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We obtain the spectrum of gravitational radiation emitted by a classical charge in a circular orbit, 
in an unbounded orbit and slightly displaced by the field produced by the magnetic moment, and 
in a combined Coulomb and magnetic-moment field. In the ultrarelativistic limit and the 
appropriate frequency range, these spectra are proportional to the respective electromagnetic 
spectra, with a proportionality factor 4rGm2r2/e2 that is independent of the frequency#he 
direction of the wave vector, the specifics of the motion, and the behavior of the field outside the 

V Q d e p h d  
orbit. We obtain rough estimates of I? for an ultrarelativistic charge in an arbitrary field, 
demonstrating that to order of magnitude, r2 is the ratio of the radiative contributions made by 
nonlocal and local sources. The spectrum of gravitational radiation is derived for a relativistic 
rotating string with masses at its ends, and we show that the masses and the string contribute 
approximately equally. In the nonrelativistic limit, the harmonics of the radiation from the 
rotating systems all display the same behavior. 

1.  INTRODUCTION 

In a previous paper,' we examined the spectrum of 
gravitational radiation (GR) from several simple electro- 
magnetic systems. In those systems, a charge executed 
bounded motion in an external electromagnetic field that 
varies smoothly in the vicinity of the orbit over distances 
comparable to the radius of curvature. It was shown that in 
the ultrarelativistic limit, the GR spectrum of the system is 
proportional to its electromagnetic spectrum: 

Here j, (q) and Tap (q) are the Fourier components of the 
current density and energy-momentum tensor of the system. 
Equation ( 1) is interesting not only due to its demonstration 
of the proportionality of the spectra, but also because the 
nonlocal properties of the system described by the energy- 
momentum tensor are lumped into the factor r 2 ,  which is 
independent of the frequency. This parameter r was found 
to be of the order of the Lorentz factor y of the charge, and in 
general it depended on the direction of the wave vector q and 
the behavior of the field outside the orbit, in the region where 
GR was being produced. 

This proportionality between the GR and electromag- 
netic spectra and the asymptotic equality r - y for y > 1 are 
closely related to the fact that of the two sources of GR, 
namely the local energy-momentum tensor tap due to a cor- 
poreal body and the nonlocal energy-momentum tensor Oap 
inherent to external electromagnetic fields, it is precisely the 
latter that becomes the dominant one in the ultrarelativistic 
limit. This means that GR comes about when a charge ini- 
tially emits either a real or virtual photon along a segment of 
its trajectory that is y times smaller than its radius of curva- 
ture r, and the photon is subsequently transformed into a 
graviton via interaction with a quantum of the external field 
over a path whose length is of order I, the extent of the exter- 
nal field in the direction of photon propagation. 

It is straightforward, using Eq. ( 13) and Eq. ( 14) be- 

low for the energy-momentum tensor of the field, to show 
that to order of magnitude, the spatial components of the 
energy-momentum tensor are 

where we have j = j (q  - k,,.), and F is the external field 
strength in the region where the emitted photon is produced. 
The length E comes from the value of the photon propagator: 

i.e., it is the distance traversed by the photon in the field 
before it turns into a graviton. If for y > 1, Eq. ( 1 ) is due to 
the contribution of the field energy-momentum tensor, then 
we obtain for the conversion amplitude (which we call r)  

We consider trajectories with a turning angle at least of 
order unity (this would include bounded trajectories), for 
which the radius of curvature, as given by the law of particle 
motion eF- mu2y/r, is less than the extent of the field. If the 
field varies significantly over distances much greater than r, 
then we have I>r and r- yl /r> y. A similar situation ob- 
tains for GR from a charge moving in a circular orbit in a 
constant, uniform magnetic field that extends far beyond 
that orbit (see Sec. 3 of Ref. 1). For a field that does vary 
significantly over distances of the order of the orbital radius 
[circular motion in a Coulomb field (Sec. 5 of Ref. 1 ); mo- 
tion in the field due to a magnetic moment, or in the com- 
bined field of a Coulomb center of force and a magnetic mo- 
ment (treated in Secs. 2 and 3 of the present paper) 1, we 
obviously have T- y% 1. Finally, for a field that extends 
along a trajectory for some distance I 2 r, but whose trans- 
verse dimensions I ,  4r-as in modern circular accelera- 
tors-we obtain r- yl/r< y, where I- (I,r)"2 (r; in that 
regard, see the remark in Sec. 3 below and Eq. (45). Here we 
are also at odds with the authors of Ref. 2, who maintain that 
one can estimate the intensity of GR in existing and pro- 
posed accelerators by taking the formula for the intensity of 
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electromagnetic radiation and replacing e2/49 with GmZy2: 
the small factor I, /r must also be taken into account. 

Consider now a trajectory with a small turning angle 
Ap 5 1, i.e., an unbounded trajectory in a field of small ex- 
tent relative to the radius of curvature. The law of motion is 
then eF- mvyAq, /At, and making use of the relation 1- vAt, 
(4) yields I?-yAq 5 y. This estimate holds for 
y - '  5 A p S  1. 

For Aq, 5 y - ' , there are further considerations. Equa- 
tion ( l ) relates gravitational radiation to the electromagnet- 
ic radiation produced by components of the current that are 
transverse to q for qZ = 0. In (2) ,  however, there is also a 
contribution from components of the current off the mass 
shell, which are unrelated to particle acceleration. The latter 
are a factor of l/Ap larger than the components associated 
with acceleration, and they have components orthogonal to 
q that are - l/yAp times the transverse components respon- 
sible for electromagnetic radiation. In the estimate above, 
therefore, for Aq(y- '  4 1, an additional factor of l/yAp 
appears. For Ap 5 1, then, 

In contrast to Ref. 1, where the GR spectrum was calcu- 
lated in terms of an invariant product of components of the 
energy-momentum tensor [see left-hand side of' Eq. ( 1 ) 1, 
the spectrum that we derive here is a sum of squares of two 
independent polarization amplitudes designated T + (q) 
and T, (9).  In fact, if we write the invariant expression for 
the spectrum in a coordinate system in which the wave vec- 
tor q points along the 3-axis, then marking tensor compo- 
nents in that system with a prime and taking advantage of 
the conservation law qaTd (q) = q'"T& (9') = 0, as well as 
qZ = q" = 0, we obtain 

I 
Tap' ( q )  PP(q) - 7 1 Taa ( 9 )  1' 

The expressions 

in which the three spatial components of the energy-momen- 
tum tensor on the right can be reexpressed in terms of the 
T,, (q), will also be two transverse components describing 
the gravitational radiation emitted by the system with inde- 
pendent polarizations. 

Almost all of the systems that we shall consider here are 
axially symmetric, which means that in a spherical coordi- 
nate system whose polar axis coincides with the symmetry 
axis, the angular distribution of the gravitational radiation 
should not depend on the azimuthal angle p of the vector q. 
Taking q to lie in the 1-3 plane and denoting its polar angle 
by 8, we then have 

Ttt'-T,,'=Tit COS' 0-2Tis sin 0 cos O+TSs sin' 0-T,,, (8) 

Ti2'=Tt2 cos 0-Ts2 sin 0. (9 )  

In the present paper, we find the GR spectrum emitted 
by a charge moving in a circular orbit in the equatorial plane 

of the field due to a magnetic moment, and we show that in 
the ultrarelativistic limit, the spectrum is the same as that 
emitted by a charge in circular motion in a Coulomb field if 
we replace the charge's field interaction factor eW/r by 
- ee'. Furthermore, the GR spectrum of a charge moving 
ultrarelativistically in a circular orbit in a combined Cou- 
lomb and magnetic moment field is given by the same equa- 
tion, with the quantity on the left-hand side of (38) (see 
below) as the interaction parameter. In all cases, then, the 
GR spectrum may be characterized by the conversion ampli- 
tude r = y. 

We have also derived the spectrum of gravitational ra- 
diation from an ultrarelativistic charge that traverses a Cou- 
lomb field, or that passes through the equatorial plane of the 
field due to a magnetic moment. The deviation angle x in 
either case is assumed small, x S y -  ' 4 1. We have shown 
that despite small differences between the trajectories in the 
region of space where the gravitational radiation is pro- 
duced, the spectra are essentially the same in the critical 
range of wave vectors, and are characterized by an ampli- 
tude conversion factor that depends on the direction of the 
wave vector and the deviation angle of the trajectory; see 
(104) below. 

To clarify the way in which gravitational radiation de- 
pends on the spatial distribution of the energy-momentum 
tensor of the field, we have obtained the G R  spectrum of a 
relativistic string with point masses at its ends, and have 
demonstrated that the contributions of the masses and the 
string itself are of the same order of magnitude in the ultrare- 
lativistic limit, notwithstanding the fact that to order of 
magnitude, the string energy is a factor y higher than that of 
the masses. 

Finally, we have shown that in the nonrelativistic limit, 
where the wavelength of the gravitational radiation is much 
greater than the size of the system, the gravitational spec- 
trum of a closed system consisting of a point mass moving in 
a circle about some attracting center, the spectrum is a uni- 
vr --sal one: the leading term of each harmonic of the radi- 
a t i ~  1 is independent of the nature of the field produced by 
the center, and for all harmonics with n>2, the contribution 
from the energy-momentum tensor of the field is a factor 
n - 1 less than the contribution from the energy-momentum 
tensor of the point mass. 

2. GRAVITATIONAL RADIATION FROM A CHARGE IN THE 
FIELD OF A MAGNETIC MOMENT 

We consider circular motion of a charge in the equator- 
ial plane of the field 

produced by a magnetic moment 2Jl. The equation of motion, 

tells us that 2JlJZ,, the projection of the magnetic moment in 
the direction of the charge's orbital angular velocity, has the 
same sign as the charge: eY-2, = le2Jll> 0. 

Making use of the Fourier components 
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of the field ( 10) and the Fourier components of the self-field To obtain the transverse components T + and T ,  of 
of the charge, the total energy-momentum tensor, we must add the trans- 

i verse components of the energy-momentum tensor of the 
f a a ( q ) = ,  [qffiie(q)-qaja(4) 1, ( I3 )  orbitingbodyto(17): 

4 

we can easily construct the components of the field energy- na 
momentum tensor t + ( p )  = C 2nti(q0-no) my u s { [ ;  - 1 + - c o s ~ ~ ] I . ( z )  

n z2 

in 1 
( 14) tx ( q )  = ~ 2 n 6  (qO-no)  mYu2--[- I. ( z )  - l n l ( z ) ] c ~ s  0.  

z Z 
n 

omitting quadratic terms in pp andH for reasons explained 
in Ref. 1. The integration over wave vectors k of the external 
field is most conveniently carried out using causal space- 
time representations for the propagators k - , and 
(q - k)  - ,, and the representation 

m 

jffi ( q )  =c j d r  2. (r) e-*(') (15) 
- m 

for the current density ja (q - k). Then 6,, (q) is given by 
1 m 

These expressions follow from Eq. ( 12) of Ref. 1 and Eqs. 
(7)-(9) of the Introduction. 

In the nonrelativistic limit In I v 4 1, both 5 and the argu- 
ments of the Bessel functions are small: z, -2- f 4 1. Physi- 
cally, this means that the orbits are small compared with the 
wavelength of the radiation. Expanding the Bessel functions, 
we obtain for the integrals defining the field energy-momen- 
tum tensor 

in which f = - qaxa (7) + u[Q.x(~-) + Iqlrl, 5 du eicu (a+Jn+ p+Inl) = (25) 

u = t(s + t)  - ' , where s and t are the proper times of quanta O zn-"1 + cos2 0) , 
n22, 

of the external and intrinsic fields, and the a,, are quadratic 2" (n-1)  ! 
polynomials in the coordinates x,,,  (7) or velocities k,,, (7). 

Taking advantage of Eqs. (8) ,  ( 9 ) ,  and ( 16), we obtain 
for the two transverse components of the field energy-mo- 

* 

n=1, 

mentum tensor (26) 

( I7)  For the analogous quantities (23) and (24) in the body's 
The subscript A here can be either + or X , and the a, and energy-momentum tensor we have 

P A  are 

3 n2 1 
a+ = - (1-icu) sin' 8 - (, - -\ 

2 2% 2 

. . 
+i sin @[i t  (1-u)  -cu(i+cu) cos' 01, (19) 

- cos 0 ,  n-1, 
n 

ax = - ( - ~ 2 ~ 2 S i ~ - 2 i ~ ~ ) s i n  0 cos 0 in 
8 

22, 
z Z 

(28) 
in 1 izn-z cos 0 - - [- c2u(1-u) (i+cos2 0 )  + i cu - I ]  cos 0 ,  (20) n a 2 .  
8 2"(n-2) ! ' 

Bx = :[ $ ~ ' u ( I - u )  (1  + cos2 0 )  + i su - l ] cos  0 ,  (21) 
Note here that for harmonics with n>2, the contribution of 
the field energy-momentum tensor is n - 1 times smaller 
than that of the matter tensor. 

In the nonrelativistic approximation, then, we have the 
z l= ( l -u ) z ,  z=lnlv sin 0 ,  c=lqlr=lnlv.  (22) GR spectrum 
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9 2 1 - t2n6(go-m) - mane sin' 8( 1 - -rid 8 + -sin4 8). 
64 3 72 

Not surprisingly, the largest contribution comes from the 
second harmonic, and it agrees with the value predicted by 
the Einstein equation. 

In the ultrarelativistic limit ( y% 1 ), the most important 
harmonics and angles in the GR spectrum are those for 
which n z z , z z ~ ( - y '  and a = 0 - ~ / 2 - y - ' ,  and the 
most important values of u are those for which u - y - 3 .  We 
then obtain for the integrals (25) and (26) 

1 

where for J,  (z) and J; ,  (z) we must use their asymptotic 
representations in terms of the Airy function: 

In the ultrarelativistic limit, Eqs. (27) and (28) for the ener- 
gy-momentum tensor of the orbiting body become 

The transverse components of the body's energy-momentum 
tensor are clearly a factor of y smaller than those of the field, 
and can be neglected. We then obtain for the GR spectrum in 
the ultrarelativistic limit 

Thus, for the system in question, the gravitational and elec- 
tromagnetic spectra are related, in the ultrarelativistic limit, 
by Eq. ( l ) ,  in which I' = y. 

3. GRAVITATIONAL RADIATION FROM A CHARGE IN THE 
FIELD OF A CHARGED, FIXED CENTER WITH A MAGNETIC 
MOMENT 

The equation of motion of a charge e in a circular orbit 
of radius r, speed u, and angular frequency w in the equator- 
ial plane of a fixed center carrying charge e' and magnetic 
moment %J? is 

For such an orbit to exist, it is necessary that 

The conserved energy-momentum tensor of the systems 
is made up of the tensor tap of the body, the field tensor 0 5 
proportional to the field of the magnetic moment, and the 
field tensor 02@ proportional to the Coulomb field. The 
transverse components of the first two tensors are given by 
Eqs. (23 ), (24), and ( 17). The transverse components of 
the energy-momentum tensors 0 ,, were obtained for the 
pure Coulomb problem in Ref. 1, but were not written out 
explicitly. They are (see also Ref. 3) 

1 
ax=in -- 

1 [ V' + - z t 2  (6'+1-i6u)] cos 6, 

All other quantities are the same as in (22). 
In the present problem, with two external fields acting 

at the same time, the factors m yu2 in ( 17 ) and (39) must be 
replaced by 

e B m  o ee' - k M m Y V 2 ,  - - kCmy vZ 
4ncr 4nr 

in those two equations, respectively, i.e., the field energy- 
momentum tensor is given by the sum k + k % :. 

It can be shown that in the nonrelativistic limit, the 
integrals 

646 Sov. Phys. JETP 71 (4), October 1990 A. I. Nikishov and V. I. Ritus 646 



for any n are the same as (25) and (26), i.e., they are given 
by the right-hand sides of those equations. For the effective 
values of n and 8 in the ultrarelativistic limit, they are given 
by (31) and (32). 

Thus, the components 8% and 8 :p turn out to be the 
same in both the nonrelativistic and ultrarelativistic limits; 
but then we have k M 8 F +  k C 8 ~ z 8 ~ ( q ) z 8 ~ ( q ) ,  since 
kM + kc = 1 holds by virtue of the equation of motion (37). 
This means that in the nonrelativistic domain, the GR spec- 
trum emitted by a charge moving in this complicated field is 
given by (29) and (30); in the ultrarelativistic domain, it is 
given by (36). Note that in the intermediate case, where the 
velocity of the charge is neither too low nor too high, the 
transverse components 8 y(q)  and 8 2 (q) are quite differ- 
ent, and the gravitational spectrum turns out to be sensitive 
to the details of the field in which the charge is immersed. 

One of the prime reasons for undertaking this study has 
been a desire to elucidate those properties of the field that are 
most important in determining the conversion amplitude F. 
Since it defines the proportionality factor between two invar- 
iants [see Eq. ( 1 ) 1, r itself ought to be an integral invariant 
of the system. In all four electromagnetic systems considered 
in Ref. 1 and the present paper, for the same charged-particle 
orbits but different fields (circular motion in a Coulomb 
field, in the field of a circularly polarized wave, in the field of 
a magnetic moment, and in the field of a Coulomb center and 
magnetic moment), the conversion amplitude r is the same, 
and is equal to y. 

Clearly, I? statisfies this simple equality because in a 
circular trajectory there is no inherent scale length. If in- 
stead we consider the gravitational spectrum of a charge in a 
circular orbit in a screened Coulomb field with potential 
(e1/4rr)e- ', then for y ) 1 the leading terms in the trans- 
verse components 8, (q) of the field energy-momentum ten- 
sor will differ from ( 17) by a factor 

where K, (x) is the modified Bessel function. We then have 
y = Cy. As qr  increases, C(qr) falls monotonically from 1 
to 0, and for qr) 1 it goes as (77/277r) 'I2. In deriving (44) it 
has been assumed that qr<y3/2 and y) 1, which means that 
it applies to the case q r s  1. 

The square-root dependence of the conversion ampli- 
tude on the intrinsic scale length 77 - ' of the field for 7t-s 1 is 
easy to understand if we note that r is proportional to the 
length I of the conversion region [see Eq. (4) 1. In fact, for 
y) 1, the region in which photons are converted into gravi- 
tons extends along a line that connects the point of tangency 
to the circle of radius r with the point at which that tangent 
intersects another circle of radius r + q - ' (where the field 
and the conversion process are considerably weaker); i.e., its 
length is 

is larger than W p ,  or in other words if the Coulomb center 
has a charge greater than 137. If on the other hand 
le'/el > 170, the Coulomb field will produce pairs and screen 
i t ~ e l f . ~  

We also point out that since for y )  1 the charge will be 
orbiting at close to the speed of light, the conversion region 
engendered by the field of the charge outside its orbit will be 
transported away at superluminal velocities. 

As shown in Sec. 2 of Ref. 1, the contribution of trans- 
verse components of the energy-momentum tensor of a ma- 
terial body to gravitational radiation for y ) 1 are of the same 
order as the contribution of the current to electromagnetic 
radiation, if we replace Gm2 by e2/4r. To order of magni- 
tude, then, r determines the ratio of the transverse compo- 
nents, 8 + , 8, of the tensor Bap to the transverse compo- 
nents t + , t , of the tensor tap. It would be interesting to 
know how that ratio (or r) depends on the spatial distribu- 
tion of the tensor OaB (x)  . With that in mind, let us examine a 
nonelectromagnetic system in which the tensor Oa8 ( x )  is 
confined to the line joining a test particle to a center of rota- 
tion. 

4. GRAVITATIONAL RADIATION FROM A RELATIVISTIC 
STRING WITH MASSES AT ITS ENDS 

A relativistic string with masses at its ends5 is not an 
electromagnetic system. It can be viewed as a realistic model 
of a system containing two bodies connected by a force field 
confined to the line joining them. Gravitational radiation 
will therefore be produced not just by local sources-the 
point masses-but by a distributed source as well, namely 
the string. It is quite interesting to compare the contribu- 
tions to gravitational radiation from these two sources, par- 
ticularly in the ultrarelativistic limit, where the energy con- 
fined to the string is approximately y times the energy of the 
masses at either end. 

The system at hand is described by the action 

where p is a constant that characterizes the tension in the 
string, m , and m, are the masses at the ends of the string (we 
shall henceforth assume both to be equal to m), and xa (7,~) 
is the four-vector that parametrizes the world surface of the 
string. The dot and prime denote partial derivatives with 
respect to T and a, respectively. 

Equation (46) yields equations of motion with the par- 
tial solutions 

x' (T. IS) =o sin ox, x2(z, 0) =O cos UT, 

2" (7, 0) =0, x" (T, IS) =t=7, (47) 

Note that bounded relativistic motion of a charge in a 
Coulomb field can be treated classically if the classical radi- 
us of the orbit, 

I ee' r = - -  
~ Z M V ~ Y  lB1 4nmc2y 

which describe the string as a straight-line segment rotating 
at angular velocity w.  In (47), we have chosen the evolution 
parameter T to be the coordinate time, while c i s  the distance 
of a point under consideration on the string from the center 
of rotation (with the appropriate sign). The equations of 
motion of the masses at the ends of the string are the same as 
the boundary conditions, given by 
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The constant 2r is the distance between the masses at which 
the tension in the string dictates rotation at angular velocity 
W .  

The system energy-momentum tensor is comprised of 
the energy-momentum tensor t,, of the masses at the ends of 
the string, and the energy-momentum tensor of the string 
itself: 

e,(z) =p J ~ T  do[ (izl)'-+"]-"ti (2-X(T,  0 )  ) {xt2&fv 

+f 2zp'z,'- ( x ' i )  ( i i .p~y '+2V~, ' )  1. ( 49 )  

The latter expression can be simplified by imposing the 
gauge condition x i x a  = 0. Then 

Making use of (47)  and (48), we obtain the energy den- 
sity and the energy of the string: 

In the latter expression, we have used the relationship 

between the tension and the velocity v  = o r  at the loaded end 
of the string, which follows from (48) .  Interestingly, in ul- 
trarelativistic motion ( y ,  1 ), the string energy Etr is 77y/2 
times the energy 2my of the masses at its ends. 

Let us now proceed from (49)  to the Fourier compo- 
nents, and using them and Eqs. ( 7 ) - (9 ) ,  construct the 
transverse components of 8, ( q ) ,  which describe the gravi- 
tational radiation from the string: 

Here z = In lx sin 8, and x  = w o  is the velocity at the point 
on the string with coordinate a. 

We point out that the energy-momentum tensor of a 
string can be represented by a sum of two terms correspond- 
ing to the two halves of the string, i.e., to - r ( a <  0  and 
0 < a ( r .  In particular, 

The relation 

leads to interference between the gravitational radiation 
fluxes from opposite halves of the string, as a result of which 
the amplitudes 0," ( q )  for odd harmonics vanish, while the 
even harmonics have double the amplitude emitted by each 
half. Similar interference takes place in the gravitational ra- 
diation emitted by the two masses at the ends of the string. 
The transverse components of the energy-momentum tensor 
of this system consist of a sum of components, 

which come from Eqs. ( 23 )  and (24)  with opposite signs for 
U. 

We note further that the sum tA (q,u) + 0, (q,v) is the 
amplitude for gravitational radiation with polarization A 
coming from a different object-a string of length r, fixed at 
the end a = 0 and loaded by a mass m at the end a = r, and 
rotating about the fixed end at angular velocity o. 

Let us now analyze the behavior of 0, (q,v) in the non- 
relativistic and ultrarelativistic limits. For nv 4 1, expanding 
the Bessel functions in (54)  and ( 55 ) ,  we obtain 

mu3 
i-sin0cos0, n=l, 

16 
e x n  ( Q ,  U )  ( -i 

mun ( n  sin 0 )  n-2 
cos 8, n>2. (60)  

2" (n-1) 1 

mu3 

These expressions are identical with the nonrelativistic 
harmonics of the transverse components of the field energy- 
momentum tensor in the systems considered above; see Secs. 
2  and 3. The coincidence, however, is not mere chance. It can 
be shown that the conserved tensor T4 ( q )  satisfies the 
equation 

0+n ( Q ,  U )  ' 

= -9" J d3z e - i q x ~ k ~ i T O o  ( x ,  qO) . (61) 

- (1-3 cosV)sin~O, m-1, 
16 

mun (n sin 0 )  "-' 
(l+cosZ 0 )  , n32, 

For a closed nonrelativistic system, we can insert 
Too(x,qO) z t "'(x,qO) on theright-hand sideof Eq. (61 ). As- 
suming that the system contains a single point mass moving 

2" (n-I) ! 
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about a center of force, we seek a solution of the resulting 
equation in the form 

where the ellipsis denotes terms like those in ( 9 8 )  below that 
can be dispensed with for our purposes. We then obtain for 
the function f (z) an equation and solution: 

Expanding f ( z )  as a power series in z and assuming 
circular motion, we obtain the nonrelativistic expressions 
for all harmonics Tg ( q ) .  Their transverse components have 
been given in Sec. 2  [see also ( 5 9 )  and ( 6 0 )  1 .  

For y% 1 in Eqs. ( 5 4 )  and ( 5 5 ) ,  the most important 
ranges of values are n z z -  y3, v - 1x1 and 
a = 7 ~ / 2  - 8- y - ' . Carrying out the appropriate expan- 
sions and making use of the representation ( 3 3 ) ,  we obtain 

We now take the limit as v-. 1, integrating the Bessel func- 
tions with the aid of 7.7.2( 1 1 )  from Ref. 6 .  We obtain 

@+ = 2nb (go-2kw)  ?{ I:,, ( x )  +I:, ( x )  
k 2 0  

= 2n6 (g"2ko) {ctgz BC ( x )  +I," ( x )  1, ( 6 9 )  

These ultrarelativistic transverse components of the string's 
energy-momentum tensor turn out to be of the same order of 
magnitude as the transverse components of the energy-mo- 
mentum tensor for the material body at the end of the string 
[compare Eqs. ( 2 3 ) ,  ( 2 4 )  and ( 3 3 ) ,  ( 3 5 )  with Eqs. ( 6 4 )  
and ( 6 5 ) l .  

The reason why the gravitational radiation from a 
string turns out, for y )  1, to be of the same order as gravita- 
tional radiation from a mass at its end is as follows. The 
condition u - 1x1 - y - 2  means that radiation is launched 
from small segments near the ends of the string moving at 
velocities x such that the corresponding Lorentz factor 
y ( x )  = (1 - x 2 )  - I / *  is of order y. Even though the string 
energy is more than y  times the energy of the mass, it is 
distributed along the string in such a way that the energy 
moving through space with a Lorentz factor y  constitutes 
only a fraction y  - ' of the total energy of the string: 

i.e., it is precisely of the same order of magnitude as the 
energy of the mass at the end of the string [see ( 5 3 )  1 .  

5. GRAVITATIONAL RADIATION FROM A STRING WITH 
UNLOADED ENDS 

Before proceeding to the limit m = 0 (or v = I ) ,  we 
rewrite Eqs. ( 5 4 )  and ( 5 5 )  in the form 

0, = 2nb ( q O - 2 k o )  i n p  cos 0 
il 40 

[ I $ ,  ( x )  --I:-, (4 I 

= 2x6 (qO-2kw)  ctg 0h ( x )  Jkr ( x )  , x=k sin 0. 
k 

The GR spectrum is given by the combination 

=t  2nb ( p 0 - 2 k w ) ( ~ ) z { ~  [ctgz 0J: ( x )  +Ih" ( x )  j' 
k 

The energy emitted in a time t%w - ' is 
rn 

8 = t . 4 n G p z  XK' SIR{. . .). ( 7 2 )  
k = l  

where {...) denotes the expression in curly brackets in Eq. 
( 7 1 ) .  

Consider now the behavior of terms in this series for 
k )  1 .  Instead of the Bessel functions, we can then use the 
Airy functions [see ( 3 3 )  1. Bearing in mind that the domi- 
nant contribution comes from cos 8- ( 2 / k )  we have 

m 

J* [yz@4(y)+~'4(y)+6y@z(y)O"(y) I. k'J d Q {  ...)"-- 
n 3 k 0  yIh 

( 7 3 )  

The series (72) thus diverges logarithmically. The diver- 
gence clearly goes away when quantum effects are taken into 
account; the latter are important precisely for the emission 
of the higher harmonics. 

6. GRAVITATIONAL RADIATION FROM A CHARGE 
TRAVERSING A COULOMB+MAGNETlC MOMENT FIELD 

The trajectory followed by a charge e as it passes a Cou- 
lomb center with charge e' is a plane curve, which can be 
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described by the parametric equations 

where r is the distance between the charge and the center, q, 
is the angle with respect to the symmetry axis (the 1-axis), t 
is the time, and 

These equations were derived using the approach presented 
in $39 of Ref. 7. 

The motion of the charge may be characterized by three 
independent parameters: the dimensionless impact param- 
eter p ,  the dimensionless Lorentz factor y of the charge at 
infinity, and the dimensionless ratio Y = a / M  of the product 
of the charges a = ee'/47~ to the particle angular momentum 
M. All other parameters are functions of these three: 

In addition, the expression for the scattering angle is 

x=n-[rp(m) -cp(--m) ]=n - 
2 

( 1 ~ ~ 2 )  ' I> arccos x .  (77) 

Let us first look at the electromagnetic spectrum emit- 
ted by the charge. We characterize the direction of the wave 
vector q by the angle S it makes with the ( 1,2) plane, and the 
angle IC, between the (q,3) plane and the 2-axis, so that 

q=lql (cos 6 sin 117, cos 6 cos Q, sin 6). (78) 

Then taking advantage of current conservation, 
qaja (q) = 0, and q' = 0, we obtain for the electromagnetic 
spectrum 

(i,(q) 1 2 =  (1-cos2 6 sin2 $1 I j , j 2 + ( l - ~ ~ ~ Z  6 cos2 9)  I j2I3 
-2 cos2 6 sin $ cos $ Re j,j,'. 

(79) 

The components of the current density are defined by the 
integrals 

l F X Z  '1. 
I i  (q) =eb dg e-if(i)[sh a cos rp (a) - (7) sin cp (a)]  , 

- m I-v 

1-%2 '11 

iz(s)=eb da e-'""[sh I sin rp(\)+(-) cos cp(E)], 
-m 1-v2 

-qob (I-.p) -I/9 ($ha+: a ) .  

From here on, we limit our attention to the ultrarelati- 
vistic case y % 1, and furthermore, we require that the param- 
eter Y be at most of order y - ' ; that is, 

Then tc z Y 4 1, and to fourth-order accuracy in the small 
parameters that appear in (83), 

Moreover, the scattering angle x and the effective values of 
the angles S and IC, are small: 

Carrying out the appropriate expansions in Eqs. (74) and 
(80)-(82), we obtain 

1 
x, (E) =B[ l+v ch a - -v2 sh a arcsin (th a) +. . .] . (85) 

2 

where 
m 

(S, C) = 1 dE (sh a, ch a) 
- m 

f (a) =q-2 sh a+w ch 8i-s arcsin (th g ) ,  

Since the scattering angle x is so small that (83) and 
(84) are satisfied, the Coulomb field essentially affects the 
motion of the charge only over a distance of the order of the 
impact parameter /3-6. Consequently, the effective values 
of 6 lie in the range 6- 1 [see (74),  (75), (85)] .  It is then 
clear from (89) that the dominant values in the integrals 
(88) are z,w,s- 1, and accordingly, q O - f l  ' y2; see $77 of 
Ref. 7. 

The integrals in (88) cannot be expressed in terms of 
elementary functions. When the deviation angle satisfies 
x 4 y - ' , however, we have 

In that event, the electromagnetic spectrum will be given by 
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and the total emitted energy will be 

which is consistent with the equation in Problem 1 of $73 in 
Landau and ~ifshitz.' 

We now go on to calculate the GR spectrum, which is 
determined by the two transverse component of the full ener- 
gy-momentum tensor. These can very simply be expressed in 
terms of the components of the energy-momentum tensor in 
a coordinate system K ' whose 3'-axis lies in the same direc- 
tion as q; see (6 ) . The transformation to the K ' system from 
theKsystem that we have been dealing with, in which trajec- 
tories lie in the (1,2) plane symmetrically about the 1-axis 
and the wave vector of the radiation is specified by the angles 
6 and II ,  [see (78) 1, can be accomplished through two spatial 
rotations. Specifically, these are K+K ", a rotation by Ij, 
about the 3-axis that carries q into the (3" ,2" ) plane of the 
intermediateK " coordinatesystem (3" = 3),andK " +K ',a 
rotation by 6 = 1~/2  - S about the 1 " axis such that q winds 
up lying along the 3'-axis in K'. Writing the components 
Th (9 ' )  of the energy-momentum tensor in K', which ap- 
pears in (6), in terms of the components TLj (q) in K, we 
obtain 

T+ (q) = (cosz $-sin2 6 sinz 9) Ti$-2 sin 9 cos $ (l+sinZ 6) Ti, 

+ (sin"-sinz 6 cosZ 9 )  T2z 

+2 sin 6 cos 6 (sin $Ti3+cos $Tzs)-cos2 6TJ8, (94) 

T, (9) =sin 6 sin $ cos $(Ti,-Tzz)+sin 6 (cos2 $-sin2 $) Tiz 
-COS 6 (COS -#Ti,-sin .STzs). (95) 

To construct the spatial components Ti/ = ti/ + do, we 
make use of Eqs. (3),  ( 18), (43), and (44) from Ref. 1, 
yielding 

where the prime denotes a derivative with respect to 6. The 
ellipsis in Eq. (97) stands for terms of the form 

where A and B are rotation-invariant functions that depend 
on q and the vectors el and e,, which characterize the actual 
trajectory of the charge, the direction of the trajectory's 
symmetry axis, and the tangent to the trajectory at its apex; b 
is one of the three vectors q, e,, or e,. 

In the coordinate rotation K-K', the expressions in 
(98) transform into 

thereby making no contribution to the transverse compo- 
nents of the energy-momentum tensor (7),  since q; = q; 
= 0. We can therefore refrain from calculating both the 

terms in (98 ) and the components TI,, T,,, T,,, which con- 
sist solely of such terms.' 

Going on to examine the ultrarelativistic case-more 
specifically, (83)-we have the corresponding expressions 
for the components ti/, dV, ij = 1,2: 

Here f (6) is given by Eq. (89), and we have used m y f i z a .  
The components Bii are clearly of order tii, except for 
d,, - vt,, & t2,. For the Ti/ we obtain 

1 a 
Tii=avS, Ti, - 2 a (S+C) , T,, = - v C. ( 102) 

Substituting these components into (94) and (5) ,  omitting 
all terms containing TI,, T,,, T,,, and bearing in mind that S 
and $ are small angles [see ( 84) 1, we finally have the GR 
spectrum: 

Here the spectrum b, (q) 1' is given by Eq. (87). 
Thus, when an ultrarelativistic charge passes through a 

Coulomb field and the deviation angle satisfies x 5 y ' , the 
spectrum of gravitational radiation is proportional to the 
electromagnetic spectrum, with a proportionality factor 
(conversion amplitude) 

that depends on the direction of the wave vector and the 
orbital parameters. 

Since v and the dominant values of the angles S and $ 
are constrained by (83) and (84), we have r - 1, consistent 
with the estimate in Eq. (5)  of the Introduction. 

While the proportionality of the GR and electromag- 
netic spectra results from the fact that we are dealing with an 
ultrarelativistic system, the increase in r to r - 1 stems from 
the confinement of the region where the GR is produced 
essentially to the same region as where the electromagnetic 
radiation is produced. The net result is that the two sources 
of GR-the local energy-momentum tensor t, of the mate- 
rial body and the nonlocal energy-momentum tensor dap of 
the intrinsic and external electromagnetic fields-make con- 
tributions of the same order of magnitude. 
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For v ( y - '  4 1, if we substitute ( 9 2 )  into (103) ,  we 
obtain the GR spectrum obtained by Gal'tsov et aL9 to the 
same approximation. His integration over the wave vector q 
yields a total GR energy 8 ,  that differs from g, in ( 9 3 )  
by a factor 4rGm2/e2, a result previously obtained by Pe- 
ters. lo 

We now consider the gravitational radiation from a 
charge traversing the field due to a magnetic moment in its 
equatorial plane. The charge's motion may be characterized 
by the same parameters P, y  as before, and for the dimen- 
sionless interaction parameter Y = a / M  we have 

where !Ul is the magnitude of the magnetic moment, which 
points along the 3-axis. The equations of motion can be 
solved by successive approximations in that parameter, 
which is assumed to be small. In the zeroth approximation, 
the particle moves parallel to the 2-axis. Two iterations yield 

1 
x2 (E) -8 [sh + - v2 arcsin (th 5 )  +. . .] , 

2 

For small v ,  the deviation angle satisfies x -- 2v [cf. 
( 84) 1. Notwithstanding the fact that the solutions ( 106) 
differ from ( 8 5 )  and ( 7 4 )  by terms of order 12, when ( 8 3 )  
holds over the effective range of q, the function 
f ( 6 )  = qa xu ( 6 )  is in accord with ( 89) .  Second-order terms 
in v  and y - ' in the expressions forj,, j, of the electromagnet- 
ic current and t ,  ,, t , , ,  t2, of the energy-momentum tensor of 
the material body can be neglected in the factors preceding 
the exponentials, whereupon Va ( q )  1' and tU turn out to be 
the same as in ( 8 7 )  and ( 100). The calculations demonstrate 
that the transverse components 8 + ,9  of the field energy- 
momentum tensor are identical to the transverse compo- 
nents constructed out of the components in (100) in the 
Coulomb case. For v 5 y  - ' < 1 ,  then, the GR spectrum of a 
charge traversing a magnetic-moment field is given by the 
very same formula (103)  as the Gr spectrum of a charge 
traversing a Coulomb field. 

7. DISCUSSION AND CONCLUSION 

For the electromagnetic systems considered here and in 
Ref. 1, the GR spectrum is proportional to the electromag- 
netic spectrum when y ,  1. One argument favoring the uni- 
versality of this relationship is the virtually plane-wave na- 
ture of the external field in the rest frame of the 
ultrarelativistic charge. For a plane-wave field, Eq. (1) is 
exact no matter what the velocity of the charge, a result ob- 
tained in Ref. 1 for a linearly or circularly polarized mono- 
chromatic field that clearly holds for a more general plane- 
wave field as well. The proportionality of the spectra is quite 
natural when the energy-momentum tensor of the field 
dominates that of the material body, in which case the cur- 
rent j ( q  - k e f )  entering into the estimate ( 2 )  is almost on 
the mass shell, and ( 4 )  yields the estimated conversion am- 

plitude T. If the two energy-momentum tensors are of the 
same order, then the latter estimate of r will hold if the 
components of the currents j ( q  - k e f )  and j ( q )  transverse 
to q are comparable in magnitude. If on the other hand the 
transverse components o f j  ( q  - kef ) are much greater than 
those o f j  ( q ) ,  as occurs when the trajectory of the charge is 
almost a straight line through the field ( x <  y  - ' < 1 ), then 
r-1 [seeEq. ( 5 ) ] .  

The way in which the amplitude I? depends upon the 
characteristics of the force field, the direction of the wave 
vector, and the constants of the motion of the charged parti- 
cle-especially its Lorentz factor-governs the behavior of 
both the external field and the self-field of the charge over a 
relatively large region, making it difficult to account quanti- 
tatively for the conversion of photons into gravitons. In as- 
sessing the GR spectrum, it is therefore important to under- 
stand the qualitative behavior of r ,  since the properties of 
the electromagnetic spectrum Ij, ( q )  I 2  may be assumed to be 
known. 

One point of interest of non-electromagnetic systems is 
a qualitative comparison of the transverse components 8 + , 
9 ,  and t + ,t . For a rotating relativistic string with mass 
loading, these components contribute approximately equal 
amounts of GR, despite the fact that the string energy is 
r y / 2  the energy of the masses at its ends. 

Note that the contribution of the energy-momentum 
tensor of a material body in circular motion to its gravita- 
tional radiation is given by the exact expression ( 13) in Ref. 
1 .  For arbitrary ultrarelativistic motion of the body, we may 
estimate the GR contribution made by its energy-momen- 
tum tensor at effective values of q: 

For circular motion, the low-order harmonics in this 
estimate have an additional factor of on the right-hand 
side. In that event, the region in which the radiation is pro- 
duced consists of the whole orbit, and radiation angles of 
order unity are important. In going from the j, and to to the 
transverse components, therefore, the latter are not reduced 
by factors of y  and y, respectively, in contrast to the compo- 
nents in the dominant range of q. 

Our present results are also applicable to bunches of 
charged particles that are small compared with the wave- 
length of the emitted radiation, since the latter is then coher- 
ent. Since the wavelength of the fundamental from a single 
particle is a factor of shorter than the wavelength of the 
first harmonic, it is possible to imagine a situation in which a 
bunch of charged particles emit coherently in the lower-or- 
der harmonics, and incoherently in harmonics with n -?. 
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