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An analysis is made of the interaction of Bloch lines moving under the action of a gyroscopic force 
in a domain wall inside a uniaxial ferromagnet characterized by a strong anisotropy. A numerical 
analysis of the Slonczewski equations shows that in the case of head-on collisions of Bloch lines 
there is a critical velocity above which the annihilation of these lines creates a soliton-like 
transmission effect. The dependences of the critical velocity on the magnitude of magnetic 
relaxation and on the flexural rigidity of a domain wall are found. It is shown that several Bloch 
lines moving along one direction form a stable cluster which is stabilized by gyroscopic pressure 
forces. A study is made of the collision processes between clusters containing several Bloch lines. 
It is shown that in addition to the range of velocities where annihilation takes place and the 
critical velocity above which a soliton-like transmission effect is observed, there is an 
intermediate range of velocities at which partial reconstruction of clusters after a collision takes 
place. 

INTRODUCTION 

Studies of Bloch lines separating regions of a Bloch do- 
main wall with different directions of spin rotation are of 
fundamental importance for the understanding of dynamic 
processes in a magnetic material.''2 Bloch lines are also of 
interest in microelectronics in connection with the develop- 
ment of very-large-capacity memories." 

From the topological point of view a Bloch line repre- 
sents a nonlinear defect of the vector magnetization field, 
i.e., a magnetic vortex. The vortex properties of a Bloch line 
determine its gyrotropic interaction with a domain wall 
within which the line is moving. The structure of a moving 
Bloch line is quite complex. It consists of a compact core 
where the spin orientation changes rapidly and an extended 
"shell" representing bending of a domain wall at the point 
where the line is located."" The core of a moving Bloch line 
is a carrier of its topological charge, governing the degree of 
rotation of the spins in the wall. Bending of a domain wall 
occurs only due to the motion of a Bloch line under the influ- 
ence of a gyrotropic force acting on the wall along the nor- 
mal to its plane. Under static conditions there is no such 
bending and we can expect only a slight change in the do- 
main wall thickness at the points of location of a Bloch line.' 
Bending is particularly important from the experimental 
point of view in observations of moving Bloch lines, al- 
though other ways of observing Bloch lines are currently 
under development. An amplitude of such a bending or sag 
due to a one moving Bloch line is slight and it is experimen- 
tally easier to investigate clusters containing N Bloch lines, 
where N is the topological charge of the cluster equal to the 
total angle of rotation of the spins divided by a. 

In the case of a uniaxial strongly anisotropic ferromag- 
net both Bloch lines and their clusters can be described using 
the Slonczewski equations,' which represent essentially suit- 
ably reduced Landau-Litshitz equations in which a single 
moving Bloch line can be described by a soliton-type solu- 
t i ~ n . ~  It is natural to assume that Bloch line clusters can be 
described by multisoliton mathematical structures. Al- 

though the Slonczewski equations do not belong to the fa- 
miliar classes of integrable systems, this link is quite signifi- 
cant, especially as the Slonczewski equations have an 
important asymptote in which they go over to the general- 
ized sine-Gordon equation.' If we allow for the damping 
and external pumping, this asymptote is completely isomor- 
phous to equations of a distributed Josephson junction for 
which the soliton solutions have been thoroughly investigat- 
ed both theoretically and experimentally. It follows that we 
can expect manifestation of the soliton properties in the dy- 
namics of Bloch lines and their clusters, particularly in colli- 
sion processes. 

Chetkin et al.13,'4 reported the results of experimental 
investigations of the dynamics of Bloch line clusters con- 
firming the above ideas. In particular, they showed that fair- 
ly fast Bloch line clusters pass through each other in the case 
of head-on collisions and they still retained the individual 
topological charges, whereas slow clusters become annihi- 
lated. A classical theory of solitons gives only guiding ideas 
for the design and interpretation of relevant experiments. It 
is necessary to study the real situation allowing for pumping, 
dissipation, deformability of domain walls, etc. The results 
of such an investigation are presented below. 

One should mention that an interesting attempt to in- 
vestigate numerically the dynamics of topological and non- 
topological soliton-like excitations in a domain wall was re- 
cently made on the basis of the Slonczewski equations for a 
number of specific conditions where the stability of a domain 
wall would not be obvious because of the occurrence of bend- 
ing perturbations (for details see later). This makes it diffi- 
cult to use the undoubtedly interesting results directly in 
discussing the available experimental data. 

1. MAIN EQUATIONS. SINE-GORDON ASYMPTOTICS 

The present paper develops further an earlier treat- 
ment9 and the interested reader can find details of formula- 
tion of the problem of the motion of a Bloch line in a domain 
wall in that earlier paper. In accordance with the theory of 
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domain walls in uniaxial magnetic films, we shall consider 
a wall as a surface, i.e., we shall ignore its thickness. The 
state of a wall is described by two coordinates: q(r,  t )  and 
q,(r, t) ,  where q(r, t )  is the shift of the center away from the 
equilibrium position; p ( r ,  t )  is the azimuthal angle govern- 
ing the spin orientation at the center of a domain wall in a 
plane normal to the wall; q, = 0 corresponds to the case 
when the spins lie within the domain wall plane. 

The main equations of the dynamics of a domain wall 
with a Bloch line can be represented as follows: 

qt+cp,-0,s sin 2cp=-V-ucpt, 

where q is measured in units of A; A is the domain wall thick- 
ness; x is the coordinate along the domain wall measured in 
units of the Bloch line thickness A, = (A /2rM ') 'I2; M is 
the saturation magnetization; A is the exchange stiffness 
constant; time is normalized to (4rMy)-I; y is the gyro- 
magnetic ratio; a is the dimensionless magnetic relaxation 
parameter; A is the velocity of translational motion of a do- 
main wall measured in units of 4ryMA. The term b2q in Eq. 
( 1 ) describes a restoring force acting on a domain wall and 
ensuring the existence of a stable equilibrium position q = 0 
of a plane domain wall in the absence of pumping ( V = 0). 
Under real experimental cond:tions the restoring force is 
created by, for example, a gradient field H :  in the case of an 
isolated domain wall (when b = H:A/4rM) or it is gov- 
erned by the demagnetization fields in a stripe domain struc- 
ture. 

The left-hand side of the system ( 1 ) describes free mo- 
tion of Bloch lines and their clusters among a domain wall. 
The right-hand side of the same system of equations de- 
scribes the action of the gyroscopic force (pumping) exerted 
by a moving domain wall and effects of dissipation. In the 
case of steady-state motion of Bloch lines and clusters the 
pumping and dissipation balance each other out. 

The equations in the system (1)  differ somewhat in 
form from the corresponding system of equations used in 
Ref. 9, since pumping is expressed directly via a gyrotropic 
force exerted by a moving domain wall, whereas in Ref. 9 it is 
allowed for by a bias field h,. We can easily go over from this 
field to the gyrotropic force. We can do this by substituting 
simply h, ( t )  = h,t, where h, = const, so that after the sub- 
stitution of q--q + Vt + aV2/b 2, where V= h,/b ', we ob- 
tain the system ( 1 ) from the equations given in Ref. 9. 

It is assumed in Ref. 15 that b = 0. It is known that in 
films with the transverse (perpendicular) uniaxial anisotro- 
py and an open domain structure a plane unpinned domain 
wall is unstable when flexural perturbations are present. l 6  

The development of such an instability may be suppressed by 
periodic boundary conditions used in Ref. 15 provided the 
period of the structure is sufficiently small. However, it is 
not clear what specific experimental situation corresponds 
to the undoubtedly interesting results of the mathematical 
modeling obtained in this formulation, i.e., it is not clear how 
such boundary conditions can be realized experimentally. 

Inclusion of the restoring force in the system of equa- 
tions ( l ) is also important from the mathematical point of 
view. This is because if b = 0, then the system of equations 
does not have any soliton-type solutions describing free mo- 
tion of a Bloch line, i.e., the motion of such a line in the 

absence of pumping and dissipation when a = 0 and V = 0 ,  
and satisfying the natural boundary conditions (for details 
see Ref. 9).  

We can easily see how the asymptotic behavior of the 
system of equations ( 1) is obtained when b) 1. If we assume 
that 116 2q11 > Ilq,, I I  and Ilaq, 11, we obtain 

b-2qtt-cp,,+0,5 sin 2cp=v+acpt. (2)  

This equation is isomorphous with the equation for a phase 
discontinuity of a wave function of superconducting elec- 
trons at a distributed Josephson junction. "-I9 Other exam- 
ples of physical systems with the same "mathematics" are a 
one-dimensional conductor with a charge density wave,2072' 
a domain wall in a weak f e r r~magne t ,~~  etc. 

Naturally, in a more detailed theory we have to allow 
for the boundary conditions and for the dissipation field due 
to magnetic charges on the surface of a film. It is known that 
an allowance for such a magnetostatic field results in twist- 
ing of a domain wall across the film thickness.' It is shown in 
Ref. 23 that this effect is weak if the film is sufficiently thick 
so that its thickness is comparable with the Bloch line thick- 
ness. Moreover, in the case of films with the thickness not 
too large and governed by the characteristic sag of a domain 
wall, an allowance for the twisted shape of a domain wall is 
unimportant (apart from numerical renormalization of the 
parameters) in the case of dynamics of a single Bloch line.24 
We shall therefore assume that the adopted approximation 
of the local nature of the magnetostatic fields (Winter ap- 
p r ~ x i m a t i o n ~ ~ )  can be applied also to problems of the dy- 
namic interaction of Bloch lines. 

The equilibrium positions in the phase space of the sys- 
tem of equations ( 1 ) are the points defined by 

where n = 0, + 1, 2, .... In the case of a domain wall at 
rest these equilibrium positions are joined by separatrices in 
the phase space describing isolated Bloch lines characterized 
by 

q=O, cp=nn*2 arctg [exp (I-so) 1. (3)  

There are no other solutions satisfying the boundary condi- 
- tions qXlx = + , - pXl, = . , = 0 in the static case. There- 

fore, in describing clusters of Bloch lines in the static case we 
have to allow for the long-range magnetostatic fields de- 
scribing the attraction of adjacent Bloch lines. 3326 In the case 
of a moving domain wall we can expect a gyroscopic pressure 
which compresses closely spaced Bloch lines and plays the 
same role as the magnetostatic attraction between these 
lines. This gives rise to separatrix solutions showing not only 
the adjacent equilibrium positions. If the Bloch line velocity 
is sufficiently high, the gyroscopic compression exceeds the 
magnetostatic interaction force of Bloch lines and the dy- 
namics of clusters can be described satisfactorily by the local 
approximation. 

In estimating the characteristic velocity we shall as- 
sume that the force of the magnetostatic interaction is ap- 
proximately equal to the force of attraction between two 
charged lines separated by a distance equal to the Bloch line 
thickness and the gyroscopic pressure is governed by the 
normal component of the displacement of a domain wall in 
the region with the highest slope of its sag, which travels 
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together with a cluster along the wall at a velocity u normal- 
ized to the value of S, where S is the maximum velocity of a 
Bloch line in an untwisted domain wall. It follows from Ref. 
9 that S = y(8n-A) 'I2. In this case we can ignore the mag- 
netostatic interaction if u > (2n-Q 'I4)  -', where Q = K / 
2?rM2 and K is the uniaxial anisotropy constant. It should be 
pointed out that the maximum velocity of a Bloch line in thin 
films [ (dg  1 ), where d is the film-thickness in units of A, ] is 
unity.*s9 Conditions of validity of the local approximation 
become more stringent in the case of thick films (d > 1). In 
fact, because the domain wall is twisted, the maximum ve- 
locity of a Bloch line (like the maximum velocity of the do- 
main wall2) is governed by the mechanism of generation of 
horizontal Bloch lines and we can show that under these 
conditions the maximum velocity of a Bloch line expressed 
in terms of the same dimensionless units is given by 

-112 
%,ax in the case of an isolated line and by 
u,,, cc (dN) - ' I2 in the case of a cluster of Bloch lines with a 
topological charge N. 

2. COLLISIONS OF BLOCH LINES: MUTUALCROSSING OF 
THE LINES AND ANNIHILATION. CRITICAL VELOCITIES 

We shall now consider head-on collisions of Bloch lines. 
Analytic solutions describing multisoliton Bloch lines can be 
obtained only in the asymptotic case when 6% 1 when they 
are described by Eq. (2).  These equations have been investi- 
gated thoroughly theoretically (see, for example, Ref. 27) in 
the case when there is no dissipation and no pumping 
( a  = V =  0). Such equations have mult-soliton solutions 
which can be obtained by the Hirota method, by the method 
of the inverse scattering problem, or by other approaches 
(see Ref. 28). We shall give a solution which describes colli- 
sions of two kinks of Eq. (2) ,  representing isolated Bloch 
lines moving at the same velocity u in a head-on manner: 

where x, and x,  are arbitrary constants. We can use pertur- 
bation theory of solitons to obtain equations describing the 
evolution of the parameters u and x, with time in the pres- 
ence of dissipation and pumping (a # 0, V # 0),  as was done 
in Ref. 18. A reduction in the velocity u to zero as a result of 
such a head-on collision of solitons is accompanied by the 
transition of kinks to a bound state resembling a breather, 
which subsequently relaxes to a vacuum state corresponding 
to q, = const. This gives the critical value of the velocity at 
which annihilation takes place. 

The limiting value of the velocity of a domain wall at 
which the process of restoration of a Bloch line (after anni- 
hilation) can begin is on the other hand governed by the 
balance of the initial and final soliton energies 

and the dissipation energy 

which is not compensated by external pumping during the 
soliton collision time T=: b /u. Therefore, we have 

It is not possible to calculate Ed analytically. Therefore, we 
shall use the results of a numerical calculation reported in 
Ref. 18, where it is shown that the critical pumping rate V,, 
is proportional to the relaxation parameter a. Bearing in 
mind that we can go over from Eq. (2) to an equation em- 
ployed in Ref. 18 by the substitution oft- bt and a-ab,  we 
obtain the following expression for the 6% 1 case under dis- 
cussion: 

V,, a: ab. (6)  

In reality we usually have b < 1. In this case there are no 
solutions of the system ( 1) which would describe even iso- 
lated Bloch lines. There are only approximate solutions rep- 
resenting Bloch lines in the limit of low velocities u<  1 
(Refs. 8 and 9).  Therefore, the subsequent calculations must 
be carried out numerically. 

Our calculations were made using an implicit difference 
scheme with an iteration calculation of nonlinear terms at 
each time step. The spatial step in the integration procedure 
was Sx = 0.1 and the temporal was St = 0.1. The total num- 
ber of points splitting a domain wall along the coordinate x 
was N,, = 4000. The boundary conditions were selected in 
the form g,, = p , p, q, = p . q, wherep + is the character- 
istic parameter representing the fall of the solution at the 
periphery of a Bloch line on approach to an equilibrium 
point. This parameter is obtained from a linearized system 
( 1 ) near the equilibrium position characterized by q = 0 and 
g, = nn- + 0.5 allowing for the self-similarity of the solution 
q = q(x - ut) and g, = p ( x  - ut). At moderately high ve- 
locities u 26 /a, we havep + = f b. The selected boundary 
conditions allow us to minimize the influence of reflections 
and pinning of domain walls at the limits of the numerical 
calculation "window" on the dynamics of a Bloch line at the 
center of this window. 

The results of our calculations are presented in Figs. 1- 
6. At low pumping velocities V< V, a collision between 
Bloch lines with different directions of the "twistedness" of 
the magnetization in a domain wall (with different topologi- 
cal charges, of a kink and an antikink) results in their anni- 
hilation (Fig. 1 ). In this case the energy of a moving Bloch 
line is insufficient to recreate a new pair of Bloch lines with 
an opposite topological charge, i.e., 

2E(u) <2E (0) +E,(T), E (u) =E (0) +m,u2/2, (7 )  

where E ( u )  is the energy of a moving Bloch line, m, is the 
mass of a Bloch line, u ( V) is the velocity of a Bloch line, and 
Ed is the dissipation energy during the collision time 7. 

When the critical velocity is exceeded, i.e., when V> V,, 
we have 

which results in restoration of a pair of Bloch lines after a 
collision, in other words, "mutual transmission" of Bloch 
lines takes place. Since the leading and trailing edges of mov- 
ing waves representing a sag of a domain wall differ in re- 
spect of the slope because of the presence of di~sipation,'.~ 
the profiles of a dynamic sag of a domain wall accompanied 
by a moving Bloch line demonstrate clearly (see Fig. 2) that 
this is precisely the effect of soliton-like transmission of 
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FIG. 3. Dependences of the critical velocity in collisions of two Bloch 
walls on the parameter a if b = 0.1 ( a )  and on the parameter b if a = 0.4 

FIG. 1. Annihilation of Bloch lines due to collisions: a = 0.4, b = 0.1, 
V = 0.26. 

Bloch lines. In contrast to Ref. 15, there is no inversion of the 
sag on collision and the restored profile of a domain wall sag 
demonstrates the soliton-like transmission of Bloch lines 
conserving the individual topological charges, as found ex- 
perimentally. l 3 . I 4  

The critical velocity V ,  is governed by the equality in 
Eq. (8)  and depends on the damping parameters a and on 
the domain wall stiffness 6 .  Figure 3a gives the dependence 
V ,  (a) if b = 0.1, showing that an increase in the damping 
increases V ,  (a) and this is due to an increase in the dissipa- 
tion energy Ed during a collision. Figure 3b demonstrates 
the dependence of the critical velocity on the domain wall 
stiffness. 

3. COLLISIONSOF BLOCH LINE CLUSTERS. PHASE 
DIAGRAMS 

In addition to isolated Bloch lines a domain wall may 
contain also clusters with several lines. In particular, a pair 
of Bloch lines is used as a data unit (bit) In magnetic mem- 
ory devices.' Such clusters are stable because of the mag- 
netostatic attraction and in the absence of long-range mag- 
netostatic fields they dissociate into isolated Bloch lines 
because of the exchange stiffness. Nevertheless, as pointed 
out already, in the course of their motion they become stabi- 
lized because of the formation of a general sag of a domain 
wall and the appearance of a gyroscopic pressure of a moving 
sag which compresses such a cluster. Therefore, at high ve- 
locities of Bloch line clusters we can ignore the magneto- 
static attraction and investigate the dynamics of these lines 
ignoring long-range magnetostatic fields. 

We shall now consider a collision between two clusters 
with opposite topological charges and assume that each of 
them contains two Bloch lines. At low domain wall veloc- 
ities, lower than the first critical velocity VI2' (the upper 
index identifies here and later the number of Bloch lines in a 
cluster), the annihilation of clusters takes place as shown in 
Fig. 4. This demonstrates clearly the multistage nature of the 
pulses when the annihilation of a pair of Bloch lines gives rise 
to a time delay associated with oscillations of spin in the 
cluster interaction region. 

- 18 7 

n 165 
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FIG. 2. Mutual transmission of Bloch lines in collisions: a = 0.4, b = 0.1, 
V = 0.28. 

FIG. 4. Annihilation of clusters of two Bloch lines in head-on collisions: 
a=0.4, b=0.1, V=0.17. 
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FIG. 5. Partial transmission of clusters of two lines: a = 0.4, b = 0.1, 
v =  0.22. 

If the velocity is higher than the first critical value, but 
less than the second critical velocity, partial restoration of 
the clusters exchanging topological charges takes place: an 
incomplete transmission effect occurs (Fig. 5) .  When the 
second critical velocity Vi2' is exceeded, clusters are re- 
stored completely and a soliton-like transmission effect is 
observed. When a large number of lines collides, an increase 
in the velocity V results in a gradual restoration initially of 
one line in each cluster, then two lines, etc. until the recovery 
is complete. Obviously, the condition for restoration of m 
lines out of the initial number of n in a cluster after a collision 
can be described by: 

nE(u)=mE(O)+E,(m, n ) ,  ( 9 )  

where Ed ( m ,  n) represents the dissipative losses in time 
r(m, n ) in the course of a collision. 

The critical velocities V z '  depend on the damping and 
on the stiffness of a domain wall. Figure 6a shows the depen- 
dences of the first and second critical velocities of a domain 
wall (for two-line clusters) on a. In the shaded part of this 
figure the clusters are restored partly after a collision. Above 
the shaded region the restoration process is complete. Spon- 
taneous generation of new pairs of Bloch lines during the 
cluster collision time begins near the Walker limit V,, ~ 0 . 5 .  
At low velocities V <  0.02 an instability appears due to the 
exchange-induced pushing apart of Bloch lines in a cluster. 

Obviously, similar effects should appear also on reflec- 

tion of Bloch lines from an unpinned end of a domain wall at 
the boundary of a ferromagnetic crystal. In fact, in the latter 
case the boundary conditions are q, = cp, = 0. These condi- 
tions are satisfied at the center of a collision between two 
clusters because of the symmetry of the problem. However, 
the results of our calculations relating to collisions of Bloch 
lines with one another can be applied to collisions of Bloch 
lines with the boundary of a crystal. 

CONCLUSIONS 

We demonstrated that the dynamic properties of a 
Bloch line in a domain wall of a uniaxial ferromagnet resem- 
ble to some extent the properties of topological solitons, as 
manifested strikingly in head-on collisions of individual 
Bloch lines and clusters. It should be pointed out that the 
system of dynamic equations describing a Bloch line does 
not apply to the familiar classes of integrable equations even 
if we ignore pumping and dissipation. This behavior of Bloch 
lines is obviously associated with the presence of a compact 
Bloch-line core where the change in the direction of spins in 
space is faster (see the Introduction). A new effect of partial 
(multistage) annihilation of Bloch line clusters in the criti- 
cal velocity range (shown shaded in the phase diagram in 
Fig. 6) is predicted. 

The process of collision of clusters with different values 
of their absolute topological charge is considered in Ref. 29. 
A collision of this type forms one cluster moving in the same 
direction as the large cluster before a collision, i.e., partial 
annihilation of clusters takes place which to some extent is a 
process similar to that investigated by us. 

There is a very close analogy between the behavior of 
Bloch lines and multisoliton excitations of a distributed Jo- 
sephson junction. However, there are also important differ- 
ences associated in particular with the fact that in the case of 
a Bloch line there is an additional factor (apart from pump- 
ing and dissipation) which destroys the integrability of the 
system and the soliton behavior, namely a sag of a domain 
wall due to the gyroscopic force in the course of motion of a 
Bloch line, i.e., a factor due to the vortex nature of a Bloch 
line. This factor opens up new opportunities for experimen- 
tal investigation of the dynamic interaction of Bloch line 
clusters. We have here in mind collisions between clusters 
moving along the same direction "overtaking" (collisions), 
a phenomenon which is unknown if in the case of a distribut- 
ed Josephson junction. In the case of Bloch lines this possi- 
bility appears because a sag of a domain wall makes the coef- 
ficient of the viscous friction acting on a cluster (i.e., its 
mobility) dependent on the velocity and on the topological 
charge. Consequently, in the case of a pumped domain wall 
it is possible to create simultaneously several clusters with 

FIG. 6 .  Dependences of the first and second critical 
velocities of a domain wall for clusters of two lines on 
the parameter a when b = 0.1 ( a )  and on the param- 
eter b when a = 0.4 ( b ) .  
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different topological charges and moving at different veloc- 
ities," i.e., the conditions may be established under which 
unidirectional collisions are possible. 

These considerations and the results of numerical cal- 
culations dealing with the partial transmission of guiding 
Bloch line clusters, as well as the experimental data of Ref. 
29 on partial annihilation of Bloch line clusters make the 
situation discussed above more general than would follow 
from the classical theory of solitons. 

The results of the above theoretical analysis are in good 
agreement with the experimental data. L3314329 In a more de- 
tailed analysis of the dynamic interaction of Bloch lines and 
their clusters, particularly in the range of critical velocities 
where partial annihilation of clusters is possible, one has to 
allow more rigorously for the magnetic-dipole interaction 
(other than use the approximation adoped above). It would 
also be desirable to carry out a quantitative analysis of the 
role of the "twistedness" of a domain wall in collisions of 
Bloch lines, but dealing with this topic would increase the 
size of the problem. 

The authors regard it as their pleasant duty to thank 
M.V. Chetkin for valuable discussions. 
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