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We investigate the cosmology of the early universe with a polarized vacuum of conformal and 
nonconformal fields. Allowance for the latter yields some novel possibilities for the evolution of 
the background metric; specifically, it predicts several quasi-de Sitter stages. We use the instanton 
approach to estimate the probability of the Universe being created in each of these. If the Universe 
is created in a de Sitter regime with curvature close to the Planck value, then subsequent 
quasiexponential inflation is feasible if the mass of the nonconformal scalar fields satisfies 
m R 10 - 5Mp,. The quasi-de Sitter evolutionary regime ( Rik zg ik  R /4) enables one to describe all 
known models with vacuum polarization using an effective Lagrangian L ( R )  = - R + f (R) .  
For this theory, we have quantized scalar perturbations and analyzed their growth during the 
subsequent evolution of the Universe, taking advantage of the mathematical equivalence between 
classical cosmology and a scalar field e, with the potential V(e , ) ,  which is uniquely defined by the 
form off (R ). Our results can be used both for the R cosmology of the Starobinskii model and 
for a theory with nonconformal fields. 

INTRODUCTION 

Inflationary models of the early universe make it possi- 
ble, in principle, to relate an effective Lagrangian and initial 
conditions to cosmological data obtained at the present ep- 
och. In addition to the simplest previously investigated mod- 
els with vacuum polarization of conformally covariant fields 
and with scalar fields, it would also be of interest to study 
inflationary models which, apart from the conformally co- 
variant fields, also take into account nonconformal fields in 
the guise of quantized scalar fields with an effective mass m. 

At a quasi-de Sitter stage (R,, = +g, R ), the effective 
energy-momentum tensor can be obtained by adding an ap- 
propriate function f (R)  to the Einstein Lagrangian, such 
that the overall Lagrangian depends solely on the single sca- 
lar curvature R. Foremost among the theories conforming to 
such a Lagrangian are the R cosmology' and the Starobins- 
kii model2 (R + conformal anomaly). The contribution of 
nonconformal fields can be taken into account in the same 
way.' 

The construction of such a theory is most profitably 
begun with a general analysis of the Lagrangian f (R),  as 
reflected by the title of the present paper. Another reason 
that it needs to be examined is the question of the conformal 
correspondence of cosmological models to a scalar field and 
to f (R)  theory, a property utilized below in quantizing sca- 
lar perturbations in f (R)  theory. In the final analysis, the 
growth of such perturbations determines the large-scale 
structure of the Universe. 

In the present paper, we present the results of an investi- 
gation of a model of the early universe that incorporates 
vacuum polarization of both conformally covariant and 
nonconformal fields. In Section 1 we present a detailed study 
of background cosmological models and their phase por- 
traits. In Section 2 we obtain the equations of linear scalar 
perturbation theory for L (R)  cosmology. Finally, in Section 
3, we construct a theory of the transition from a model with 
polarized corrections to models with a scalar field. 

1. DYNAMICS OF BACKGROUND MODELS 

One requirement of all scenarios of the early universe is 
an inflationary expansion stage in which the Universe, start- 
ing out at a size of the order of the Planck length, expands to 
dimensions of order 1 cm in 10 - 4 1  sec. The global structures 
of the observable Universe and the structure of large-scale 
perturbations are formed in the process. 

Among the mechanisms driving the inflationary stage, 
the two most popular are the filling of the Universe with a 
quasiclassical high-intensity scalar field,4 and polarization 
of the quantum field vacuum in a highly curved Friedmann 
spacetime The first inflationary model with a po- 
larized vacuum of conformally covariant fields was the Star- . 
obinskii ~cenar io .~  

The corresponding mean energy-momentum tensor in 
that model consisted of two parts, 

(1.2) 
where M, and H, are parameters that depend on the number 
and type of conformally covariant fields. -. 

The Einstein equation with x can be obtained via 

the variational principle from the action 

The expression for x T f  , the so-called conformal 
( 2  ) 

anomaly, does not in principle follow from variation of the 
Lagrangian. It can be approximated at a quasi-de Sitter stage 
(see Ref. S ) ,  where 

Rlk~SlkRI4, RihRik=R2/4. (1.4) 

636 Sov. Phys. JETP 71 (4), October 1990 0038-5646 ;/90/100636-07$03.00 @ 1991 American Institute of Physics 636 



In that approximation, 

Variation of ( 1.3) with L = L, (R)  leads to 

which at the quasi-de Sitter stage should yield 
RZ 

RL,' (R) -2L,(R) = - 12H." ' 

Hence, 

In the quasi-de Sitter approximation, the model with 
conformally covariant fields is described by the Lagrangian 

The corresponding problems for R cosmology (H f - co )' 
and for the model in Ref. 2 have been investigated previous- 
ly. 

In the present communication, we investigate the var- 
ious possibilities that arise in the model described by (1.9) 
by virtue of the fact that it encompasses nonconformal field 
vacuum polarization effects. This problem has long been of 
special interest due to its connection with the bounce prob- 
lem.3 The results obtained are also important for the theory 
developed in Ref. 2. 

According to Starobinskii,' when the contribution of 
nonconformal fields is taken into consideration, a term 

is added to (1.9), where m and M, are the characteristic 
mass and a parameter that depends on the number and type 
of fields. 

The contraction of ( 1.6) for L = LC + L, yields a tran- 
scendental equation that enables one to search for possible 
de Sitter solutions: 

For the (M, ,H, - CZJ ) R model, there is a unique de 
Sitter solution R = 0, corresponding to a flat Universe. In 
the Starobinskii model ( M ,  -+ co ), besides R = 0 we also 
haveR = - 12Ha. 

We now introduce the notation 

For p < 0, i.e., 

4H,2<Mnz, (1.13) 

Eq. ( 1.1 I ) ,  in the notation of ( 1.12), takes the form 

where 
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The behavior of F(p,k) is shown in Fig. 1 for various values 
of k. 

As a rule, depending on the value of k, a model with 
nonconformal fields will have either two or four de Sitter 
solutions, including p = 0. For a closed Friedmann model, 
the instanton method5 can be used to calculate the probabili- 
ty of the Universe being created in each of these solutions. To 
do so, the de Sitter metric 

ds2=dt2-H-2 chZ ( H t )  [dx2+sin2 %dQZ(0, rp) 1 

is analytically continued to imaginary time by making the 
substitution t - i ( ~  + .rr/2H). The instanton action is of the 
form 

When the inequality in ( 1.13) holds, we have 

where pi ) k. By virtue of ( 1.12), the first term is the domi- 
nant one in Si and the probability of creation 
P- exp( - 4?r/GMf ) is approximately the same for all p, 
corresponding to the roots of ( 1.14). That probability also 
applies to the Starobinskii scenario. 

An analysis of the flat background model for the action 
( 1.3) with the Lagrangian L = LC (R)  + L, (R)  has been 
carried out for the 00 component of the generalized Einstein 
equation. Assuming Mc ( Hc ,M, , that equation can be re- 
duced to the form 

where H = a/a. 

FIG. 1 .  F(p,k)  as a function ofp for different values of k: k ,  > k, > k, > 1. 
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FIG. 2. Phase portrait for the case of four de Sitter solutions. 

A qualitative study of this equation in the phase plane 
can be carried out most advantageously in dimensionless 
variables corresponding to the notation of ( 1.12) : 

Equation ( 1.18 ) then takes the form 

scalar stage and form our type of universe. We therefore 
concentrate on an analysis of trajectories in region B with 
regular Friedmann asymptotic behavior. 

It is clear from Fig. 2 that some subset of the trajectories 
in that region pass near the exact de Sitter solution; for these, 
there is a quasi-de Sitter regime in which 

Equation ( 1.18) can then be simplified: 

For the exact de Sitter solution 
R. = - 12H: ( H .  = 01, the second term on the left-hand 
side of ( 1.21 ) equals H S .  For solutions near the de Sitter 
solution (H 5 H. 1, therefore, Eq. ( 1.2 1 ) can be written in 
the form 

This equation can easily be integrated: 

where y can be expressed in terms of the deviation of the 
Hubble "constant" at the initial time t = 0 from the exact 
value H. : 

Figures 2 and 3 contain phase portraits for the case of four 
and two de Sitter solutions, respectively. 

In the first instance there is a trapping region A, a stable 
focus from which the Universe as a whole cannot escape to a 

It is thus clear that for an initial time At 5 t., the uni- 
verse passes through a de Sitter stage with 

a ( t )  = exp [H.t]  , (1.26) 

following which, for a time At, -- 6H / M  'H., it passes 
through a quasi-de Sitter stage with 

FIG. 3. Phase portrait for the case of two de Sitter solutions. 
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I H.-HI 1 6R y=--ln-m-- In-- -In7. H." (1.24) 
2 H.+Hl 2 2R. Mm 

This deviation is due to quantum fluctuations in the curva- 
ture of the new born ~niverse .~  

Equation ( 1.23) describes the initial stage in the evolu- . 
tion of the universe following its "birth," which consumes a 
time of order t. = 6yH i / M  'H., after which the approxi- 
mation (1.20) is no longer valid. The scale factor may be 
found by integrating ( 1.20) : 

When there are two de Sitter solutions (Fig. 3), the 
analysis near point 1 is exactly the same as before. 

It is also possible to obtain a second inflationary stage. 
As can be seen from Fig. 1, a situation involving three de 
Sitter solutions can come about, but in actuality it would be 
highly unlikely, requiring as it does that the parameters of 
the theory be tuned extremely carefully. At the same time, 
the proximity of the peak B in Fig. 1 to the horizontal axis 
means that an additional inflationary stage is feasible over a 
rather wide range in k. The phase portrait for this case is 
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shown in Fig. 3, where ti is clear that the universe, having 
been "born" near the exact de Sitter solution, passes in 
succession through a stage of exponential inflation accord- 
ing to (1.26), quasiexponential inflation according to 
( 1.27), and finally one more inflationary stage. 

Let us analyze the latter period of evolution, which may 
be described as before by Eq. ( 1.18). Assuming the validity 
of ( 1.20), that equation becomes 

Substituting p = - 24pH directly into the expression for 
F(p,k) [see (1.14) 1 ,  we can show that at the peak, the left- 
hand side of ( 1.28) equals F(p,k) = F(H 2,k) to within 
some constant factor. That makes it possible to model the 
left-hand side of ( 1.28) near the peak as 

Setting H = H. - AH in ( 1.29) and equating coeffi- 
cients of corresponding terms, we have 

i.e., the parameterp here determines the value of H, at the 
peak B. If we then insert ( 1.29) into ( 1.28) and make use of 
( 1.30), we obtain 

-6HPAB/Md=e+2AH2, (1.31) 

which for small E has the solution 

Clearly, over a time of order t 5 6H 2, /EM :, the uni- 
verse undergoes inflation for a second time. We may now 
estimate the parameter E. As we already noted, at some kg, 
one more de Sitter solution Hg makes its appearance (see 
Fig. I ) ,  which means that at a certain H,, the left-hand side 
of Eq. ( 1.29) goes to zero: 

Subtracting ( 1.31) from ( 1.27) and making use of 
(1.28), we have for H = H. 

Furthermore, since 1 H I < H  in the inflationary stage, we 
obtain with the aid of ( 1.32) another constraint, 

Further numerical modeling indicates that this sort of 
double inflation can occur if k  2 10 - '. Assuming that the 
creation of the universe takes place at curvatures (see Refs. 
1,5) 

( 1.12) and ( 1.15 ) yield the following constraint on the effec- 
tive mass of nonconformal fields: 

2. LINEAR PERTURBATIONS IN MODELS WITH VACUUM 
POLARIZATIONS 

The quasi-de Sitter approximation required to provide a 
sufficiently protracted inflationary stage will also ensure 
that the conditions of ( 1.4) are met. Using those conditions, 
most of the known corrections to the Einstein Lagrangian 
can be reduced to the form L = R + f (R).  The problem 
that arises at that point is to derive the fundamental equa- 
tions of relativistic perturbation theory for L (R ) models. 
That investigation was first undertaken by Nariai7 for regu- 
lar cosmological models with a b o u n ~ e ; ~  the theory was con- 
structed by analogy with the well-known paper by Lifshitz.' 
For gravitational and rotational perturbations, we have, in 
the notation of that paper, 

hot=O, hpa= v (q) Gga, hpq= w (q) [Sba + S:], (2.1 ) 
1 a 

where G and S $ are a harmonic tensor and vector, which 
satisfy 

Nariai's results reduce to two equations for the amplitudes: 

From here on, perturbations are considered superposed on a 
flat Friedmann metric, and a prime denotes differentiation 
with respect to conformal time. 

No equations for second-order scalar perturbations 
were obtained in the papers cited. This program was imple- 
mented for the special case of the R model in Refs. 1 and 6. 
We present that result below for an arbitrary L(R)  model, 
preserving the notation of the original paper. 

Perturbations are considered in the conformal Newto- 
nian gauge 

ds2=az(q) [(1+2(P)dq2- (1-2Y) (dx2Sdy2+dz')]. (2.2) 

With the notation (see Ref. 1) 

we obtain an equation for u from the linearized equations for 
L(R):  

In the short-wavelength approximation k 2>z"/z, 

In the most important long-wavelength case ( k  2gz"/z), 

In this same approximation, 
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where a dot denotes differentiation with respect to t. 
The equations derived in Ref. 1 for a special case remain 

valid for arbitrary F (R)  as well. 

3. CONFORMALCORRESPONDENCE BETWEEN MODELS 
WlTH VACUUM POLARIZATION AND MODELS WlTH A 
SCALAR FIELD; QUANTIZATION OF SCALAR 
PERTURBATIONS 

The physical analogy between cosmological scenarios 
with vacuum polarization and cosmology with a quasiclassi- 
cal scalar field poses the problem of identifying a mathemat- 
ical analogy between the two approaches. The problem is 
also an important one because a number of problems are 
easier to solve in cosmology with a scalar field than in mod- 
els with vacuum polarization. In particular, scalar perturba- 
tion theory, which relies on a great deal of mathematical 
machinery, falls into that category (see Section 2). 

The first example of a conformal correspondence was 
constructed for R cosmology, which was rigorously re- 
duced to the Einstein model with a scalar 

In general form, the correspondence between models 
with vacuum polarization and those with a scalar field is 
incomplete. In the quasi-de Sitter regime, however, as point- 
ed out in Section 1, all vacuum polarization effects can be 
incorporated into an additional term f (R)  in the Lagran- 
gian. This makes possible a general method for transforming 
between the two models. Let us consider a conformal trans- 
formation of the metric 

The scalar curvature then transforms as 

where 

The transition from the original L = R + f (R) theory with 
polarization corrections Cf theory) to a scalar field theory 
(Y theory) is accomplished through a succession of trans- 
formations: 

1 d4x(-8)" =--I 
16nG aP 1 R+a (R)  R-a (R)  R+f ( R )  I 

1 
=-- J d t r ( - p ) v 2 [  R( l+a(R))  - a ( R )  R-f ( R )  

16nG Q4 Q" 1. 

Setting 1 + a ( R  ) = R2 and making use of (3.2), after some 
straightforward manipulation of (3.4) we find 

is a divergence. Introducing the scalar function 
Y = ln[l + a ( R ) ]  = lnR2, we have 

Substitution of (3.6) into (3.5) then yields 

where we have omitted the divergence term D and carried 
out the following series of transformations: 

Finally, with the notation 

we obtain the Lagrangian for the scalar-field theory, 

In order to determine the exact form of a ( R ) ,  we pro- 
ceed as follows. Varying the action containing the Lagran- 
gian (3. lo),  we obtain 

Using the inverse of the metric g,, = R - 'g,,, the latter re- 
lation can be reduced to 

Comparing (3.12) with the equations of the Einstein f (R)  
theory, 

we find 

Likewise, it can be shown that the equation for the scalar 
field, 

is transformed into the contraction of the equations (3.13). 
We now show how, with the help of the correspondence 

thus established, one can proceed to analyze the evolution of 
scalar perturbations in the f theory. First, we find from (3.9) 
that 

where 
Then, by varying the latter, we obtain the relation between 
perturbations of the metric in f theory and perturbations of 
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the metric and scalar field in Y theory: 

In a conformal Newtonian reference frame, this last re- 
lation takes on an especially simple form: 

where @ and Y are perturbations of the metric in f theory, 
and = @ and S@ are perturbations of the metric and scalar 
field in Y theory, respectively. For the latter we have the 
analytic e ~ ~ r e s s i o n s ' ~  

at short wavelengths, and 

at long wavelengths. 
Substitutingq, ' = F1/flF', whichfollowsfrom (3.9), and 

the obvious relation 6' = Fa2 into (3.19), we find with 
(3.18) that 

For the R model, these latter relations reduce to familiar 
expressions.' 

Using this conformal correspondence, one can then de- 
termine the amplitude of quantum (seed) fluctuations as 
well. We assume that we have crossed over from f theory to 
Y theory, for which an appropriate quantum gauge-invar- 
iant perturbation theory has been developed.13 We can 
therefore take advantage of that technique, and then revert 
to the original f theory, as has been accomplished for classi- 
cal scalar perturbations. 

In accordance with (3.18), we may calculate the corre- 
lation function for fluctuations of the metric 
@ = \k - 1/2m@, Y = & + 1/2pS@, where 6 = \k, and 
the S@ are gauge-invariant quantities which in the conformal 
Newtonian reference frame may be identified with fluctu- 
ations of the metric and scalar field. The latter are related by 

where a prime denotes differentiation with respect to the 
conformal time 77. 

In the quantum theory, the quantities &, a@, as well as 
a, Y in (3.18), acquire the status of operators. 

The amplitude uk (7) in the expansion 

(3.22) 

satisfies the equation (see Eq. (43) of Ref. 13) 

(3.23) 

where z = 6p '/a, and ii,t and 6; are creation and destruc- 
tion operators for quanta of the field @. 

We first calculate the correlation function for fluctu- 
ations of 6. Using (3.21 ) to evaluate Sq,, and making use of 
(3.22) as well, we obtain 

(3.24) 
cp ' B 9" @ k = T ~ k - - -  uh - - B , 
a 8nG8 rp' SnG . 

Thereafter, the calculation of the correlation function fol- 
lows along standard lines: 

(0 10, @ 10>=(01i (q, 2) il (r,, za+r) 10) 
sin kr dk 1 

I ~ , O I ' = ~ ; ; ; ~  @.l'k3, (3.25) 

To find the amplitude IS,, 1, we must solve Eq. (3.23). In 
the short-wavelength limit, particle creation is suppressed, 
so we can assume solutions in the form 

iN (129) 
uk=Ceih~,  C=-4nG ------ k" ' 

iN' (kq) 
u,'=C0e-"", C'=4nG 7 

where IN I -+ 1 when kv - w . Expressing q, in (3.24) in terms 
ofFusing (3.9) andsubstituting (3.26) into (3.24), we have 

In the long-wavelength limit we can write 

In that limit, then, as in the previous case, we have 

In the frequency range H(q)a(?;l) > k > H ,  a,,  both so- 
lutions are valid, and we can match the asymptotic behavior 
of (3.27) and (3.29): 

where the subscript k -Ha means that its value is to be esti- 
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mated at such time as the perturbation clears the horizon. 
Substituting (3 .30)  and (3 .27)  into (3.25) ,  we have 

Calculating the correlation function for Y in similar 
fashion, we obtain IS,,, 1 = IS,, 1 .  In particular, the re- 
sulting spectrum for the R ' model is, up to numerical fac- 
tors, exactly the same as before.' In that case, therefore, all 
of the estimates for the numerical parameters remain essen- 
tially unchanged. 

The authors thank A. A. Starobinskii, V. F. Mukhanov, 
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