in inverse powers of x for ;y ) 1 has the form 

+ 36s(s+ r ( -+- i) r ( -+- ) ]  . (31) 
sin (ns /2 )  

For the emission intensity, correspondingly, we have 

am2 1 I=-- 1 ds ( 3 ~ )  '+' -- 
2412 22n'i -o-,, 

[ c s  (s+2) r (+ + +) 
sin ns  

For x < 1, closing the integration contour on the right in the 
expressions (3  1 ) and (32), we obtain asymptotic series in 
powers of X. For X >  1 the contour of integration must be 
closed on the left, the pole singularities of the integrands lie 
at s < 0, and series in inverse powers of x are obtained. 

Since the leading (in p> 1) terms of the expansion of 
the mass operator and of the emission intensity are functions 
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of only the one invariant parameter X, X( 1 series for the 
expressions (31) and (32). An anelysis of the radiative ef- 
fects in the constant-field approximation for x 2 1 can be 
found not only in the monographs Refs. 10 and 11 but also in 
Refs. 6 and 12. For example, in Ref. 12 it is shown that in the 
region 1 S X  5 15 the emission intensity is described by the 
simple formula I=2am2x/15 with accuracy better than 
10%. For such values ofx we haveij z ~ x / ( 2  + 5x), and the 
production of e + e- pairs by the emitted photon in the mag- 
netic field becomes possible. However, the consideration of 
cascade processes lies outside the scope of the present paper. 

4. RADIATIVE EFFECTS IN STRONG FIELDS (HZH,) 

Above, we considered radiative effects in a weak field 
(74 1) for arbitrary values of the quantum number n (pa- 
rameter p )  from n = 0 to n ) 7 - 3. We now turn to the case 
when the magnetic field is of the order of the critical field 
(7 - 1 ), or considerably greater (7 )  1 ). For 7 - 1 the calcu- 
lations of the radiative effects for particles in the lowest Lan- 
dau levels must be carried out numerically. An example of 
such calculations is the computation of the anomalous mag- 
netic moment of the electron carried out in Ref. 13. Simple 
analytical expressions can be obtained for n = 0, 74 1, or for 
large values n 4 1 but without restriction on the parameter 7. 
Corrections to the electron mass in the ground state were 
considered in Refs. 14-16. The most advanced quantitative 
result was obtained in Ref. 16, in which the correction to the 
electron mass was calculated with logarithmic accuracy. In 
Ref. 16, the expression obtained in Ref. 14 for the mass oper- 
ator in the ground state, which agrees with Eq. ( 1 ) for n = 0, 
was used. Below, we perform calculations for this case with 
algebraic accuracy. 

By making use of the relation 

we can represent the expression for M determined by Eq. 
( I ) ,  for n = 0 (6 = I) ,  in the form 

Taking into account that the function S(x)  does not have 
zeros in the fourth quadrant of the plane of the complex 
variablex, we expand the integration contour onto the lower 
semi-axis. As a result, we obtain 

In the case 7 > 1 the region of integration over z can be divid- 
ed conveniently into two regions: z<z,, and Z>Z,, where 
7)zo > 1. In the first region we can replace the common 
exponential factor by unity, and in the second we can neglect 
terms proportional toe ' .  In addition, in the region z>z, we 
divide the range of integration over u into two, with a bound- 
ary u, satisfying the conditions 1 - u, < 1 and 
( 1 - u, )z, ) 1, and carry out the corresponding expansions. 
By separating out the logarithmic terms in explicit form and 
"matching" the integrals in the indicated regions, we obtain 
with algebraic accuracy the following expression for the cor- 

rection to the electron mass in the ground state: 

where 

Let us consider the mass operator of the electron in a 
strong field ( 7  2 1 ) for high excited levels (n = p/27) 1 ). 
In this case, the main contribution to the integral ( 1 ) is de- 
termined by the region that limits the magnitude of the term 
proportional to n in the argument of the exponential; we 
represent this term in the form 

~ ( 1 - c o s  x )  
2n (arctg -2) 

usinx + ( I - u ) x  2 

z t  
--2n (actg - z t  = -2nq ( t )  , 

I-z ( I - t  ctg t )  1 

It can be seen from the expression (38) that for n> 1 the 
main contribution to the integral ( 1 ) is given by the region 
zt 4 1, or u 4 1. In the case zt 4 1 the expansions of the func- 
tions p ( t )  and A - ' in series in this parameter have the form 

t z  
b ( t )  = I-t  ctg t, A-' = - (.1+2zb-z2tZ + . . .). 

sinZ t 

It can be seen from this expansion that for z- 1 a contribu- 
tion is given by values t-n - ( 1, while for t - 1 we have 
z- n - < 1. In the integrand in ( 1 ) the leading term is the 
term proportional to zp, which for t(  1 is of order 
pt2-qn'/3-~2/3, while for z g  1, with allowance for the 
phase volume, it is of orderpzZ -7. A contribution - l/n to 
the mass operator (but not to the emission intensity) is given 
by the region u - l/n 4 1 as well. From this it can be seen that 
the leading term of the expansion in n - "' in the mass opera- 
tor should coincide with the corresponding quasiclassical 
asymptotic form for x) 1 (3 1 ), and the difference can have 
an effect only in the subsequent terms of the expansion. 

Taking into account the analysis performed above, and 
making use of Eqs. (38) and (39), we obtain for the first 
three terms of the expansion of the mass operator the follow- 
ing expressions (see the Appendix) :') 
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(41 

where 
X 

x2=2nq3, gl=b(l+l/p)'", 1 ( ~ )  = ln: - C, 
13 

m 

1 ctht 2 

0 

Plots of the functions k ,  and k ,  are given in Fig. 3. For 
774 1 Eqs. (40) and (41) coincide with the corresponding 
expansion of the integral (3  1 ) in inverse powers of X. 

In the limit of an ultrastrong field (p  9 1 ) we obtain 
from Eqs. (40)-(42) the following expressions for the emis- 
sion probability and the correction to the electron mass:,) 

where a ,  =1.8401, a, =0.3180, a,  =0.1606, and 
a, = 0.2593; and 

FIG. 3. 

where 

The calculation of the emission intensity from Eq. (43) 
is performed in the same way as for the mass operator, with 
the sole difference that the region u 4 1 does not make a con- 
tribution to the expansion terms kept. As a result, we have 

For 7 %  1 we obtain 

where d ,  = 0.4673, d ,  = 0.0202, d,  = 0.0892, and 
d,  = 0.2986. 

From the spin part of the correction to the electron 
mass we can obtain an expression for the anomalous magnet- 
ic moment. In units of a / 2 ~  this expression has the form 

For 77% 1, using the asymptotic form (42) of k, (p), we ob- 
tain 

where c, and c, are defined in Eq. (44) and c, = 0.4120. 
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We note that, with logarithmic accuracy, Eq. ( 4 8 )  is 
also valid for the lower excited levels n> 1 (see Ref. 13 and 
the literature cited therein). It can be seen from the expres- 
sion ( 4 8 )  that for n )  1 the anomalous magnetic moment 
vanishes [$, (7 ,  ) = 01 and has a minimum $, ( n ,  ) at large 
values of the parameter 77, justifying the use of the asympto- 
tic form ( 4 8 )  in this region. Here, 

Using Eq. ( 4 9 )  for n  = 1 and n  = 2, we obtain 
n , ( n =  1)--,6.10, p , ( y , , , ) - - ,  -0.164, n m ( n = 2 ) = ; 6 . 0 3 ,  
and p2  ( 7 ,  ) = - 0.083. These values and the behavior of 
the function ( 4 8 )  for 772 n ,  agree fairly well with the results 
of the numerical calculation of the anomalous magnetic mo- 
ment performed in Ref. 13. 

The expressions obtained above for the emission proba- 
bility and intensity make it possible to estimate the charac- 
teristic frequencies of the emission. In a weak field (7 4 11, 
in the case of nonrelativistic transverse motion ( p  < 1 ), from 
Eqs. ( 10) and ( 16) we obtain for the mean emission frequen- 
cy ( P ,  = O )  

which corresponds to dipole radiation in an oscillator with 
An = 1 .  If the longitudinal momentum is large (p:  k  m Z ) ,  
for the emitted frequencies it is necessary to take the Doppler 
shift into account. In the case when the parameter p  is not 
small, but the parameter x is small in magnitude, the mean 
photon energy is determined by the expression 

For x k  1 the energy of the emitted quanta becomes 
comparable to the electron energy, while for x ) 1 we obtain 
Z Z E U ,  / d l  - ~ / 4 .  In the case of ultrastrong fields ( 7 7  $1 ), in 
the emission from the lowest excited levels the mean energy 
of the photons becomes even larger. Since the coefficients of 
the series in powers of n  - "' for the emission probability and 
intensity in this case fall off quite rapidly, to estimate G we 
can use Eqs. ( 4 3 )  and ( 4 6 )  up to n -  1. For unpolarized 
particles we obtain for 77% 1 the following expression for G: 

APPENDIX 

We illustrate the details of the calculation in the limit 
7 < 1 for the example of the determination of the expansion 
of the mass operator to terms - v2 inclusive. The next terms 
of the expansion in Eqs. ( 6 )  and ( 8  and the corresponding 
expression ( 2 4 )  for the intensity are calculated analogously. 
In accordance with what has been said in the text, we divide 
the range of integration over x  in Eq. ( 1 ) into two: (O,x, ) 
and ( x , ,  w ), where 77 <xO 4 1 .  In the range (O,x, ) we can 
use the expressions ( 3 )  and ( 4 )  and then expand the func- 
tions c ( x )  = 1 - cos x  and s ( x )  = 1 - (sin x ) / x  in x.  
Then, to within the specified accuracy, after the change of 
variable x  - 2 ~ x  the contribution of the region (O,x, ) takes 
the form 

The integrals over x in ( A 1  ) can be expressed in terms of the 
i u x d 2 7  function q ( u )  = ( 1 - e ) / u  and its derivatives with re- 

spect to u. In their turn, the terms containing derivatives of 
the function p ( u )  will be integrated by parts. In the integrat- 
ed terms we can set p ( 0 )  =ix,/277, p ( 1 )  = 1, and 
p  '( 1 ) = - 1. The only nonelementary integral over u  has 
the form 

1 

where we have taken into account that x0/217) 1 ;  C is the 
Euler constant. Performing the integration over u, we find 
for the contribution of the region (O,x, ) 

In the region (x , ,  oo ), by making use of Eqs. ( 3 )  and ( 4 ) ,  
after the substitution u = 277z/x we have 

Sincein (A41 p  = 1 + p(1 - 2 c ( x ) / x Z )  > 1 and the up- 
per limit of the integral over z is equal to x/277>x0/277$ 1, 
within exponentially small terms this integration can be ex- 
tended to co, after which it becomes trivial. Thus, the term 
linear in 77 in Mz has the form 

In the term which is quadratic in the integral over x  di- 
verges as x,  -0 .  Subtracting and adding terms that cancel 
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this divergence, we find to order T,I' 

The last integral in (A6) is, to the required accuracy, equal 
to 

The sum of the expressions (A3), (A5), and (A6) [with 
(A7) taken into account], in which the quantity x, is can- 
celled, as it should be, gives, to within terms -v2, the mass 
operator M, the imaginary part of which is related to the 
emission probability by (5). 

A calculation of the asymptotic form of M for n ) 1 has 
also been performed by means of "matching." As an exam- 
ple, we shall find the spin-independent part of M. We denote 
this part by T. The terms in M proportional to f are calculat- 
ed in exactly the same way. Starting from the analysis per- 
formed [see the discussion after Eqs. (38) and (39) ], we 
divide the integration over u into three ranges: 
(O,u, ) , (u ,  ,u2 ), and (u,,l ). We subject the parameters u, 
and u, to the following conditions: n - ' (u, & 1, and 
- 112 ( 1 - u, ( 1. In the first range we can perform the ex- 

pansion in u, after which we obtain for the contribution of 
this region 

m 

iamq dx exp[-$nuit (1-2c (x)/x2) ] - 1 
=--J-c(x) 

n o  I-2c (x) /x2 

The integral over x in (A8) has also been calculated by 
"matching," with allowance for the condition nu, % 1. In the 

range (u,  ,u, ) a contribution is given only by small values 
x - n - Performing the corresponding expansion, we 
have 

inu(l-u)' x5 + (91-12u+2) 1- $(I - $ u)) 
16.45 

inu (I-U) 

The conditions'imposed on u, and u, make it possible 
to choose a value x,  -4 1 such that nu( 1 - u) 2 ~ :  ) 1, and 
then the integration over x in (A9) can be extended to W .  

Performing this integration [for compactness only, in (A9) 
the function exp( - iux/27) has not been expanded], we 
find 

in which z = u/( l  - U ) T , I ~ ' / ~ .  For the subsequent calcula- 
tion of T,, the terms in (A10) that have a singularity as u -0 
or u - 1 must be transformed by integration by parts, thereby 
isolating the explicit dependence on the matching param- 
eters u, and u2 , after which the integrals reduce to tabulated 
integrals and for the quantity T2 we obtain 

where 6 = 1 - u,. In the third range we expand the inte- 
grand in the mass operator in the small quantity y = 1 - u: 
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$12 
ampf*e-w*( ) ' s (x ) Jdyy  T s = -  
237. , x sin (x/2) o 

x exp {-inxy2 [I - ?( x'2 )'I 1 . ( A l l )  
sin (x/2) 

Performing the elementary integration over y in (A12) and 
replacing x -. 2x, we have 

iamq dx s (22) e-'x/q 
T ' = X  lain'z 1 -[ (sin 2x)/2x] (x/sinx)' F (XI, 

Further analysis shows that the integration contour passes 
below the poles in (A 13) that lie on the real axis. We choose 
a value x2 that satisfies the condition r -  4 x 2  ( 1. In the 
range (O,x, ) we can expand in x 4 1, while in the range 
(x, , UJ ) we can replace F(x)  + - 1. We now add and sub- 
tract the integral, in which F(x)  is replaced by - 1, over the 
contour x = x,eip( - 77/2<~<0) in the complex x plane. 
We can extend the resulting integral (fx2 ,2 + f: )dx with 
F = - 1 along the negative imaginary semi-axis and go over 
to the variable - ix ,  while the integrals in the region 1x1 4 1 
can be calculated directly. As a result, we find for T, 

dx e-"lq 1 - (sh 22) /2x 
T s = -  

1 - [ (sh 21) /2x] (x/sh x) ' 

Arranging in the usual way the expression that converges as 
x-0 in the remaining integral, and calculating the integrals 
of the subtraction terms in explicit form, after simple trans- 
formations we obtain from (A14) 

It is not difficult to convince oneself that in the sum 
T =  T, + T2 + T3 of the expressions (A8), ( A l l ) ,  and 
(A1 5) the parameters u, and u2 cancel and the result given 
in the text is reproduced. 

" In the case of large quantum numbers the quasiclassical approximation 
is applicable, naturally, in the nonrelativistic region as well. This situa- 
tion has been encountered in the problem of the radiation in an undula- 
tor,' in which the transverse motion was nonrelativistic. 

" An attempt to analyze the region 7 2 1 for the emission probability was 
undertaken in Refs. 17 and 18. 

"The correction to the electron mass in an ultrastrong electric field 
( E )  E,, ) has been discussed in Ref. 19. 
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