
Theory of gradient instabilities of the gaseous galactic disk and of rotating shallow 
water 

A. M. Fridman 

Astronomical Council, Academy ofsciences of the USSR 
(Submitted 3 October 1988) 
Zh. Eksp. Teor. Fiz. 98,1121-1 137 (October 1990) 

A theory is derived for the stability of a rotating gaseous disk and for a layer of shallow water in 
the case in which there are discontinuities in the rotation velocity, the sound velocity, and the 
surface density at the radius r = R. Various instabilities of subsonic and supersonic flows are 
analyzed. It is shown that the system of linearized dynamic equations of the gaseous galactic disk 
is identical to that for rotating shallow water in devices of the Spiral' type. 

1. INTRODUCTION 

The present study has two purposes: to demonstrate 
that the spiral structure of the Galaxy is generated by gradi- 
ent instabilities, and to derive a theory for the gradient insta- 
bilities of rotating shallow water for the case in which viscos- 
ity effects are negligible. 

It is natural to ask why such very different entities as the 
gaseous disk of the Galaxy and shallow water are taken up in 
the same paper. The reason is that the instabilities of the 
gaseous galactic disk and those of rotating shallow water 
(the latter instabilities have been studied on the Spiral' de- 
vices in the plasma physics division at the Kurchatov Insti- 
tute of Atomic Energy, Moscow) are described by the same 
system of differential equations. Although this is 
understandable-shallow water can be viewed as a two-di- 
mensional gasdynamic system1 analogous to the gaseous ga- 
lactic disk-there are two significant differences: Bottom 
viscosity effects operate in an experimental device, but there 
are no such effects in galaxies, while galaxies have self-gravi- 
tation forces which do not operate in shallow water. 

The more detailed study of these systems which we are 
reporting here has led us to the following conclusions: ( 1) 
The linearized dynamic equations of the gaseous galactic 
disk, with self-gravitation, can easily be transformed into the 
shallow-water equations. (2)  In the Spiral' devices, the Ek- 
man number2 E, is small, and the viscosity affects the flow 
over a time rsp )ri,, where Tin is the rise time of the instabil- 
ity (Sec. 2). 

To prove that the systems of equations are identical is 
equivalent to asserting that the mechanisms for the gradient 
instabilities in the gaseous disk of the Galaxy can be modeled 
in the Spiral' devices. The Galaxy, however, is a complex 
system: In addition to the gaseous disk, it contains several 
stellar subsystems which differ in morphological features. 
The gravitational potential of the steady-state system is de- 
termined in the gaseous disk by the resultant effect of all the 
subsystems of the Galaxy. In this spirit one could say that 
the rotation of the gaseous disk is externally controlled, by 
the stellar population, just as the rotation of a layer of shal- 
low water in a Spiral' device is controlled by the bottom." 
The perturbed gravitational potential in the gaseous galactic 
disk, however, is determined exclusively by the perturbed 
gas density; the perturbations of the density of stars are neg- 
ligible here (Sec. 3 ). 

The role played by the "external" gravitational force of 
the stellar subsystems is thus limited to one of creating the 

observed rotation curve of the gaseous disk. The self-gravita- 
tion force, on the other hand, does not (as we have already 
mentioned) alter the structure of the equations if we intro- 
duce a simple redefinition: We replace the sound velocity c, 
by the characteristic propagation velocity of the perturba- 
tions in a self-gravitating gaseous medium, c, (Sec. 4). A 
similar redefinition is used in the case of shallow water:' The 
sound velocity in the water is replaced by the characteristic 
propagation velocity of surface-density perturbations in the 
water. The latter velocity is much smaller than the former. 
Correspondingly, the relation c, <c, holds near the Sun, i.e., 
in the part of the gaseous disk fairly far from the center of the 
Galaxy, at the boundary of gravitational stability. In the cen- 
tral part of the Galaxy, where (we believe) there is a spiral- 
structure generator, the self-gravitation force is small in 
comparison with the pressure force, and the relation c, z c ,  
holds. 

We thus reach the conclusion that these differences 
between the two systems do not affect the mechanisms for 
the occurrence of the gradient instabilities. The Spiral' de- 
vices, on which the profiles of the basic properties of the 
galactic disk-the rotation velocity, the sound velocity, and 
the surface density-are modeled may thus be regarded as 
analog machines which reproduce the process by which the 
spiral structure of the Galaxy is generated. 

In Sec. 4 below we prove the equivalence of the two 
systems of linearized equations: that describing the dynam- 
ics of shallow water in the Spiral' devices and that describing 
the gaseous galactic disk. We then go on to an analytic solu- 
tion of this system of initial equations in Sec. 5. We assume 
there that there are tangential discontinuities in the rotation 
velocity, the density, and the characteristic perturbation 
propagation velocity. By analyzing the resulting dispersion 
relation we find the conditions for and the boundaries of the 
gradient instabilities, and we discuss their physics. A "posi- 
tive" density gradient of course leads to a flute instability of 
the disk. The physical meaning of the Landau condition4 for 
stabilizing the instability at a tangential velocity discontin- 
uity is explained. A new centrifugal instability of the disk is 
described. This instability does not have a stability threshold 
in velocity; it occurs at large Mach number, M )  1, when the 
gradient of the angular rotation velocity is negative. The 
conditions for the onset of this centrifugal instability and 
those for the onset of the Kelvin-Helmholtz instability are 
fundamentally different: The sign of the velocity gradient is 
irrelevant in the latter case, and there is a definite Landau 
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upper limit4 on the Mach number M. The physics of these 
instabilities is fundamentally different and is described in 
Secs. 6 and 7. 

The stabilizing role of a "n~gative" density gradient, 
which has been revealed in previous studies in the examples 
of a planar discontinuity5 and a cylindrical dis~ontinuity,~ 
is influential in two ways in the case of the disk: It not only 
significantly reduces the growth rate of the instability7 
caused by a negative velocity gradient but also makes the 
azimuthal phase velocity of a spiral density wave substan- 
tially lower than the value found in the calculations of Ref. 7, 
which ignore the density gradient. As a result, the quantita- 
tive (severalfold) difference between the theoretical7 and 
experimental's9 values of the phase velocity of the wave dis- 
appears. We ascribe this difference to the difference between 
the propagation velocities of the nonlinear wave observed in 
the experiments of Refs. 8 and 9 and that calculated in the 
linear approximation in Ref. 7. As the result of the substan- 
tial "retardation" of the spiral wave due to the incorporation 
of the density gradient, the calculated corotation radius 
(i.e., the radius at which the wave velocity is equal to the 
rotation velocity of the disk) is transferred from the "gener- 
ator" region ( r ~  1 kpc) to the periphery of the Galaxy. The 
latter situation corresponds better to the standard ideas 
about the location of the corotation radius in fhe Galaxy.'' 

In the Conclusion of this paper, we compare the theo- 
retical results with experimental results and observational 
data on the spiral structure of the Galaxy. 

2. THE NEGLIGIBLE EFFECT OF MOLECULAR VISCOSITY ON 
THE MECHANISM FOR GRADIENT INSTABILITIES IN 
SHALLOW WATER IN ASPIRAL' DEVICE 

The estimates below apply only to the first of the Spiral' 
devices, in which the generation of the spiral arms of the 
Galaxy was modeled. This apparatus and the experimental 
results are described in Refs. 8 and 9. 

Experiments on rotating shallow water have several nu- 
merical parameters whose values (in comparison with uni- 
ty) determine the relative role played by the viscosity. First, 
there is the Ekman number2 

where Y is the kinematic molecular viscosity coefficient,' no 
is the angular rotation velocity of the bottom of the vessel, 
and His  the depth of the liquid. In the Spiral' apparatus, the 
depth H was varied from 0.2 to 0.4 cm; with the value' 
Y = 0.01 cm2/s for water, we thus have 
(E, ),,, Z+ [R, ( r )  ] ;:. In experiments with a "rotating 
periphery" the value [R, ( r ) ] , , ,  ~2 s - '  prevailed, so the 
maximum Ekman number was (E, ),,, z 1/8; i.e., viscosity 
effects were slight. 

By definiti~n,~ the Ekman number is E, =S2/H2, 
where S = ( Y / R ) ' / ~  is the depth of the Ekman layer. Al- 
though it is relatively small, S2 < H  2, the Ekman layer could 
effectively alter the momentum of the entire liquid layer, of 
depth H, over a time scale T,, in our experiments. This time 
is called the "spindown time" (the "characteristic time for 
viscous damping") or the "spinup time" (the "characteris- 
tic time for viscous onset"). In the experiments of Refs. 8 
and 9, a sharp change in the rotation velocity R, was accom- 
panied by a change in the number of modes: An ml-arm 

spiral was replaced by an m,-arm spiral corresponding to 
the new rotation conditions. The time scale of the relaxation 
to a new steady state is T,, . From the equation of motion we 
find, in order of magnitude, 

av, a  a ~ ,  
--v-(-). at az az  (2) 

Since v, depends on z only in the characteristic interval2 (0, 
S) ,  we can use the approximation 

wherez > 0, and 8(S - z)  is the unit step function. Integrat- 
ing (2)  over z from 0 to H, we find 

Multiplying the latter equality by the density p and by 
the area of the bottom, S, we find an equation for the change 
in the radial momentum 9 = p ~ ~ v , :  

as: 9, --- ris H , Z.p---- ( 3  
at , v (vB)'"' 

Let us estimate the time scale for the relaxation to a 
steady state, for the m = 2 mode, for example, and that for a 
change in the number of arms in the case in which the angu- 
lar rotation velocity of the periphery changes abruptly by an 
amount AR. In the first case (m = 2), this time is clearly 
longer than (T,, ),, ~ 0 . 4 7  s - I: T = rmin at R = R, = 18 
s -  ' and H z 0 . 2  cm (in the central part of the apparatus, we 
have H>0.2  cm). In the second case, for A n ~ 2  s- ' ,  we 
have T,, z 1.4 s. The instability time rin turns out to be much 
shorter than these values of T,, : ri,, -4 T , ~ .  The instability time 
depends on the extent to which the velocity change is not 
actually discontinuous. If this smearing is a consequence of 
molecular viscosity (a  laminar Ekman layer), then we have 
Slam - (v/fl, ) ' / 2 ~ 2 . 4 .  10-2cm,i.e.,S,,, <A, whereAisthe 
radial wavelength ( A z ~  cm for m = 2), ~ z R ,  ( R ,  ~ 1 8  
s - '  form = 2), andrin - l / y ~ 5 . 1 0 - '  s. 

The arguments presented above to justify ignoring the 
minor role played by viscous friction during the onset of an 
instability of the shear flow in the Spiral' devices were based 
on experiments with dyed water with ~ ~ 0 . 0 1  cm2/s. It was 
mentioned in Ref. 11 that a tenfold increase in the viscosity 
of the working solution did not qualitatively alter the spiral 
pattern. Only a greater increase in the viscosity would erase 
the spiral structure. 

The question of whether turbulent viscosity affects the 
formation of structures in the Spiral' devices was answered 
in the negative by Antipov et al.,I2 who showed that the 
"viscous lifetime" of the structures is determined entirely by 
the laminar viscosity. 

3. PROOF THAT THE PERTURBED GRAVITATIONAL 
POTENTIAL Y DEPENDS ONLY ON THE PERTURBED 
SURFACE DENSITY OF THE GASEOUS COMPONENT OF THE 
GALACTIC DISK, Cg 

Our purpose in this section of the paper is to prove that 
the condition 

holds, where 5, is the perturbed surface density of the stellar 
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disk of the Galaxy. If condition (4)  holds over the entire 
region in which the spiral structure of the Galaxy is ob- 
served, then the function 

@ = - 2 n ~ ( a , + a . ) / l  kl (5) 

determined from the Poisson equation will actually depend 
on % alone. 

We will now show that the inequality (4)  follows from 
the hydrodynamic concept of the generation of spiral density 
waves13 and from observational data. Let us assume that in 
the central part of the Galaxy, at r z  1 kpc, the observed 
sharp gradient in the rotation velocity of the gaseous disk 
triggers an instability of the shear flow. A large jump in the 
rotation velocity is clearly observed in the gaseous disk of the 
Galaxy14 but not in the stellar disk. This result is not surpris- 
ing: The velocity spread of the stars is too great in the stellar 
disk. For this reason, the velocity jump in the stellar disk 
must be greatly smeared out; i.e., if an instability of the shear 
flow does exist in the stellar gzs, its growth rate y, is much 
smaller than the growth rate in the gaseous disk, 
y, : y, 4 y,. Because of this inequality and the exponential 
growth of perturbations as a result of the instability, the per- 
turbations of the gas density, i?,, are the first to grow. They 
cause the following perturbations in the gravitational poten- 
tial:15 

where k is the perturbation wave vector, and R, is a "reduc- 
tion factor" which allows for the finite thickness h, of the 
gaseous disk in comparison with the wavelength of a spiral 
perturbation. This factor is given by 

The perturbations of the gravitational field in turn cause 
perturbations 5, of the stellar density. Using the results of 
Ref. 16, we find the following expression for 5, : 

where 
m 

In (x) is the Bessel function of imaginary argument, and the 
reduction factor R ,  reflects the finite thickness of the stellar 
disk in comparison with the length of the spiral wave of the 
perturbation (the factor R, was omitted from Ref. 16). De- 
pending on the value of I k I h, / 2 ,  where h, is a scale thick- 
ness of the stellar disk, we have1'-l9 

of strong inequalities, i.e., for the situation which prevails in 
the Galaxy, it would be better to use the plots of R ,  ( Ik I h, ) 
which were given in Refs. 16-18 (see also Ref. 15).] The 
same comment applies to the estimate of R, ( I k I h, ) . In (8) 
and (9)  we used the notation 

where R, ( r )  is the angular rotation velocity of the disk, c,* 

is the spread in the radial velocities of the stars in the galactic 
disk, and x is the ecliptic frequency. Since observations re- 
veal 5,/uo* & 1 in the galactic disk, the oscillations of the 
density of the stellar galactic disk are described well by the 
linear stability theory. For this reason, the following expres- 
sion was adopted for the stellar disk in the papers cited 
above: 

where w is a natural oscillation frequency of the stellar disk, 
and m is the index of the azimuthal mode (the number of 
spiral arms). 

The rotation curve of the Galaxy14 describes a nearly 
Keplerian decay (a, a fi3'2) in the region r ,  =: 1 kpc (Ref. 
20),2' while in the large interval of r including the vicinity of 
the Sun we have R, a r - '. We thus have3' (see Ref. 21 and 
the bibliography there) 

re= 1 kpc: x,'=B~~', Boc=Voclrc, 

V0,=200km/s, h,m1,2 kpc, cr,,wlOO km/s; 

r,3=10 kpc: x,t=2Po,2, Po,=V,,/r,, 

Voem220 km/s ,  h,w2 kpc, c,,,=50 km/s. 

Using these data and ( 11 ), we find 

Using the asymptotic expression22 for the Bessel function 
In (x)  at large x, 

I,, ( x )  = - 
(2nx)  '" 

and assuming [as follows from ( 12) 1 v- 1, we see that all 
the terms in square brackets in (9)  are small in comparison 
with unity. Substituting (6)  and (9)  into (8) ,  we finally find 

8.  Gao.h R. 
-=-- (14) 
B g  c,.' Rg ' 

This expression gives the relative size of the stellar compo- 
nent of the perturbed gravitational spiral potential (in com- 
parison with that of the gaseous component). We will now 
show that this stellar component is negligible. 

Here are values of some other parameters [other than 
those listed in ( 12) ] of the gaseous and stellar disks of the 
Galaxy (see Ref. 21 and the bibliography there) : In the cen- 
tral region, at r, =: 1 kpc, we have 

Since the inequality r h ,  /A, > 1 holds for the stellar 
disk, we should use the second line in ( 10). [In the absence 

(h,) c z 0 , 0 6  kpc, (o,.)  ,=300 M , / ~ ~ Z ,  

('Joe) r - 6  Jfe/pc2,  ~ , , = 2 0  km/s. 
(15) 
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Near the Sun, at ra z 10 kpc, we have 

(h,) ,=0,14 kpc , (ao.) ,*80 M0/pc2,  

Using numerical values of the parameters in ( 12) and ( 15) 
[and numerical values of the reduction factors 
R,~/Z/(lrh,)andR,~(l+lrh,/il)-'(R,),~O.25and 
(R, 1, ~ 0 . 8 6 ;  (R,/R, 1, ~ 0 . 2 9 ;  (R, ), ~ 0 . 4 5 ,  (R,), z 
0.76, and (R, /R, ~ 0 . 5 9 1 ,  we find from (14) 

On the basis of ( 16), we will be ignoring the effect of the 
perturbed stellar component on the evolution of spiral per- 
turbations. 

4. PROOFTHATTHE SYSTEM OF LINEARIZED DYNAMIC 
EQUATIONS OF THE GASEOUS GALACTIC DISK IS 
EQUIVALENTTO THE CORRESPONDING SYSTEM OF 
EQUATIONS FOR ROTATING SHALLOW WATER IN THE 
SPIRAL' DEVICES 

Having shown that @ depends primarily on 5,, we can 
write the system oflinearized dynamic equations of the gase- 
ous galactic disk as follows: 

Here 

where the prime means differentiation with respect to r, the 
subscript 0 means a steady-state value (as above), and we 
are omitting the tilde (-) from the perturbed quantities. We 
will be using the tilde below only to specify the amplitudes of 
perturbed quantities. In writing ( 17) and ( 18) we used the 
linearized equation of state 

If we make the substitutions 

in Eqs. (17)-(19), we obtain the system of linearized dy- 
namic equations of rotating shallow water.23 This is the sys- 
tem of equations which is used in describing small perturba- 
tions on shallow water in the Spiral' devices on the f plane.24 

5. ANALYTIC SOLUTION OF THE SYSTEM OF EQUATIONS 
(1 7x19) IN THE CASE OFTANGENTIAL DISCONTINUITIES 
IN THE ROTATION VELOCITY, THE SOUND VELOCITY, AND 
THE SURFACE DENSITY 

Since the coefficients in the original system of equa- 
tions, ( 17)-( 19), do not depend one, or t, we seek a solution 
in the form 

A(r, cp, t)=ii(r) exp [i(mcp-at) 1. (23) 

Equations of motion ( 17), ( 18) can then be reduced to the 
single equation 

d 2mQo 
-(cg021) = -- (6'-x2) g, 
dr 

(24) 
rw 

and continuity equation ( 19) can be rewritten as 

In (24) and (25) we are using the notation 

According to observational data (see, for example, Ref. 14 
and the references there), there is a sharp decay of the rota- 
tion curve of the gaseous component near the radius R ~ 0 . 7  
kpc (more precisely, at distances R f 0.4 kpc). The distance 
R ~ 0 . 7  kpc from the center is a significant one because it is 
here that we find the edge of the central gaseous disk, whose 
surface density u,, is two orders of magnitude greater than 
the surface density u,, of the gas for r > R. Further from the 
center, the surface gas density remains essentially constant. 

We will therefore assume that the angular rotation ve- 
locity no ( r ) ,  the sound velocity c,, (r) ,  and the surface gas 
density uo ( r )  change abruptly at r = R: 

Qo (r) =Ql=const, ao(r) =al--const, 

CEO (r) =c,,=const for r < R, 
(27) . . 

Qo (r) =Q2=const, uo (r) =02=const, 

c,o(~) =cg2=const for r ,  R 

Integrating Eqs. (24) and (25) over the radial shell 
(R - E,  R + E ) ,  and then taking the limit E - 0, we find the 
following matching conditions at the discontinuity: 

We can now reduce the system of two first-order ordi- 
nary differential equations in (24) and (25) to a single sec- 
ond-order ordinary differential equation. The solution of the 
latter equation will contain two arbitrary constants, which 
we will determine from the two matching conditions (28). 
The equation which we are seeking has constant coefficients 
on the two sides of the discontinuity, for r < R and r > R. We 
will make use of this circumstance in deriving this equation. 

From Eq. (24) we find 

We substitute this expression for 5 (and the equation for 8 ', 
found in the obvious way) into (25). After several straight- 
forward manipulations, we find a differential equation for 
Bessel functions of imaginary argument: 

The general solution of Eq. (30) is2' 

q=z, (ikr) =CIZ, (kr) +CzKm (kr) - 

SincewehaveI,(x)+ w asx+ w andK,(x)+ w asx-0, 
we have the following solutions on the two sides of the dis- 
continuity: 
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where 

kl,& [4Q1f- (w-m~~ ,~ )~ l / c , t , .  

Using the two matching conditions (28) [joining the 
solutions (3 1 ) at the radius r = R],  we obtain a system of 
two homogeneous transcendental equations, for which the 
unknown functions are two unknown coefficients of the so- 
lutions (3 l ). The requirement that the solution of this sys- 
tem of homogeneous equations be nontrivial is equivalent to 
the requirement that its determinant be zero. We thus find 
the following dispersion relation (Appendix I ) : 

where (the prime means differentiation with respect to the 
argument of the Bessel function) 

2m 
as--- 

Im'  (kiR) 
x-m Im(klR) ' 

2mq az=-- 
Km' (k2R) 

kJ( Km(k2R) x-mq 

In this new notation we have 

M M 
kl = 4 4 -  (x-m) 2]", k2 == - 

R PR [4q2- (~-mq)~l '".  (34) 

The parameter M represents the Mach number near the 
discontinuity (calculated from the "inner" velocity, i.e., 
that in the region r = R - O), while q, Q - ', andp represent 
the ratios of the values of the angular velocity, the surface 
density of the gas, and the spread in the gas velocities in the 
outer region ( r >  R )  to their values in the inner region 
( r  < R).  For Q = p = 1, the dispersion relation (32) be- 
comes the dispersion relation of Refs. 7, since the surface 
density a, and the velocity spread c,, were assumed in Ref. 7 
to remain constant over the entire radius of the disk, and self- 
gravitation was ignored. As we will see below (see also Ref. 
3), incorporating the jump in the surface density and in the 
spread in gas velocities along with the jump in the angular 
velocity of the gas leads to some qualitatively new physical 
effects. 

6. GRADIENT INSTABILITIES AT SMALL MACH NUMBERS, 
Me 1 

It can be seen from (33) that the relations k, R -M& 1 
and k, R z Mq/p hold. At sufficiently small Mach numbers, 
M(p/q and k,R & 1, however, by expanding the Bessel' 
functions I, (k,  R ) and K ,  (K, R ) for small argument, 

we find 

After the values of a, and a, are substituted into dispersion 
relation ( 32 ) , the latter becomes 

The solution of this equation is 

xi,2= (1+Q)-'{m(l+qQ)+ (qQ-I) 

* i[m2Q(1-q)2- (l-qQ)z ' 

-m(Q-I) ( l + q ~ ) I " * ) .  (36) 

The reason why the parameter p does not appear in the dis- 
persion relation (35 ), which we have restricted to the zeroth 
order of the expansion in the parameter M, is obvious. The 
approximation M <  1 corresponds to c, - oo; in this case the 
factor by which one "infinity" is "greater than" another is 
irrelevant. When subsequent terms in the expansion in M are 
taken into account, we find p2 in the equation, but that re- 
finement goes beyond the scope of our approximation. 

For Q = 1, we naturally find from (36) the solution 
which was found in Ref. 7: 

1 
XI,, = -{m(l+q)S (q-1)*i[ (m2-1) (1-9') I"'), Q-l. 

2 
(37) 

It can be seen from (37) that an instability occurs at any 
value q# 1. This is the Kelvin-Helmholtz instability, for 
whose occurrence it does not matter which region-inner or 
outer-is rotating more rapidly. The physics of this instabil- 
ity can be outlined as fol l~ws: '~ Our approximation M( 1 
corresponds to the limit of an incompressible fluid, c, + w .  
We can therefore use the Bernoulli equation' 
u2/2 +p/a = const. The functions decay exponentially on 
each side of the dis~ontinuity,~ so a perturbation of the flow 
occurs in a narrow region near r = R, i.e., in a "cylindrical 
shell." We denote the regions inside and outside the circle of 
radius R as regions I and 11. Since the flow in the "cylinder" 
must be conserved, the velocity is higher beyond the 
"hump" (in region 11) than in the neighboring regions. Con- 
sequently (according to the Bernoulli equation), the pres- 
sure beyond the hump is lower, and the hump will grow. 

We now consider the case of a rigid-body rotation of the 
entire system (q = 1 ), which has an arbitrary density gradi- 
ent Q # 1. From (36) we have 

(1-i-Q)-'{m(l+Q)+(Q-1) 

*i[-(1-Q)"m(l-Q")] "), q=1. (38) 

It follows from (38) that under the condition 

a flute instability occurs: An outer shell (of higher density) 
exerts pressure on an inner shell (of lower density). 

The solution (36) with q # O  and Q <  1 thus describes 
two instabilities: the Kelvin-Helmholtz instability and the 
flute instability. By varying the parameters q and Q one can 
strengthen or weaken either instability. For example, one 
can suppress the flute instability by arranging a centrifugal 
force to oppose the gravitational force, i.e., by preparing a 
system with q < 1. Correspondingly, one can stop the Kel- 
vin-Helmholtz instability by introducing a negative density 
gradient, i.e., by preparing a system with Q > 1. An example 
of this stabilization is given below. 

Strictly speaking, it is generally not legitimate to speak 
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in terms of separate Kelvin-Helmholtz and flute instabili- 
ties. Solution (36) describes the onset of a shear-flute insta- 
bility or a gradient instability at M 4  l .  

a) Case with Q 9  1 and q 4 1. Let us see how the Kelvin- 
Helmholtz instability (q # 1 ) is suppressed when there is a 
negative density gradient (i.e., a drop in the density), corre- 
sponding to Q  > 1. So that the changes will be perceptible, we 
assume Q) 1. For definiteness, we adopt values for the pa- 
rameters q and Q  which are the same as those in our Galaxy: 
qz0 .1  and Q Z  100. (The results which follow, however, 
will obviously not apply to either our Galaxy, in which the 
relation M)  1 holds, or to other, similar spiral galaxies; the 
author knows of no such galaxies with M 4  1.) 

We thus assume 

Using (40), we find from (36) 

from which we in turn find the instability condition: 

m2(i-q)2>(m+I)q2Q+m (42) 

or, in the case q < 1, 

It follows from (43) that an instability with m = 0 or 1 is not 
possible. An instability with m = 2 occurs under the condi- 
tion q2Q < 2/3, etc. 

A large negative density gradient thus stabilizes the sys- 
tem. From (41) we find the azimuthal phase velocity of a 
perturbation wave: 

For comparison, the same quantity in the case Q = 1 is (Ref. 
7 

The difference between the phase velocities for small 
values of m (and for q< 1 ) is unimportant; for m = 2, for 
example, we have 

and for q -0.1 we find a, ~ 0 . 6 .  
However, we know from theoretical7 and experimen- 

t a l ' ~ ~  results that under the condition M 4  1 modes with 
large m ) 1 are excited. For m )  1, the difference between the 
phase velocities is more important: for m) 1 we have 

For q ~ 0 . 1 ,  the difference in phase velocities reaches 5; i.e., 
we find a, ~ 0 . 2 .  A density wave with Q ,  1 (and q 4  1 ) thus 
rotates at an azimuthal velocity lower than the same wave 
with Q  = 1 (and q< 1 ) would. Correspondingly, the corota- 
tion radius is more remote in the case Q, 1 than in the case 
Q =  1. 

7. GRADIENT INSTABILITIES AT LARGE MACH NUMBERS, 
M% 1 

Writing x in the form x ,  + iMx,, we find from (34) 

Substituting k, and k,  into Eq. (32), we find 

In the particular case Q  = p = 1, expression (49) becomes 
the solution of Ref. 7: 

1 
x = -[m(l+q)+iM(l-qZ) 1, Q=p=l. 

2 (50) 

Solution (50) is fundimentally different from (37) in 
that while the latter describes an instability for arbitrary 
q# 1 the former determines an instability only for q < 1. 
Consequently, for M)  1 an instability develops only if the 
inner part of the system ( r  < R )  is rotating at an angular 
velocity higher than that of the outer part. We have labeled 
such an instability a "centrifugal in~tability."~.~ The physics 
of this instability is analogous to that for the flute instability, 
while it is fundamentally different from that of the Kelvin- 
Helmholtz instability. It was proved in Ref. 4 that the Kel- 
vin-Helmholtz instability is stabilized for two-dimensional 
perturbations at M >  2 ~ 2 ;  the stabilization mechanism is 
simple. In the case of a supersonic flow (M) 1 ) in a narrow 
shell around the circle r = R (Sec. 6),  a hump in region I1 is 
perceived by the flow as a constriction in a supersonic noz- 
zle, at which the velocity does not increase (as it would in a 
subsonic nozzle with M 4  1 ) but instead decreases. As a re- 
sult, the pressure beyond the hump increases, pushing it into 
region I. This question is discussed in more detail in Appen- 
dix 11. 

In the particular case of a rigid-body rotation of the 
entire system ( q  = 1 ), we find from (49) 

This solution describes the flute instability of a supersonic 
flow. As we will see, the condition for the flute instability 
remains the same, (39 ); i.e., it does not depend on the value 
ofM. In the case M)  1, as in thecaseM< 1, the solution (49) 
does not describe any specific instability which occurs for 
q < 1 or Q <  1. It instead describes a centrifugal-flute insta- 
bility or (again) a gradient instability for M)  l .  The condi- 
tion for the occurrence of this instability is 

We can now determine the azimuthal phase velocity of 
the perturbations in the general case described by solution 
(49): 

In the particular case of Ref. 7 we have 
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In the Galaxy we have4' qzO. 1, Q z  100, and p -0.1; 
i.e., we find from (53) 

This result means that the corotation radius lies substantial- 
ly further from the center than is predicted by a theory with 
Q = 1 (Ref. 7):  

According to (55) and (56), the velocities a, differ by a 
factor of about 3. The value measured for R, in the experi- 
ments of Refs. 8 and 9 was several times lower than the value 
of R, found from expression ( 54) (Ref. 7).  Estimates show 
that the values of a, in (53) are close to those measured in 
Refs. 8 and 9. In addition, the value found for a, for the 
Galaxy from (55) corresponds better than the value from 
(56) to the present understanding'' of the value of R,. 

Let us find the shape of the spiral pattern generated by 
the gradient instability beyond the radius of the discontin- 
uity (at r >  R ) .  We find the following expression for the 
magnitude of the perturbed density u for r > R from (3  1 ) 
and (47): 

From solution (57) we can draw two conclusions. 
1. The necessary condition for a finite solution is the 

same as the condition for the occurrence of the gradient in- 
stability at M) 1, (52). 

2. The density waves are lagging spirals only in a system 
in which the angular rotation velocity falls off with increas- 
ing radius, i.e., for q < 1. The latter is a necessary condition 
for the occurrence of the centrifugal instability in the system. 

From (57) we easily find the radial wavelength: 

8. CONCLUSION 

1. It has been shown that the perturbed gravitational 
potential of the Galaxy in the z = 0 plane is determined pri- 
marily by the perturbed surface density of the gaseous disk. 
The perturbed surface density of the stellar disk is negligible 
here. 

2. Through the introduction of a gravitating sound ve- 
locity c,, the linearized dynamic equations for a gravitating 
gaseous disk have been reduced to the corresponding equa- 
tions for rotating shallow water. 

3. The bottom viscosity has only a minor effect on the 
mechanism for the generation of spiral density waves in the 
shallow water in the Spiral' devices. These devices may be 
thought of as analog machines for modeling the generation 
of the spiral arms in the gaseous disk of the Galaxy. 

4. The stability of a rotating, gravitating, two-dimen- 
sional (planar) gaseous disk (or of rotating shallow water) 
with discontinuities in the sound velocity, the rotation veloc- 

ity, and the surface density at r = R has been analyzed. A 
"gradient instability" has been found. For M( 1 this insta- 
bility is called a "shear-flute instability," while at M)  1 it is a 
"centrifugal instability." 

5. In the particular case of a medium with a homoge- 
neous density, Q = 1, the shear-flute instability converts 
into a Kelvin-Helmholtz instability,' and the centrifugal- 
flute instability into a centrifugal in~tability.'-~ 

6. In the particular case of a uniform angular rotation 
velocity, q = 1, the shear-flute and centrifugal-flute instabi- 
lities convert into the flute instability. The condition for the 
occurrence of the latter, (39) is the same for all M. 

7. The azimuthal phase velocity of the perturbations, 
R,, is determined by the values of q, Q, and p. Under the 
experimental conditions of Refs. 8 and 9 and under the con- 
ditions in the galactic disk, the values of R, are close to the 
theoretical value of R, found from ( 53 ) . 

8. The perturbations take the form of lagging spirals (in 
the case M)  1, the angular velocity of the disk must fall off 
with the radius). 

I wish to thank M. V. Nezlin for useful discussions. 

APPENDIX I 

Substituting i j  from (3  1 ) into (29), and using the nota- 
tion of (33), we find the following expressions for 5, and 8, 
for the regions r < R and r > R, respectively: 

Using the second matching condition in (28) we find 

From the first matching condition in (28) we find 

or, with the help of (31) and (11) 

The system of homogeneous transcendental equations 
in (12) and (14) has a nontrivial solution with respect to the 
unknown functions C,  and C2 if the determinant of this sys- 
tem of equations vanishes. The latter condition is the disper- 
sion relation which we need, (32). 

APPENDIX II 

For M >  1, the mechanism which was described above 
qualitatively, and which was originally proposed by Lan- 
d a ~ , ~ )  for stabilizing the Kelvin-Helmholtz instability con- 
tradicts a basic conclusion of a paper by SyrovatskiiZ5 -that 
there is no condition for stabilizing a tangential-discontin- 
uity instability. This criticism of Landau's paper4 was, as we 
know, the reason why that paper was omitted from the two- 
volume collection of Landau's works and why the contents 
of that paper were removed from the 1954 edition of Landau 
and Lifshitz's Mekhaniki sploshnykh sred (Fluid Mechan- 
ics) (the results in question had been included in the 1953 
edition). 

We can show that although Syrovatskii's derivationZ5 is 
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correct for a medium of infinite size, a stabilizing effect does 
operate in a real, spatially bounded, supersonic flow with a 
tangential velocity discontinuity. This effect can be de- 
scribed quantitatively by a modified Landau condition. 

The instability of a tangential discontinuity of a quasi- 
two-dimensional flow (e.g., the gaseous disks of the galaxies 
and shallow water) is stabilized, as was shown above (and as 
was shown previously in Refs. 26 and 27), in complete ac- 
cordance with Landau's ~ondit ion.~ 

Let us assume that we are given a flow along the x axis 
with a tangential velocity discontinuity: v, = vxB( - z ) ,  
where 0 is the unit step function. Choosing the perturbations 
of the density p and the velocity v in the form 

P (x, Z, t) -V(X, Z, t )  -exp (ikx-hi z\ + y t ) ,  (111) 

1 1 a VO 
f(x)= ( x - ~ c o s ~ ) '  +i' x-- M = - .  

kc, ' Co 

This result differs from Landau's equation4 by a factor of 
cos 0 (Ref. 25). Equation (114) has four roots. All are real if 
the function f(x) is of the form shown by the solid line in Fig. 
1. If f (x)  is instead of the form shown by the dashed line, 
then Eq. (114) has only two real roots. The two others are 
thus complex conjugates, and one of them describes an insta- 
bility. The majorant curve is shown by the dot-dashed line. 
Again in this case we have all real roots, two of which are 
multiple: 

xi', x,', xZf=x,' = M cos 0. 
2 

Landau showed4 that an instability does not occur under the The critical Mach number M,, is found from the equa- 
condition v, > v,, . If the unperturbed density p, and the un- tion 
perturbed sound velocity c, are assumed to remain constant 1 
on each side of the discontinuity, pol = p,, =p,, f(.Z- M cos 0) = 1, 
c,, = c,, = c,, then we have the following result in this very 
simple case: 

It can be seen from (111) that the wave vector k was 
chosen along the x axis in Ref. 4: k = k,. Ten years later, 
Syr~vatsk i i~~ solved a related problem with respect to a gen- 
eral class of perturbations, k = {k, ,ky ) = {k cos O,k sin t?}, 
and found that an instability occurred at any value of v,. 

Forp,, = p,, , c,, = c,, , the problem of the stability of 
a tangential discontinuity in the flow of a compressible fluid 
with respect to arbitrary perturbations can be reduced to the 
following dispersion relation [we are assuming a time de- 
pendence a exp( - iwt) ] : 

k2cO' 
1 1 1 1 -- [ (a-kt~,)' -71 =(a-kvo)Z a~ ' (113) 

Taking out a common factor, which has only the real 
root w = - kv/2, we find the equation 

which gives us the point at which the majorant curve is tan- 
gent to the line f(x)  = 1. The result is 

- cos 0 

Sincewehavecost?=kx/~k,~,where Ik,I=(k: +k:)",, 
we find 

In quasi-two-dimensional systems (e.g., gaseous galac- 
tic disks and shallow water), only the "longitudinal" waves, 
with ky/k, -4 1, are possible. In this case the value of M,, in 
(116) becomes the value found for M,, by Landaw4 Syro- 
vatskii's main comment can be summarized as follows: Arbi- 
trary perturbations permit an analysis of the opposite limit, 
of "transverse" waves, with ky/kx ) 1. It is obvious that, for 

!(.)=I, 

where 

for example, stabilization is impossible in principle, since we 
find5' M,, + UJ from (116). In the idealized formulation of 
the problem-tangential velocity discontinuity in an infinite 

FIG. 1. 
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three-dimensional space--condition (117) can be satisfied. 
A real situation, however, introduces two important correc- 
tions: (1) The system has finite spatial dimensions in all 
three directions. (2)  The tangential velocity discontinuity is 
smeared over some distance a. 

A consequence of these conditions is the existence of a 
limit 

(ky/kx) mas3 (ky) mas/ (ks) m+n. 

Indeed, we have (k, ),, - 1/L, where L is the size of the 
system along the x direction, and (k,),,, - l/a, as follows 
from the necessary condition for an instability of a flow with 
a nonuniform velocity profile, k,a < 1 (Ref. 28). 

The instability of a "tangential discontinuity" of the 
velocity is thus eliminated under real conditions if the fol- 
lowing criterion holds: 

In practice, the condition L 2/a2) 1 usually holds, and 
in this case M,, is, according to (II8), greater than M C , ,  
(Landau's) by a factor of L /a: 

We can now write the condition under which these perturba- 
tions drift: 

where y= Im w is the growth rate of the instability of a tan- 
gentiaI velocity discontinuity. The meaning of condition 
(1110) is that the perturbations in any region of the gas do 
not manage to grow over the time which it takes this region 
of the gas to traverse the system, of length L, at a velocity u: 
Under condition (IIlO), it can be assumed that this instabil- 
ity does not occur. When we substitute a result from Ref. 5, 

y-m0,5 (kx) m , , , ~ ~ 0 , 5 c / ~ ,  

into (IIlO), we fad  

The satisfaction of condition (I18 ) thus essentially also 
means the satisfaction of condition (I11 1). 

A flow with a velocity discontinuity and a Mach num- 
ber M >  Mcr is stable if the size of the flow, L, satisfies 

"The part of the rotation curve from 5400 ps to 2 1 kpc may be an 
exception. On this part of the curve, a massive molecular disk ~ 7 0 0  ps 
in radius, with a sharp edge, near the center of the Galaxy apparently 
contributes significantly to the potential. The edge of the disk is corre- 
lated with the region of a negative gradient on the curve of the rotation 
velocity of the Galaxy, i.e., with the region of the generator of the insta- 
bility responsible for the origin of the spiral s t r~c tu re .~  

2, More precisely, E ( R  - A, R + A), where R z 0 . 7  kpc and Az0.3  kpc 
(Ref. 14). 

'I Presently the spiral arms can be seen from a distance r 2 2-3 kpc, so a 
value/l, -- 1.2 kpc at r=: 1 kpc should be regarded as somewhat arbitrary 
at this point. 

"It follows from (20) that Q and p are independent. In our galaxy, at a 
distance r = R (i.e., at r ~ 0 . 7  kpc) we have c$ =c&, and p is deter- 
mined entirely by the equation of state. For a polytrope model 
(p/cr"') = const, p = Q ( I  - y1'0'2 and with y,, zz 2 we have p zz Q - '". 
This result tells us that we havep = 0.1 (with Q = 100). In themolecu- 
lar disk, this value corresponds to a turbulence velocity c,,,,, -- 80 km/s. 
If we instead substitute a non-self-consistent value [ (c,,,,, ),in ~ 2 0  
km/s] into (53), we find R, -0.26R,/2 instead of the value of 0.36 
R,  /2 in (55). The difference is seen to be insignificant. 

5'Note, however, that in the limit k,/k,  - m the instability growth rate 
vanishes3 (y-0). It is shown below that incorporating the growth of 
perturbations in drifting flows causes essentially no change in the stabi- 
lization condition found from (116). 
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