
Equations for nonlinear spectroscopy of solids 
I .  S. Osad'ko 

K I.  Lenin State Pedagogical Institute, Moscow 
(Submitted 28 March 1990; resubmitted 3 May 1990) 
Zh. Eksp. Teor. Fiz. 98,1045-1054 (September 1990) 

A system ofequations for the total density matrix of a solid solution is used in the dynamic 
approach framework to derive approximate equations, which are generalizations of the optical 
Bloch equations. In contrast to the latter, the new equations contain functions of real absorption 
bands Ig and real fluorescence bands I" of impurity centers. Therefore, as the intensity of the 
exciting light approaches zero the new equations yield all the results of linear spectroscopy of 
impurity centers, including those that do not follow from the optical Bloch equations. The 
approximations under which the new equations reduce to the optical Bloch equations are found. 
The new equations can be applied also to amorphous media where additional tunnel degrees of 
freedom are important. 

1. INTRODUCTION 

It is known that the total density matrix of a system can 
provide a comprehensive description even of such a complex 
entity as a solid solution. However, we then have to deal with 
an infinite series of coupled equations for the elements of the 
total density matrix, which cannot be solved without simpli- 
fications. The optical Bloch equations, used widely in dis- 
cussing various effects in nonlinear optics and spectroscopy 
of solids,'-3 are such simplified equations. 

However, in the spectroscopy of solid solutions one 
meets also situations where not everything can be explained 
on the basis of the optical Bloch equations. For example, it 
follows from the Bloch equations that a dip in the population 
of the ground state of atoms exposed to illumination has the 
Lorentzian profile. This result reflects the circumstance that 
in the derivation of the Bloch equations it is assumed that the 
profile of a homogeneous line representing the absorption of 
light by a two-level atom is Lorentzian. However, we know 
from experiments that the profile of a real band of an impuri- 
ty center is much more complex: it consists of a zero-phonon 
line (ZPL) and an associated phonon wing, which is reflect- 
ed also in the dip profile. The phonon wing can have a com- 
plex structure with very sharp peaks. Even the ZPL, which 
has the Lorentzian profile near the resonance frequency w ,, , 
exhibits non-Lorentzian wings4 already at two or three ho- 
mogeneous half-widths from w ,, . When the temperature is 
increased, the intensity is transferred from the ZPL to the 
phonon wing. The absorption (IR ) and fluorescence ( P  ) 
bands of an impurity center are nonresonant and can have 
any profile. 

All these observations can be described satisfactorily by 
a theory of optical band profiles put forward in Refs. 5 and 6. 
However, these linear-spectroscopy phenomena do not fol- 
low from the optical Bloch equations. The equations for non- 
linear spectroscopy do not reduce to the results of linear 
spectroscopy. This conflict can be removed only on the basis 
of equations more general than the optical Bloch equations. 
When deriving the new equations from an infinitely dimen- 
sional system for elements of the total density matrix we 
must bear in mind the functions representing real absorption 
(P) and fluorescence (I")  bands of solid solutions. Such 
equations are derived for the first time in the present paper. 

The central problem in the derivation of the required 

equations is a selection of the approach needed to allow for 
the electron-phonon interaction. This interaction can be in- 
cluded either stochastically or dynamically. In the stochas- 
tic approach the optical line profile is governed by various 
"jumps" of the resonance frequency. This approach is unac- 
ceptable in tackling the problem formulated above, because 
it cannot account for any of the above-mentioned observa- 
tions from linear spectroscopy of solids. Clearly, this serious 
shortcoming of the classic approach is not fully understood 
because it has so far been used widely in calculations of phase 
relaxations in solids, as is done-for example-in Ref. 7 and 
in the papers cited there. In the dynamic approach a reso- 
nance frequency is modulated by harmonic vibrations of an 
impurity and of its immediate environment, i.e., it is gov- 
erned by the local dynamics of an impurity center. This is 
exactly the approach that has been used earlier to obtain all 
the above-mentioned results of linear spectroscopy. There- 
fore, we shall begin with the dynamic approach in the pres- 
ent paper. 

Our aim will be to find for nonlinear spectroscopy equa- 
tions which would contain functions of the real absorption 
P, and fluorescenceI' bands of an impurity center. In Secs. 2 
and 3 such a system is derived from the system of equations 
for the total density matrix. In Sec. 4 the new equations are 
used to consider the profile of the dips. It is shown that these 
new equations yield a dip with a complex profile consisting 
of a zero-phonon part and a phonon wing, in agreement with 
the experimental results. The approximation which reduces 
the new equations to the optical Bloch equations is identified 
in Sec. 5. 

2. EQUATIONS FOR ELEMENTS OF THE DENSITY MATRIX 

Electronically excited states of impurity centers exhibit 
relaxation of two types, phase and energy, with times T, and 
TI. Phase relaxation is the result of the electron-phonon in- 
teraction, whereas energy relaxation of fluorescing centers is 
due to spontaneous radiative transitions. The total Hamilto- 
nian of the system should be selected so that both relaxation 
mechanisms are manifested in the system in question. This 
condition is satisfied by the following Hamiltonian of the 
system: 
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Here, B + and B are the creation and annihilation operators 
of an electron excitation of energy E in an impurity center; 
Hg ( R )  and He ( R )  = Hg ( R )  + V ( R )  are the phonon 
Hamiltonians in the ground (g) and excited ( e )  electron 
states; H, is the Hamiltonian of the transverse electromag- 
netic field; A is the operator representing the interaction of 
electrons with photons. The electron-phonon interaction 
V(R) is the difference between multidimensional Franck- 
Condon potential surfaces: 

U' ug U" W 
V (R) = (R+a)-(R+a) - R - R = a - a+aU'R+R- R. 

2 2 2 2 

In the harmonic approximation this interaction is a quadrat- 
ic form of the phonon coordinates R. It is characterized by 
parameters of two types: a is a multidimensional vector rep- 
resenting displacements of equilibrium positions and 
W = V - Up is the difference between the force matrices of 
a crystal containing excited and unexcited impurities. 

The eigenfunctions of the individual terms in Eq. ( 1 ) 
are found from the following equations: 

Here, Iv), 1 a) and I Q) are products of oscillator functions. 
The components of multidimensional vectors o, vg , ve and 
v, a, Q are the frequencies and quantum numbers of normal 
oscillator modes. Since harmonic vibrations of the crystal 
lattice in different electron states are not orthogonal to one 
another, it follows that the multidimensional Franck-Con- 
don integrals are nonorthogonal: 

In order to simplify the problem for the reader we shall 
"exclude" spontaneous radiative transitions from consider- 
ation in the present section and we shall assume that H, 
contains only one laser mode of frequency w ,  with the num- 
ber of photons v,. The eigenfunctions of the Hamiltonian Ho 
in Eq. ( 1 ) are then 

We shall retain in the operator A only the terms conserving 
the total number of excitations. Then the product of the 
functions 10) )Y, ) la) may go ovy only to a similar product 
under the action of the operator A: I 1 ) I vb - 1 I ) ID) . Bearing 
this point in mind, we find that the system of equations for 
the density matrix considered in the basis of the functions 
la% and ID% is 

~ a B = - i ~ a ~ p a ~ - i & s ( p e a - p ~ a ) +  . . . , 
opB=-i (b.pa6-hah.~), 

a 

where 

Here, w ,, = E/fi and d are the frequency and dipole moment 
of an electron transition; o,, v,, and e, are the frequency of 
laser functions, their number, and polarization vector; V is 
the volume occupied by the radiation. 

In the system of equations ( 5 )  the elements pa,, and 
pss , do not appear explicitly nor do the equations for these 
elements. These elements are diagonal in the electron in- 
dices, but nondiagonal in the phonon indices. Obviously, re- 
laxation of such elements with time is governed by the an- 
harmonicity. It is responsible not only for energy relaxation 
in the phonon subsystem, but also for phase relaxation in the 
same subsystem. Bearing in mind that phase relaxation in 
the phonon subsystem is faster than in the electron subsys- 
tem, we can assume in Eq. ( 5  ) that 

In this approximation, which underlies also the Bloch equa- 
tions, we can ignore all the terms not shown explicitly in Eq. 
( 5 ) .  

3. ALLOWANCE FOR SPONTANEOUS RADIATIVE 
TRANSITIONS 

We shall now allow for the fact that H, contains an 
infinite sum of modes of the transverse electromagnetic field. 
Then, in the functions la) and we must show addition- 
ally how many phonons of a nonlaser mode with a wave 
vector k is contained in each state. We shall introduce the 
following brief notation for the eigenfunctions of the Hamil- 
tonian Ho: 

kk' I I) I v b - u  i . 1 . ~  I ) , 
B 

We shall be interested only in elements of the total density 
matrix reduced in respect of the indices of the spontaneously 
emitted photons: 

p66=pii + x p : ~ + + & : ~ ~  k kk' tkV +. . . 7 

For each element of the matrix that occurs in the infinite 
sums of Eq. ( 9 )  we can obtain its own equation. For exam- 
ple, 
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In the above equations there is a matrix element 
A E, = - iAk (a1 0) in which A, is defined by the expression 
for A subject to the substitutions w,  + w,  , v, + 1 and e, -. e, . 
Infinite chains of coupled equations of the type given by Eq. 
( 10) can be split only approximately. These approximations 
undoubtedly underlie the optical Bloch equations which al- 
low phenomenologically for the T, processes. 

The required approximations are easiest to find by an 
analysis not of the system of equations for the density ma- 
trix, but of the system of equations for the amplitudes of the 
probability of a transition from a state mo to a state m: 

G,(t)=-i(ml exp ( - i tH/h)  Imo>, (1 1) 

which satisfy the following system of equations 

Here, ( m )  and h, are the eigenfunctions and the eigenval- 
ues of the operator Ho in Eq. ( 1 ) . Since the sums of Eq. ( 19) 
and the equations of Eq. ( 10) contain elements of the total 
(unreduced) density matrix of a system with a Hamiltonian 
H, it follows that each element of such a matrix can be repre- 
sented by a product of amplitudes. For example, we find that 

The method of allowing for the T, processes which creates 
new equations and these in turn yield the optical Bloch equa- 
tions can be based on the following four approximations. 

a. The statistical weight of the states containing two or 
more photons in each nonlaser mode, is ignored, i.e., 
among-for example-two-photon states k and k' no 
allowance is made for the states k = k', etc. 

b. It is assumed that the number v,  of photons in a laser 
mode is large and therefore the loss of photons from a laser 
mode can be ignored by assuming that 

c. It is assumed that the divergences which appear in 
quantum electrodynamics in the ultraviolet range of wave- 
lengths can be eliminated by renormalization of the charge 
and mass of an electron. Then the divergence can be ignored. 
We thus obtain the following equations 

where 

is the probability of spontaneous emission of light by an ex- 
cited electron level. Here, A is the wavelength of light with 
the resonance frequency w ,,. 

d. Since the ratio A/E, where E = h,,, is very small it 
follows that we can ignore also the sums 

The conditions ( 17) allow us to drop a number of elements 
from the density matrix, whereas the condition ( 15) and the 
approximation given by Eq. (7)  permit replacement of some 
matrix elements with others. For example, we find that 

The approximations a-d and Eq. (7)  undoubtedly form the 
basis of the optical Bloch equations. Each of the approxima- 
tions is well justified. This makes the optical Bloch equations 
very effective. 

The approximations c and d make it possible to split a 
chain of equations for elements of the total matrix. If we then 
add up the split equations to form infinite sums of Eq. (9),  
we find that in the case of the sumsp,, ,p,,,p,,,p,,, which 
are elements of the reduced matrix, we obtain the following 
system of equations: 

If 1/T, -0 the above system reduces to the system of equa- 
tions (5).  The system (19) allows us to consider nonlinear 
optical processes in solids allowing for the actual profiles of 
the optical absorption and fluorescence bands. This can be 
demonstrated by considering partially reduced "spectral" 
nondiagonal elements 

and the completely reduced diagonal elements 

It follows from Eq. (2 1 ) that 

paa=~apoo, prn=P@ti rr p. = z p , = l .  
a P 

It is obvious thatp, andp, are the probabilities of detection 
of a phonon state la) in the ground electron state and a 
phonon state ID) in an excited electron state. If phonons are 
regarded as being in equilibrium, then p ,  and p, are the 
Boltzmann probabilities. In the case of the elements 
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p l O ( Q , t ) , p o l ( ~ , t ) , p , , ( t )  andp , , ( t ) ,  we find that the sys- 
tem ( 19) readily yields the following system of equations: 

where 

The quantities Ig (0 )  and I ' ( 0 )  are functions of the laser fre- 
quency a,. They describe real absorption and fluorescence 
bands of an impurity center. 

The system of equations ( 2 2 )  is derived assuming that 
phonons, i.e., vibrations of atoms around their equilibrium 
positions, are the only If excitations of the medium. In the 
case of amorphous bodies there are not only phonons but 
also If excitations corresponding to tunnel transitions of 
atoms or groups of atoms with a change in the equilibrium 
position.' Therefore, real If excitations of amorphous mate- 
rials may be more complex than in crystals. However, if 
(alp ) is understood to represent overlap integrals not of the 
oscillator functions, but of the function describing real If 
excitations of the amorphous medium, then the system ( 2 2 )  
can be applied also to amorphous media. 

The functions Ig  ( 0 )  and I e ( 0 )  had been calculated on 
many previous occasions using the framework of a theory of 
optical band profiles both of ~ r ~ s t a l s ~ ~ ~ ~ ~ - ~ '  and of amor- 
phous media,I2-l4 and the interaction with these If excita- 
tions was considered without recourse to perturbation theo- 
ry. The system of equations ( 2 2 )  allows us to identify how 
real absorption and fluorescence bands affect the dynamics 
ofelements of the density matrix. This is the required system 
of equations. In contrast to the Bloch equations, the system 
( 2 2 )  is infinite-dimensional. Nevertheless, this system can 
be easily solved rigorously as a result of the Laplace transfor- 
mations. In contrast to the Bloch equations, the system ( 2 2 )  
gives the correct result and this is true, for example, of the 
profiles of dips in the populations of atomic levels. 

4. DIPS IN LEVEL POPULATIONS 

As the simplest example of a practical application of the 
new system ofequations ( 2 2 )  we consider the population dip 
that appears under steady-state excitation conditions. It fol- 
lows from Eq. ( 2 2 )  that the total population does not change 
with time, becausep,, + p , ,  = 0 .  Under steady-state condi- 
tions we have p,, =pol  = p,, = p ,  , = 0 and, therefore, Eq. 
( 2 2 )  yields the following equations for the difference 

Here the integrals with respect to Q represent convolutions 
of the optical band frequencies with a Lorentzian function of 
natural half-width l/T,. The integration increases the half- 
width of each Lorentzian peak in an optical band by an 
amount l / T l .  If we allow for this factor, we can then repre- 
sent Eq. ( 2 4 )  in the form 

At low intensities we can simplify the treatment by including 
only the term linear in A2 in Eq. ( 2 5 ) .  We obtain then for the 
ground-state population dip 

Since the absorption band Ig  ( 0 )  consists of a narrow zero- 
phonon line and an associated phonon wing, it follows that 
the dip contains all these elements, in agreement with the 
experimental  result^.'^.'^ Equation ( 2 6 )  is the well known 
result from linear spectroscopy. 

We shall now show that in the special case when an 
optical band consists only of a zero-phonon line with the 
Lorentzian profile, Eq. ( 2 5 )  gives the same results as the 
Bloch equations. It is shown in Refs. 5, 9 ,  and 10 that the 
zero-phonon lines in the absorption and fluorescence spectra 
are resonant and broaden equally at all temperatures. We 
therefore have 

where 

A (T) =ab--a10-6 (T), ( 2 8 )  

Here, y ( T )  and S ( t )  are the half-width and the shift of the 
zero-phonon line and are due to an electron-phonon interac- 
tion quadratic in R. The part of the interaction of Eq. ( 2 ) ,  
which is linear in R, determines primarily the magnitude of 
the Debye-Waller factor exp[ - f ( T ) ]  and does not con- 
tribute to the broadening and shift of the zero-phonon line. 
Specific expressions for y(  T )  and S (  T )  can be found in Refs. 
5, 6, 9 ,  and 10. Substituting Eq. ( 2 7 )  into Eq. ( 2 5 ) ,  we ob- 
t ain 

This is the familiar result from saturation spectroscopy. I t  
follows from the optical Bloch equations. I ,"  

5. REDUCTION TOTHE OPTICAL BLOCH EQUATIONS 

We have seen in the preceding section that when a 
phonon wing is ignored in an optical band, Eq. ( 2 5 )  simpli- 
fies and becomes Eq. ( 3 0 ) ,  which is the solution of the Bloch 
equations. We shall first demonstrate that if in the system of 
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equations (22) the profile of an optical band is described by a 
Lorentzian, the actual system (22) reduces to the system of 
the optical Bloch equations. 

Integrating the first term in the system (22) subject to 
the initial conditionp,,(fl,O) = 0, we find that 

p,o(Q,t)=A [ daexp [ -i ( Q-- 2it 1 

Integrating Eq. (31) with respect to the frequency f l  and 
then assuming that the optical bands have the Lorentzian 
profiles, we obtain 

Bearing in mind that 

where T2 is defined by Eq. (29), we find that instead of Eq. 
(3  1 ), we now have the expression 

Differentiating this equation with respect to time, we obtain 
a differential equation for p ,, ( t )  : 

The equation for p,, ( t )  is obtained from Eq. (35) by the 
complex conjugation operation: 

Adding the last two equations from the system (22) to Eqs. 
(35) and (36) and introducing the Bloch-vector compo- 
nents 

we readily obtain (from the four equations describing p ,, , 
p o l ,  poo, and p ,  ) the following three Bloch equations 

The dephasing time T2 is related to the half-width y(T) of 
the zero-phonon line by Eq. (29 ) . An expression for y ( T) 
which does not utilize the smallness of the quadratic elec- 
tron-phonon interaction was obtained by the present author 
some twenty years ago." Frequent attempts had been made 
subsequently to calculate by a microscopic approach the de- 

phasing time T2 directly from the optical Bloch equa- 
tionS.2,3.~9,20 These calculations resulted in breakdown of the 

relationship described by Eq. (29). An analysis of this dis- 
crepancy, carried out previously by two groups of au- 
t h o r ~ , ~ ' , ~ '  showed that the discrepancy appeared because the 
methods used to calculate T, were less accurate than the 
method for calculation of y(T).  This conclusion was con- 
firmed in Ref. 22 by a comparison of various theoretical ex- 
pressions for y( T) and 2/T2 with the experimental results. It 
was found that damping of the photon echo signal is de- 
scribed less satisfactorily by the expressions for T2 deduced 
specially for this purpose than by the expression for y(T) 
obtained about twenty years ago using nonlinear spectrosco- 
py . 'The  dynamic approach to dephasing developed here 
avoids all the above problems and contradictions, estab- 
lishes the relationship (29), and-which is particularly im- 
portant-it provides a recommended procedure for micro- 
scopic calculations of y(T) and, consequently, of the time 
T2. 

6. CONCLUSIONS 

The main purpose of the present paper was to derive for 
the density matrix a system of equations which would allow 
for real and not idealized optical bands of impurity centers. 
This was the system of equations (22). We could see that this 
system is in fact more general than the optical Bloch equa- 
tions, because it gives the correct results in those cases when 
the Bloch equations are inconsistent. At the same time, the 
system (22) is not too complex and allows us to consider 
from the practical point of view the various effects in nonlin- 
ear optics and spectroscopy. This was demonstrated in the 
present case by the spectroscopy of dips, whereas in Ref. 23 
this was done using the example of a two-pulse photon echo. 
I t  must be stressed particularly that the use of the dynamic 
(nonstochastic!) approach made it possible to refute expli- 
citly all the approximations made in the derivation of the 
system (22) and particularly to relate the spectral functions 
Ip ( f l )  and Ie(f l )  in the system of equations (22) to expres- 
sions which have been calculated long ago and successfully 
using the framework of linear spectroscopy of impurity 
centers. This makes it possible to resolve a number of pre- 
viously published contradictions in the theoretical expres- 
sions for the dephasing time T2 and of the half-width y ( T) of 
a zero-Bloch line. 
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