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The Invar anomaly is associated with a striction effect in systems exhibiting structural 
transitions. This anomaly is described by developing a fluctuation theory of a structural-volume 
effect similar to a theory of magneto-volume effects in magnetically ordered metals. In addition 
to the usual phonons, there are also paraphonons which are characteristic relaxation fluctuations. 

1. INTRODUCTION 

The discoveries of the Invar' and Elinvar2 effects, 
which earned the 1920 Nobel Prize, were followed by exten- 
sive experimental and theoretical investigations of these 
phenomena (see, for example, Ref. 3), and very interesting 
practical applications. The Invar effect, manifested by 
anomalously small values of the thermal expansion coeffi- 
cient, is usually attributed to magnetic properties or materi- 
als. It is assumed specifically that the magnetostrictive con- 
tribution to the change in the volume, which in the case of 

2. GENERAL RELATIONSHIPS 

In discussing the properties of the structural-volume 
effect we shall employ a simple model of a crystal with one 
branch of lattice vibrations corresponding to "soft" optical 
phonons (see, for example, Refs. 15-18). Such a model can 
be illustrated employing the following expression for the free 
energy density 

F (u,, V ,  T )  =Fo ( V ,  T )  + ' I , A o ~ o ' + ' I , B ~ ~ 4 + A ~ ( ~ ~ ,  V ,  T) . 

. , 
magnetic materials is usually negative, can under certain Here, uo is a one-component order parameter which we shall 
conditions compensate the usual lattice and electron ther- 

assume to be small, V is the volume, T is the absolute tem- 
ma1 expansion effecW3 

perature, and Fo ( V, T )  is the free-energy contribution unre- 
In recent years a theory of the magnetovolume effect 

and Invar anomalies have been developed much further us- lated to fluctuations of the order parameter. The term (see 

ing a theory of spin fluctuations" that play-as already es- Ref. 19) 
- 

tablished-an extremely important role in weak ferromag- 
nets, which include the majority of the alloys that exhibit the 
Invar effect (Invar alloys). 

We shall indicate another possible reason for the Invar 
anomalies associated with a striction-induced structural- 
volume effect. In contrast to the familiar analysis of striction 
phenomena in systems with structural transitions (see, for 
example, Ref. 8) based on the Landau theory of phase transi- 
tions and ignoring fluctuation effects, we shall propose a 
simple model theory based on the approaches of Ginzburg9 
and Levanyuk'O3'' and we shall allow for fluctuations of the 
order parameter. In the theory of the structural-volume ef- 
fect proposed below the thermally induced change in the 
volume is described by the average of the square of the order 
parameter and, in contrast to Ref. 8 where it is proportional 
to the square of the average order parameter, it differs also 
from zero even in the disordered phase. The structural-vol- 
ume effect discussed by us is closely related to the magneto- 
volume effect in a spin fluctuation theory developed in Refs. 
6 and 7 and, like the latter effect, may compensate for the 
usual thermal expansion and give rise to Invar anomalies. In 
the absence of such compensation the influence of the struc- 
tural-volume effect may be manifested by a negative thermal 
expansion coefficient which is exhibited by a number of non- 
magnetic materials. We can mention here, for example, the 
striking anomalies of the low-temperature expansion of 
~ r a n i u m ' ~ , ' ~  which are in our opinion associated with the 
recently discovered transition to a state with a charge den- 
sity waveI4(see below). 

describes the fluctuation contribution, whereas w ( k )  and 
y(k)  are, respectively, the frequency and damping decre- 
ment of phonons. 

We shall allow for a nonlinear (anharmonic) depen- 
dence of the frequency w ( k)  on the order parameter u, , and 
we shall use the following simple equation of motion: I5-l8 

P[; (k, t) -2y (kfi (k, t) ]+A(k)a(k, t) 

wherep is the density of the investigated crystal and u (k,t) is 
a dynamic variable the averaging of which for a specific wave 
vector k = k,, representing an ordered state, governs the 
order parameter: (u (k, , t)  ) = u,. We shall use also 
A (k, ) =A, < 0. We shall ignore the influence of anharmon- 
icity on the phonon damping decrement y(k) .  Averaging 
Eq. (2.3) on the assumption of a weak anharmonicity, we 
can write down the following expression (see Refs. 15 and 
16) 

which governs the dependence of the phonon frequency 
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w(k) on the order parameter and on the average of the 
square of the fluctuation amplitudes 

cd 

where 

and 

In writing down the equation of state we have to mini- 
mize Eq. (2.1 ) with respect to the order parameter u,. We 
shall do this using an approximate expression 

which becomes invalid only near the phase transition tem- 
perature [see Sec. 4, Eqs. (4.40)-(4.44) 1. 

In the approximation described by Eq. (2.7) the pro- 
cess of minimization of the free energy [Eq. (2.1 ) ] of the 
ordered phase, when u,#O, gives an equation of state de- 
scribing the change in the order parameter u, ( T) (compare 
with Refs. 15 and 16) : 

a t  ( T )  =u: ( 0 )  -36u2 (TI ,  (2.8) 
where ui (0)  = - A,/B > 0. Equation (2.8) allows us to de. 
rive the following relationships governing the temperature 
dependence of the soft-mode frequency: 

in the ordered phase ( T < Tm ) and 

3B I 
o," ( T )  = - [6ua ( T )  -6u2 (T,) I =  - 002 ( 0 )  

P 2 

in the disordered phase ( T >  Tm ). Naturally, the phase tran- 
sition temperature Tm is governed by vanishing of the right- 
hand side of Eq. (2.8) and we then have Su2(Tm ) = f U i  
(0).  Consequently, the soft-mode frequency vanishes at the 
phase transition temperature Tm . 

3. INVAR ANOMALY 

We shall now consider the influence of fluctuations of 
the order parameter on the thermal expansion crystal. If we 
define, as usual, the pressure by P = - [d(FV)/dV ] ,, we 
find that in the approximation of Eq. (2.7) the equation of 
state becomes 

where 

uL"T) =uoZ(T)  +6u2 ( T )  (3.2) 

is the average of the square of the order parameter, 

is a striction constant which we shall assume to be positive. It 
should be stressed that Eq. (3.1 ) is derived ignoring the vol- 
ume dependences of the quantities [ A ( k )  - A o ]  V and 
y(k)  V, which we shall assume to be weak compared with the 
volume dependence of the soft phonon frequency w,. The 
equation of state (3.1 ) makes it possible to determine the 
temperature dependence of the volume of a crystal 

where 

A V ( T )  =A V,, ( T )  +A V ,  ( T )  

and 

describes the usual contributions of electrons and phonons, 
whereas 

is the change in the volume due to striction. The volume 
V, = V, (PI is governed by the relationship P = Po ( V, 0) 
and then the bulk modulus K( V, T) is described by 

(3.5) 
where 

K, (V ,  T ) = -  (aPola In V ) , .  

Equations (3.4) and (3.5) can be used in elucidating 
the Invar and Elinvar effects that are manifested by the 
anomalously weak temperature dependences of the volume 
and elastic modulus of a crystal. We shall therefore consider 
the qualitative temperature dependence of u i  (T) .  In the 
case of the ordered phase (which exists at temperatures 
T < Tm ) it follows from Eq. (2.8) that the average square 

uLz (T)  =u," ( 0 )  -26uZ ( T )  (3.6) 

decreases with increase in temperature, reaching its mini- 
mum value+ui (0) = u i  (Tm ) at the transition temperature 
T = Tm . Above the transition temperature ( T >  Tm ), we 
find that the quantity 

rises with temperature. These qualitative properties of 
u i  ( T) make it possible, on the basis of Eq. (3.4), to con- 
clude that on increase in temperature in the range T >  Tm 
the fluctuation contribution of the soft mode results in the 
usual increase in the volume of a crystal with temperature. 
On the other hand, in the ordered phase ( T <  T,), when 
u i  ( T) decreases with rising temperature, the fluctuation 
contribution of the soft mode to the volume decreases. 
Therefore, at T = Tm there is a change in the sign of the 
structural-volume effect which we are considering here. 
This property is typical of the Invar anomalies and it may 
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result, under certain conditions, in compensation of the usu- 
al electron and phonon contributions and thus weaken the 
temperature dependence of the volume of a crystal. Similar- 
ly, a reduction in the bulk modulus KO ( V, T) on increase in 
temperature, which is due to the influence of electrons and of 
the phonon anharmonicity, may be compensated by an in- 
creasing striction contribution described by the second term 
on the right-hand side of Eq. (3.5), which corresponds to the 
Elinvar anomaly. 

Ignoring the temperature-induced changes in the stric- 
tion constant and allowing for the smallness of the corre- 
sponding change in the bulk modulus, we can write down the 
following simple expression for the striction-induced vol- 
ume change: 

considered as a function of the order parameter varying with 
temperature, where 

The relative change in the volume of the ordered phase 
(which exists in the range 0 < T <  T, ) due to the striction is 
given by 

Above the phase transition temperature ( T >  T ,  ) the stric- 
tion contribution to the change in the volume increases with 
temperature: 

It should be pointed out that using Eqs. (2.9) and 
(2.10) we obtain the following simple relationship: 

two phenomena and makes it possible to draw general con- 
clusions about the possibility of such effects as a result of 
fluctuations of the order parameter even in the case of sub- 
stances with different types of second-order phase transi- 
tions. 

4. TEMPERATURE DEPENDENCE OFTHE STRUCTURAL- 
VOLUME EFFECT 

In this section we shall consider the explicit depen- 
dences of the average squares of the fluctuation amplitudes 
6u2 ( T) , of the order parameter u, ( T) , and of its average 
square u i  ( T), of the soft-mode frequency w,( T), and finally 
of the structural-volume effect A V, ( T) . The softening of an 
optical phonon mode will be related to the following simple 
mode of the optical spectrum. In a wide range of wave vec- 
tors the optical phonon frequency is assumed to be indepen- 
dent of the wave vector and equal tow (k )  z w , . Therefore, in 
a range of wave vectors limited by the inequality 
I k - k, I < kc we shall assume that this is an anomaly of the 
smallness ofw (k), which is usually attributed to a soft mode 
(see Ref. 17). In this range the spectrum of an optical mode 
can be modeled by the expression 

where 

It then follows from Eq. (2.9) that w,(T) vanishes at the 
structural transition point. However, even far from such a 
transition we shall assume that 

mo (T) (4.2) 

which relates the striction-induced volume change A V, ( T) 
to the soft mode frequency wo ( T) and is valid both below 
and above the structural transition temperature. Figure 1 
illustrates schematically the temperature dependence of this 
structural-volume effect. A comparison of the relationships 
obtained by us with the familiar laws governing the mag- 
netovolume effect, described by the spin-fluctuation theory 
of magneti~rn,~.' reveals a qualitative analogy between these 

f i  
=- [o"-w(l" (T) 1" 

2nZpcS 

FIG. 1. Invar anomaly in a system with structural transitions. 

where wc =ckc - a i .  
We shall discuss first the properties of the spectral den- 

sity of fluctuations (see Refs. 16 and 18): 

4A dk 
P w = - j  - oy (k) 

np (2n) [02 (k) -o2I2+ [2oy (k) l2 ' 
(4.3) 

which governs, in accordance with Eq. (2.5), the tempera- 
ture dependence of fluctuations of the order parameter. In 
the adopted model we shall assume that the damping of opti- 
cal phonons is independent of the wave vector 
y( k )  = y = const and is relatively small ( y 4 w, ) . In partic- 
ular, such a model allows us to consider in detail the spectral 
properties of the function g(w). 

Firstly, it should be noted that the integral expression 
on the right-hand side of Eq. (4.3 ) contains the usual contri- 
bution to the spectral density, which appears at optical 
phonon frequencies w = w (k )  and if we ignore the damping 
of phonons ( y  = O), we find that this contribution is (see 
Ref. 15) 

whereB(x) = l , i fx>OandB(x)  =Oifx<O,whereas V,  is 
the phase volume corresponding to "hard" hf phonons of 
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frequency w(k) = w,. The first term on the right-hand side 
of Eq. (4.4) describes the influence of If soft phonons with 
the spectrum given by Eq. (4.1) and it differs from zero in 
the frequency range 

The second term is due to the effects of hf phonons (w -- w, ). 
Secondly, in addition to this phonon contribution the spec- 
tral density g(w) includes a contribution due to "relaxation" 
fluctuations of the order parameter which in the equation of 
motion (2.3) correspond to neglect of the term -g(k,t). By 
analogy with magnetic fluctuations (paramagnons) we sug- 
gested in Ref. 19 to call these paraphonons. 

In discussing the relative contributions of phonons and 
paraphonons to the spectral density of fluctuations, we shall 
use the condition (4.2) to write down the following explicit 
expression: 

+ arctg 

where 3 = [ ( w i  - w2)2 + (20y )~ ]  ' I 2 .  The first and second 
terms on the right-hand side of Eq. (4.6) are due to, respec- 
tively, If (Eq. (4.1) and hf [w (k)  z w, ] parts of the spec- 
trum. 

It should be pointed out that inclusion in Eq. (4.6) of 
just the first term corresponds to a model which is usually 
attributed to the soft mode concept (see the review in Ref. 
17). Then, neglect in such a term of the spatial dispersion of 
the soft mode, which corresponds to the limit w, = ck, -0 
in Eq. (4.6), gives rise to a spectral density of fluctuations 
that has been used in a number of investigations (for reviews 
see Refs. 17 and 18). We shall allow for the effects of the 
spatial dispersion of a soft mode and for the influence of 
"hard" hf phonons. 

At moderately high frequencies defined by a g o , ,  we 
find that the spectral density of fluctuations deduced from 
Eq. (4.6) is described by the following simple expression: 

g(o) = - {[ (0~~-~~)~+(2oy)~]~+w~~-0~)-~ 
2 n p c  

4hVk OY +-- 
np oi4 ' 

(4.7) 

Here, the first term on the right-hand side represents the 
influence of a soft mode, whereas the second corresponds to 
inclusion of paraphonons associated with the hf spectrum 
[w(k) -mi 1, which we shall call "hard." We shall consider 
first the spectral properties of Eq. (4.7) for the function 
g(w). 

In the low-frequency limit 

where according to Eq. (4.5) there are no phonons, we find 
that Eq. (4.7) for the spectral density yields the expression 

where the first term with wo(T) and the second term with w, 
are due to, respectively, the "soft" and "hard" paraphonons. 
In the frequency range 

it follows from Eq. (4.7) that 

which is again due to paraphonons. The frequency range 
(4.10) appears in the wo( T) 4 y case, when the soft phonons 
are strongly damped (for example, near the structural tran- 
sition temperature). Under these conditions, the soft mode 
is frequently called "overdamped" (see Refs. 15, 16, and 
18). 

It should be stressed that the paraphonon effects con- 
sidered by us do not just appear when soft phonons are 
strongly damped (or overdamped). It follows from Eqs. 
(4.8) and (4.9) that the If [w 4wo( T )  ] paraphonons play an 
important role also when w , ( T ) )  y. Therefore, the case of 
an overdamped soft mode discussed does not 
exhaust all the situations in which the paraphonon role is 
predominant. 

Finally, in the frequency range 

we find that Eq. (4.7) yields the following expression for the 
spectral density of fluctuations (see, for example, Ref. 15): 

where the terms proportional to c - ~  and yare due to, respec- 
tively, soft phonons and hard paraphonons. We shall com- 
plete a discussion of the spectral properties of the function 
g(w) by noting that in the hf limit w %w, it falls on increase 
in the frequency in accordance with the law, as deduced 
from Eq. (4.6). 

We shall now discuss the temperature dependence of 
the fluctuation amplitudes by noting first of all that when the 
phase volume corresponding to a soft mode is negligible so 
that k :/6r2 Vk < w,(O)/m ,, y/w ,, its influence is unimpor- 
tant and the quantity Su2(T)  is governed by the fluctuations 
associated with the hf part of the spectrum [w(k) =:@,I. We 
shall ignore this case but assume that the phase volume of a 
soft mode is comparable with the dimensions of the Brillouin 
zone. We shall consider onl) the situation when the damping 
and frequency of soft phonons are not too high:. 

The condition (4.14) imposes certain restrictions on the 
parameters of the investigated systems: 

whereg = fiL3 /2p2c" is a dimensionless parameter represent- 
ing the anharmonicity. We shall assume that the condition 
g <  1 is satisfied (see Ref. 15 ) . 

The asymptotic expression for the spectral density g(w ) 
allows us to write down the square of the fluctuation ampli- 
tudes 

613 Sov. Phys. JETP 71 (3), September 1990 V. P. Silin and A. 2. Solontsov 673 



6u2(T)  =6u," ( T )  +6u,,"T) (4.16) 

in the form of a sum of the contributions 6 u i  and Su;, , which 
are due to paraphonons and phonons, respectively. Under 
the conditions assumed here, when the influence of hard par- 
aphonons can be ignored, the quantity Su: is governed by 
paraphonons associated with the soft mode. 

In the low-temperature limit 

the contribution Sui governed by paraphonons is, according 
to Eq. (4.9), given by 

and the contribution of phonons is found to be exponentially 
small (see, for example, Ref. 15) and is described by 

Using the general relationships governing the square of the 
order parameter, the soft mode frequency, and the fluctu- 
ation-induced change in the volume (deduced in the preced- 
ing section) we can apply Eq. (4.18) to find that in the case 
of an ordered Phase ( T < Tm ) we have 

uO2(T)  =uo2 ( 0 )  ( l - T ~ T o ~ ,  u L 2 ( T ) = u t  ( 0 )  (1-2Ta/3Toz) ,  

wO2 ( T )  ==cot ( 0 )  ( 1 - T 2 / T t ) ,  

A V ,  ( T )  =A V ,  (0) (1-2Ta/3T:), (4.19) 

where 

To= ( f i r n o  ( 0 )  / x )  (a0 (O) /g ' f )"  

is the characteristic temperature governed by paraphonons. 
We shall ignore the phonon contribution and allow for the 
smallness of the ratio T2/T: 1, which follows from the 
estimates 

applicable to the cases of, respectively, weak damping of 
phonons [oo(0) 9 y ]  and strong damping of phonons 
[w,(O) ) y ]  associated with an overdamped mode. Bearing 
in mind that, according to Eq. (4.20), the soft phonon fre- 
quency varies only slightly [wO( T) --,wo(0) 1, we can use Eq. 
(4.14) to rewrite the range [Eq. (4.17) ] of validity of the 
relationships given in Eq. (4.19) in the following simple 
form: 

It should be stressed that the relatively weak, because of the 
condition (4.20), temperature dependences in Eq. (4.19) 
nevertheless play the main role in the low-temperature limit 
and they govern, for example, the thermal expansion coeffi- 
cient. 

At temperatures obeying the condition 

the contribution Sui of paraphonons to the square of the 
amplitude of fluctuations given by Eq. (4.16) is described by 
the following expressionZ0 which is obtained from Eq. 
(4.11): 

Ignoring the exponentially small contribution of phonons 
Sui, and using Eq. (4.23), we obtained the following rela- 
tionships: 

which govern the temperature dependences of the order pa- 
rameter, of the soft mode frequency, and of the volume in the 
ordered ( T <  T,,, ) and disordered ( T >  Tm ) phases. In the 
above expressions the quantity 

represents the characteristic energy of paraphonons, where- 
as c ( x )  is the Riemann zeta function. 

If a structural phase transition occurs in the tempera- 
ture range described by Eq. (4.22), then the transition tem- 
perature Tm = T, is given by Eq. (4.25) and is governed by 
paraphonons. We should mention here that the low-tem- 
perature mechanism of structural transitions due to para- 
phonons was considered by us briefly in Ref. 20, where we 
discussed the temperature dependences of the type given by 
Eq. (4.24). In the systems exhibiting such a transition the 
order parameter satisfies the condition 

However, if the condition (4.26) is not obeyed, the transi- 
tion temperature is higher T,,, k fiy/x (see below). 

If we allow for the estimate fiw: ( T)/yxT, 5g.g 1, we 
can write down the condition (4.22) in the form 

hoO2(0 ) / y<xT<<f i y ,  (4.27) 

which defines the range of validity of the temperature depen- 
dences of Eq. (4.24) due to paraphonons. It should be 
stressed that the inequalities of Eq. (4.27) can be satisfied 
only when the mode frequency is overdamped at low tem- 
peratures [wO(0) y],  which corresponds to the limit 
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In the systems in which the order parameter satisfies the 
condition u: 5; ui (0) 4 &: /g and the temperature of the 
structural transition is, in accordahce with Eq. (4.26), not 
too low ( Tm > TI ), we obtain an estimate of the upper limit 
of the temperature range in Eq. (4.27) which is T/T, 4fiy/ 
xT, - ul/uo(0) 5; 1 and which demonstrates the relative 
weakness of the temperature dependences described by the 
equations in the system (4.24). 

At temperatures 

izy, l i a o ( T ) K h a c  (4.29) 

the contribution of phonons to the square of the fluctuation 
amplitude is governed mainly, according to Eq. (4.13), by 
soft phonons 15.21*22 

x2TZ 
Sumz ( T )  - 

12ttpc3 

The influence of hf phonons is then exponentially small, - exp( - hwl/xT), whereas the contribution of paraphon- 
ons associated mainly with the soft mode is -xT/  
max [h,( T) ,Hy] ) 1 times smaller than the phonon contri- 
bution 624,. 

Using Eq. (4.30), we obtain the following relation- 
ships: 

which govern the temperature dependences of the character- 
istics of the ordered ( T < Tm ) and disordered ( T >  Tm ) 
phases,  here'"^',^^ the characteristic temperature due to 
soft phonons is T, = +h , (~ ) /xg ' /~ .  

If a structural transition appears in the temperature 
range defined by Eq. (4.29), it then follows from Eq. (4.31 ) 
that the transition temperature T,,, = T, is governed by soft 
phonons. Such low-temperature structural transitions were 
discussed in Ref. 15, 21, and 22 where a dependence of the 
type given by Eq. (4.3 1 ) was obtained for the soft-mode 
frequency w, ( T )  in the disordered phase ( T >  Tm ) . The 
change in the volume of the disordered phase, proportional 
to T and due to soft phonons, was also discussed in Refs. 15 
and 22. However, no attention was given to reversal of the 
sign of the structural-volume effect at the phase transition 
point or to the possibility of appearance of thermal expan- 
sion anomalies. 

The conditions of Eqs. (4.15) and (4.29) impose the 
following restrictions on the order parameter of systems 
with low-temperature structural transitions due to the 
phonon mechanism: 

It should be pointed out that if the order parameter satisfies 
also the condition of Eq. (4.28), it then follows from the 
system (4.31) that the soft mode is overdamped 
[w,(T) < y ]  in a wide range of temperatures T S  T2u,/ 
~ , ( 0 ) g ' / ~ ,  including the range of existence of the ordered 
phase ( T <  T,). 

If the right-hand inequality in Eq. (4.32) is not obeyed, 
the temperature of the transition is higher: T,,, 2 +h, / x  (see 
above). In this case the temperature dependences described 
by the system (4.3 1 ) represent the ordered phase ( T < T,,, ) 
andestimates yield T/T, <&a, /xT, - u2/u,(0) 5 1. In both 
cases if we assumed that &a,(O)/xT, crgl"< 1, the condi- 
tion of validity [Eq. (4.29) ] of the dependences given by the 
system (4.3 1 ) can be written in the form 

fir, izoo (0) K ~ T K A w , .  (4.33) 

We shall finally consider the limit of high temperatures 

Allowing for the properties of the spectral density of fluctu- 
ations described above, we find that in this limit the main 
contribution to the square of the amplitude of the fluctu- 
ations is made by phonons (see, for example, Ref. 15) : 

6u,h2 (T) - 
The terms on the right-hand side of Eq. (4.35) with kc and 
V, , describing respectively the influence of soft If and hard 
hf phonons are of the same order of magnitude in the model 
adopted by us and, in contrast to the cases discussed above, 
the fluctuations associated with the soft mode do not play 
the dominant role. The contribution of paraphonons 6ui is 
then -o,/max [wo( T), y] ) 1 times less than the quantity 
6ujh, so that we should ignore this contribution, exactly as in 
the case described by Eq. (4.33). It follows from Eq. (4.35) 
that the temperature dependences of the characteristics of 
the ordered ( T < T,,, ) and disordered ( T > Tm ) states are 

where 

2n2 h a .  uo2(0)  / ( + 2n2Vka.') T s = - - -  (4.37) 
3 x uZ2 K:k: 

is the characteristic phonon temperature. 
Substituting into the condition (4.2) the expression for 

w,( T) from Eq. (4.36) and allowing for the inequality of Eq. 
(4.34), we find that the range of validity of the high-tem- 
perature relationships given by the system (4.36) is 
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If a structural transition appears in the high-tempera- 
ture range defined by Eq. (4.38), it then follows from the 
system (4.36) that the transition temperature T, = T, is 
governed by Eq. (4.37). High-temperature structural tran- 
sitions and the associated temperature dependences of the 
type described by the system (4.36) have been discussed 
widely in the literature (see, for example,  monograph^'^^'^ 
and  review^".'^). The temperature dependence of the fluctu- 
ation contribution to the volume A V, ( T) obtained allowing 
for the soft mode was first discussed by Levanyuk,Io leading 
to the results (after correction for some errors) that repre- 
sent expressions derived from Eqs. (4.36) and (4.37) in the 
limit V, -0. 

The order parameter of systems with high-temperature 
structural transitions obeys the following conditions: 

At low values of the order parameter a structural transition 
is governed by the low-temperature mechanisms discussed 
above. The case of large values of u, (0)  corresponds to tran- 
sitions at the temperature T, , which is outside the inverval 
of Eq. (4.38). However, this violates the condition (4.15) of 
validity of the approach adopted here. 

The above analysis of the temperature dependences of 
the order parameter u, (T) ,  of their average square of the 
atomic displacements u i  (T) ,  of the soft mode frequency 
w,(T), and of the fluctuation contribution to the volume 
AV, (T)  complete our analysis of the physical picture of 
structural phase transitions within the framework of the 
adopted simple model of a crystal. 

Equations (4.24), (4.31), and (4.36) for the fluctu- 
ation contribution to the volume A V, ( T) illustrates a gen- 
eral qualitative relationship associated with a change in the 
sign of the structural-volume effect and a kink in the tem- 
perature dependence of the volume of a crystal in the vicinity 
of a structural phase transition. The analytic temperature 
dependences of the volume of a crystal corresponding to the 
mechanisms of structural transitions discussed above are 
very different. We find that there is a difference between the 
jumps in the volume thermal expansion coefficient at the 
point T = T,, due to the kinks in the temperature depen- 
dence A V, ( T) and given respectively by +A V, (O)/V,T,, 
2AVs (O)/V,,T,, and AV, (O)/V,T,, for low-temperature 
structural transitions due to paraphonons (T, = TI) and 
soft phonons (T, = T,) and for high- 
temperature transitions ( T, = T, ). 

We shall conclude by considering the condition em- 
ployed by us in Sec. 2: 

which corresponds to the self-consistent field approximation 
(see Refs. 15 and 16). Substitution in the above condition of 
the low-temperature expression given by Eq. (4.19) togeth- 
er with Eq. (4.20) gives Ia(Su2)/dui ( - T2/Ti  4 1. There- 
fore, the condition (4.40) is satisfied in the limit of low tem- 
peratures given by Eq. (4.21 ). 

In the temperature ranges described by Eqs. (4.27), 
(4.33), and (4.38) we can calculate the derivative in Eq. 

(4.40) if we know small corrections -%To,( T)/pc3 to the 
squares of the amplitudes of the fluctuations described by 
Eqs. (4.23), (4.30), and (4.35), and due to paraphonons. 
Consequently, the inequality of Eq. (4.40) leads to the fol- 
lowing restrictions on temperature: 

which is formally identical with the familiar criterion put 
forward by Ginzburg9 and Levanyuk, " but-in contrast to 
Refs. 9 and 1 1-the phase transition temperature T, is gov- 
erned by the fluctuation effects [see Eq. (2.8) 1. 

It is in the case of the low-temperature phase transitions 
due to paraphonons that we can write down the condition of 
Eq. (4.41) in the following formZo on the assumption that 
T =  TI :  

The inequality of Eq. (4.42) is a quantum analog of the crite- 
rion used in Refs. 9 and 11, and it appears similarly in a 
quantum spin-fluctuation theory of weak ferromagnets giv- 
en in Ref. 4. In the case of low-temperature phase transitions 
due to phonons (T, = T,), we find that the condition 
(4.41 ) becomes 

T-T, fho(O) I -g 

and is identical with the condition of validity of expansion of 
the free Landau energy near a structural transition obtained 
in Ref. 22. The condition of Eq. (4.41 ) for high-temperature 
phase transitions (T, = T,) is identical with the criterion 
derived in Refs. 9 and 1 1: 

It should be noted that the conditions of Eqs. (4.42)-(4.44) 
break down, in accordance with Eqs. (4.28) and (4.39), in a 
narrow critical range of temperatures near the transition 
point where an important role is played by th2effects of the 
interaction of fluctuations ignored in Eq. (2.7). 

All the above results are easily generalized to the case of 
an anisotropic spectrum (compare with Ref. 21 ) : 

which appears in the vicinity of w(k) < wc of the vector 
k = k, outside of which we still can assume that 
p(k)zwl-w, .  All that we need to do is to substitute 
c+ (cXcycz 'I2, kc - wC (cXcycZ 1 -I1' in the above expres- 
sions. 

Finally, we note that in the adopted model of a crystal 
with one soft mode we have ignored the excitations associat- 
ed with fluctuations of the phase of the order parameter (see, 
for example, Ref. 16). Inclusion of such fluctuations does 
not alter qualitatively the temperature dependences of the 
structural-volume effect discussed above and simply 
changes the numerical coefficients in Eqs. (4.19), (4.24), 
(4.3 1 ) and (4.36) for the case when A V, ( T) . 
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FIG. 2. Thermal expansion of a-uranium: 1) based on R$f. 12; 2)  
based on Ref. 13; the dashed curves represent the results calculated 
using the system of equations (4.36). 

A TEMPERATURE DEPENDENCES OFTHE VOLUME AND 
THE STRUCTURAL-VOLUME EFFECT 

The influence of structural transitions on the tempera- 
ture dependence of the volume is known in the case of 
BaTiO,: according to Fig. 4.16 reproduced in the book of 
Jona and Shirane-reporting the results obtained during 
cooling-the thermal expansion coefficient of this com- 
pound decreases strongly near the structural phase transi- 
tion points. In our discussion of this experimental depen- 
dence it corresponds to a change of the sign of the striction 
contribution to the volume [Eqs. (3.8) and (3.10)] at the 
structural transition point, reducing the thermal expansion 
coefficient of barium titanate as a result of cooling (see Ref. 
8) .  

We can assume that our theory can explain, in particu- 
lar, the anomaly of the thermal expansion of powder-metal- 
lurgy ceramic YBa2Cu307 - , , observed experimentally in 
Ref. 24 where in the range 110-120 K it was found that the 
thermal expansion coefficient decreased strongly (approxi- 
mately by a factor of 2).  As shown in Ref. 25, anomalies of 
the elastic moduli and of the internal friction are observed in 
the same temperature range. It follows from our treatment 
that such a change in the thermal expansion coefficient of 
YBa,Cu,07 - , can also occur in the vicinity of a structural 
phase transition in which the change in the striction contri- 
bution to the volume should show a reversal of the sign in 
accordance with the fluctuation theory. This conclusion 
agrees with the major change in the unit cell parameter c 
observed with the aid of x-ray diffraction  investigation^^^'^' 
in the same temperature range. 

Similar anomalies of the thermal expansion, preceding 
the superconducting transition in the lanthanumZ6 and thal- 
liumZs ceramics and appearing also in our opinion in 
YBa,Cu,O, _, are all due to the structural-volume effect 
and agree with the widely held view that structural instabili- 
ties are important in high-temperature superconductors. 

Manifestation of the thermal expansion anomaly dis- 
cussed here and due to the structural-volume effect is par- 
ticularly clear in the case of the anomalous temperature de- 
pendence of the volume obtained for a-uranium by x-ray 
diffraction investigations of single crystals" and by a dilato- 

metric study of polycrystalline samples'' (see Fig. 2). In 
both cases it was found that the thermal expansion coeffi- 
cient was negative at low temperatures, but at T -  50 K its 
sign was reversed. At temperatures T >  50 K the change in 
the volume was of the usual type expected in the case of 
thermal expansion. The recently discovered (by neutron 
scatteringI4) transition ofa-uranium to a state with a charge 
density wave at 43 K demonstrated that the thermal expan- 
sion anomalies represented a manifestation of the structural- 
volume effect much greater than the usual thermal expan- 
sion. Then, bearing in mind that in the temperature range O- 
50 K the relative change in the volume of uranium was 
- 2 x (Fig. 2),  which was large and comparable with 
the giant spontaneous magnetostriction in magnetically or- 
dered materials,29 we concluded that this was a manifesta- 
tion of a giant striction that accompanied structural trans- 
formations in a-uranium. 

Comparing the dependence AV, (T) shown in Fig. 1 
with the experimental curves in Fig. 2, we concluded that the 
structural-volume effect discussed above accounted qualita- 
tively for the thermal expansion anomalies of uranium. The 
linear temperature dependence of the volume 
in the temperature range 25-45 K and also at T 2  75 K corre- 
sponded to the high-temperature limit of Eq. (4.34), which 
according to an estimate w ,  z2 .6X 1012 s-' obtained from 
the results of neutron-diffraction experiments, l4  appeared at 
temperatures T >  20 K. The ratio of the thermal expansion 
coefficients below and above 50 K was, according to Refs. 12 
and 13, - 2.3, and - 2.4, respectively (Fig. 2)  and was 
close to the value of - 2 obtained from Eq. (4.36). This 
result, in spite of the complexity of the ordered state of a- 
uranium associated with the existence of several incommen- 
surate charge density waves,14 indicated the possibility of 
utilizing in other cases our simple model and demonstrated 
the smallness of the usual thermal expansion effects and of 
fluctuations of the phase of the order parameter at tempera- 
tures T S  50 K. 

The system of equations (4.36) predicts a kink in the 
temperature dependence of the volume at the phase transi- 
tion point (Fig. 2).  The absence of kinks in the experimental 
curves plotted in Fig. 2 could be due to the influence of inho- 

617 Sov. Phys. JETP 71 (3), September 1990 V. P. Silin and A. Z. Solontsov 617 



mogeneities and internal stresses which were clearly respon- 
sible for the difference between the results of measurements 
of the thermal expansion coefficient of single crystalsL2 and 
polycrystalline samples.13 Another cause of the "smearing 
out" of the phase transition could be the influence of critical 
fluctuations in the range of temperatures where the condi- 
tion (4 .32)  was no longer obeyed. Assuming, in accordance 
with Ref. 14, that wo(0 )  z 1.10" s-' we estimated the criti- 
cal temperature range to be ( T - T,,, 1 5; 6 K. 
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