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In this paper the evolution of the spin of an electron in the Heisenberg representation is 
considered based on the Dirac theory. A quantum generalization of the Bargmann-Michel- 
Telegdi equation is obtained. 

As is well known, Bargmann, Michel and Telegdi' lous magnetic moment of the electron. We obtain the expres- 
(BMT) by developing a quasi-classical theory of the elec- sion 
tron spin, obtained an evolution equation for the spin of a 
relativistic particle. By virtue of its simplicity and clarity, d o  ec p , c ( a ~ )  - = - { I  ---I [OH] 
this equation at present is widely employed to analyze the dt E E+mcZ 
spin dynamics of electrons moving in an external electro- 
magnetic field (cf., e.g., T e r n ~ v , ~ ) .  The detailed derivation 
of this equation by means of a relativistic generalization of 
the well-known equation for the precession of the spin 

d eo -6=- 
dt mc [Htl, 6= (0') (1) 

(here the electron is assumed to move in a time-independent 
magnetic field and JP are the Pauli matrices) is presented 
most clearly by Berestetskii et u Z . ~  This equation for the spin 
dynamics is of the form 

In this equation the spin vector L; is understood to be ;he 
aver9e over a wave packet of the unit spin vector, 0:f  
= ( 0 ) ,  which characterizes the "true" spin in the Darwin 

sense in the particle rest-frame (cf. Ref. 4): 

The physical interpretation of this equation is quite difficult 
since as is well known (cf., e.g., Ternov eta/ . ')  in the Dirac 
theory the relation between the operators and classical quan- 
tities becomes complicdted due to the peculiar nature of the 
particle motion-a rapidly oscillating vibration which was 
called "Zitterbewegung" by Schrodinger.' This motion is a 
result of the phenomenon of interference of various charge- 
conjugate states of an electron. 

We shall, therefore, proceed to operators wit) a given 
parity, assuming that the even part of any operator Fis deter- 
mined by the expression 

1 
?even ,= { P )  = - (P%+%P). 

2E 
(6)  

6 = p , 0 + p , c ~ ~ - ~ ~ c ~ ~ ( a ~ ) l ~  ( ~ + m ? ) .  (3)  Here we confine ourselves to consideration of an electron . . 
A A moving in a purely magnetic field. In the general case the 

Here y = E /me2, 8 = c(P)/E, P = ) - eA/c,  and g is the replacement 
electron gvromagnetic factor. The Dirac matrices a ,  u, pp, ". " . - 
andp, are related to the standard matrices f as follows: ~=l&l+l&-ecpl  (7) 

As was noted in Ref. 3, a similar equation in a different 
form was first obtained by Frenkel in 1926 (Ref. 5), pro- 
ceeding from the relativistic generalization of the model of 
spinning top. Ternov and Bordovitsyn6 showed that the 
equation of the spin dynamics ( I ) ,  (2) and the Frenkel 
equation coincide to within inessential transformations. 

Consider the quantum equation for the time evolution 
of the spin operator (3)  in the Heisenberg representation: 

d o  i .... -.. 
-=- (ao-0%) , (4) 
dt ti 

where 

should be carried out. 
h 

In free motion an even operator {F} commutes with the 
Hamiltonian and does not mix states belonging to energies of 
different sign. This provides for the possibility of a transpar- 
ent physical interpretation of operators of a definite parity 
since physically observable quantities can be associated with 
even operators which commute with the Hamiltonian. 

Isolating the even part of the operator (5) we obtain 

Thus this exact Heisenjerg equation for the even part of the 
derivative operator d O / d t  coincides functionally with the 
classical BMT equation [cf. Eq. (2) in Ref. 91. If we further 
proceed to the expressions averaged over the wave packet, 
setting (10))  = k, (cP) =BE, we then obtain the classical 

and the factor a / 2 ~  = (g - 2)/2 accounts for the anoma- BMT equation in the form 
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We now consider a quantum generalization of this 
equation. For this pufgose we observe that the variation of 
an arbitrary operator Fin time in the Heisenberg representa- 
tion can be represented in the form 

where thejraces denote the even part of the derivative of the 
operator F [cf. (6)] .  In accorda~ce with this general for- 
mula, we obtain for the operator 0 the expression 

in which the right-hand side of the relation which is propor- 
tional to Planck's constant fi describes the "Schrodinger vi- 
bration." This can be verified because the charge-conjugate 
states cag appear only in the expression f o ~ t h e  secon$,deriv- 
ative of 0 since in the limit fi-0 we get dF/dt = {dF/at), 
i.e., the vibrations are absent. 

The spin evolution equation ( 1 1 ) is an exact quantum 
equation. 

Let us consider the range of applicability of the classical 
approximation of Eq. ( 1 1 ). Evidently, the r.h.s. of this equa- 
tion can be neglected provided 

Assuming furthermore, for simplicity, that the motion of the 
electron occurs in the plane of rotation ( PlH) ,  we find using 
(9) that 

Thus, the Heisenberg equation ( 1 1 ) becomes the classical 
BMT equation in the case when the precession frequency of 
the electron spin in the magnetic field is much smaller than 
the frequency of the "vibration." This criterion is especially 
transparent in the nonrelativistic case of the evolution of the 
spin in a strong magnetic field H-Ho = m2c3/d. Indeed, 
under this assumption Eq. ( 13 ) becomes 

Consequently, in a strong magnetic field the "Schro- 
dinger vibration" becomes a substantial effect and a transi- 
tion to the classical BMT equation is impossible. 

Note that in a strong magnetic field when H-H, the 
problem under consideration steps into ultra-quantum re- 
gion since the Planck constant appearing in the expression 
for the energy of interaction of a magnetic dipole with the 
magnetic field 

drops out: 

In this ultraquantum domain spin effects can be observed 
even in the zeroth order of fi. 

When the criterion ( 15) is fulfilled the r.h.s in Eq. ( 11 ) 
can be set to zero and assuming that the value of the spin 
averages over the wave packet equals (0) = C;, one obtains 
the BMT equation [cf. Eq. (9) in Ref. 101. 

Next, we shall display the explicit form of Eq. ( 11) 
omitting for simplicity of the subsequent estimates the terms 
which are due to the effect of the anomalous magnetic mo- 
ment of the electron. We then obtain 

where 

It follows from this that the quantum terms in the exact 
spin evolution equation are not only related to the "Schro- 
dinger vibration," but also characterize the effect of nonuni- 
formity of the magnetic field. Furthermore, it is evident that 
a transition to the classical BMT equation is feasible pro- 
vided 

Acfi grad H -- I< I. 
This restriction requires that the magnetic field vary 

smoothly over the distances of the order of the Compton 
wavelength. In the non-relativistic approximation Eq. ( 16) 
becomes 

This accounts for the effect of terms of order fi2 in the 
initial Hamiltonian. This is equivalent in the asymptotic ex- 
pansion i%the quasi relativistic Dirac theory in powers of the 
operator P/mc, i.e., (fi/mc) grad (cf. Messiahk1). 

In conclusion, we emphasize once more that the BMT 
equation follows from the exact Heisenberg equation" and 
describes the evolution of the spin under the condition that 
the "Schrodinger vibration" and the gradients of the mag- 
netic field can be neglected in accordance with the criteria 
( 14) and ( 17). The corresponding terms in the Heisenberg 
equation are the first order terms in Planck's constant fi. 
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