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It is shown that the resistance of a point contact whose dimensions are smaller than the electron 
mean-free path undergoes mesoscopic fluctuations as a function of the magnetic field and voltage 
on the contact. In weak fields these fluctuations are determined by spatial scales much larger than 
both the dimensions of the contact and the electron mean free path. The spatial correlation 
functions of the conductance of a tunneling microscope with a contact of atomic size are 
calculated. 

There is great interest in mesoscopic fluctuations of the 
resistance of small disordered metallic samples.'-7 In the 
last few years there have appeared a number of  work^^-^ in 
which the properties of metallic contacts whose dimensions 
a are not only less than the elastic electron mean-free path I 
but also of the order of the electron wavelength R = 2 d / p F ,  
wherep, the Fermi momentum. Another experimental pos- 
sibility for studying mesoscopic fluctuations of the resis- 
tance is to investigate the resistance of a tunneling contact 
with dimensions a d  in a tunneling microscope. (Such in- 
vestigations have already been performed,' but in Ref. 8 the 
resistance of the tunneling contact was not studied, but rath- 
er the tunneling microscope was employed as a potential 
contact for measuring voltage fluctuations.) 

At first glance it appears that in the case a (<I the scat- 
tering of electrons by impurities does not affect the conduc- 
tance of such contacts. We shall show below that in spite of 
the fact that the dimensions of the contact a < I  the depen- 
dence of the resistance of such a contact on the magnetic 
field is determined by spatial scales of the order 
min{L,, L,) which are much larger than I .  Here 
L, = (fk/eH) 'I2 is the magnetic length, L, = (IMi/T) 'I2 is 
the coherence length of the normal metal, D = v F l  /3 is the 
electron diffusion coefficient, u,  is the Fermi velocity of the 
electrons, H i s  the magnetic field strength, Tis the tempera- 
ture, and e is the electron charge. 

The results obtained below are also applicable to metal- 
insulator-metal systems, in which the current is transported 
through the insulator with the help of resonance tunneling 
through localized states in the in~ula tor .~  

We shall start from the tunnel Hamiltonian 

Here \V ;f, ( r  ) and \V ,,, (r  ) are operators that create and anni- 
hilate electrons in the "right-hand" and "left-hand" half- 
spaces, respectively, and the integration is performed over 
the plane of the tunneling contact S. We shall neglect the 
thickness o f̂ the tunneling contact, so that 
T(r , ,  r, ) = T(r, )S(r, - r, ). In addition we shall assume 
that the dimensions of the contag are of the order of the 
electron wavelength R,  so that T(r)  = To (r, )S(r - r, ), 
where r, is the coordinate of the contact on the surface of the 
sample. 

The standard expression for the tunneling current fol- 
lows from Eq. ( 1 ) : 

(2) 
Here vi (E, r )  = (2/rr)ImGf(~,r , r )  is the local density of 
states on the ith edge, G ;4 ( E ,  r, r' ) is the advanced Green's 
function, n ( ~ )  = [exp(&/T) + 1 ] - ' is the Fermi distribu- 
tion function, and Vis the voltage on the contact. 

Mesoscopic fluctuations of J ( r )  are determined by the 
corresponding fluctuations SY(E, r )  = Y(E, r )  - (Y(E, r ) ) ,  
which arise as a result of the random interference of electron 
waves propagating along different diffusion trajectories2 
Here the angular brackets ( ) denote averaging over the im- 
purities. 

1. We shall begin by studying the mesoscopic fluctu- 
ations of the local density of states. To calculate the correla- 
tion function (SY (E, r ) .SY (E', r' ) ) for I r - r' I > 1 it is neces- 
sary to sum the diagrams shown in Fig. la,'' where the solid 
lines correspond to the electron Green's functions and the 
dashed lines correspond to scattering by impurities. Summa- 
tion of the Cooper and diffusion diagrams leads to the 
expression 

<6v ( e ,  r, H) i3v (E', r', H') ) 

2 
= - R O { P ~ - ~ ,  (r, r', H+Hf) Pe-=, (r', r, H-l-H') 

n2 

+Pe-e, (r, r', H-Hf)P8-e, (r', r, H-HI)}, 

where P, - .. (r,rl,H) satisfies the equation4," 

le 
{-D ( - -A)  +T~-~-~E-'(E-E') } P ~ - ~ ,  (r, rf ,  H) 

C 

a 

FIG. 1. 
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Here A is the vector potential of the magnetic field and .r, is It follows from Eqs. (3) and (4) that for H = H' = 0, 
the disruption time of the phase of the electron wave func- lr - r'l> 1 
ions. 

Here L, is the thickness of the film, L, and L, are the dimen- 
sions in the plane of the film 

and KO ( x )  is a Macdonald function. 
We note that for Ir - r'l > IL(E - E ' )  I the quantity 

(SY ( E ,  r )SY ( E ' ,  r 0  ) undergoes, aside from exponential de- 
cay, oscillations as a function of I r - r' 1 .  

Multiplying Eq. (5) by n ( E )  and n (E') and integrating 
over r and r' we arrive at an expression for the correlation 
function of the electron densities in the disordered metalI2. 

Here Sn ( r )  = n ( r )  - (n ( r )  ) are the fluctuations of the den- 
sity of the electron gas. The correlation function of the densi- 
ties depends on the magnetic field, so that, for example, for 
I <  ( r  - r'l <L, <L, ,  L, the relation 

(6n  ( r ,  H )  Gn (r', H )  > Ir-rrI2 

(Gn(r, 0 ) 6 n ( r f ,  0 )  ) 

is satisfied. 
It is also interesting that the quantity (5)  is directly 

related to the fluctuations of the density of states in the me- 
soscopic sample10 

by integration over r and r' over the volume of the sample 
(IL(E-EOI <L,, L,, L,). 

On the other hand, the quantity Eq. ( 3 )  can be mea- 
sured by scanning the surface of the sample with a tunneling 
microscope. In this case 

(6Go(r )  8Go (r') ) 
(G>= 

1 
= -1 de dc' n' ( 8 )  n' ( 8 ' )  (Gv ( e ,  r )  8v (e', r') ). (7) 

( v ) ~  

Here 

Go ( r )  = - I , ( G ) = n 2 e l T o l k ( v ) ,  
dV v-0 

and Y, is the density of states in the microscope tip. We as- 
sume that the density of states in the tip of the tunneling 
contact does not depend on E. It should be kept in mind that 
the formula (4)  for Ir - rlI < L, corresponds to a three-di- 

I 

mensional sample. In the case of a semi-infinite sample, 
when r and r' are located on the surface, an extra factor of 
four appears in the corresponding expression. As a result, for 
I<I r - r l l<LTwehave  

(6G0 ( r )  6G0 (r ')  ) 
<G>,  

2. We shall now study mesoscopic conductance fluctu- 
ations due to variation of the magnetic field. 

It is important that in order for the Friedel oscillations 
to decay rapidly the impurities closest to r, must make the 
main contribution to ( [SY(E, r0 ) ] 2 ) .  This makes it impos- 
sible to calculate this quantity with the help of the diagram- 
matic technique of Ref. 13, which presupposes that the po- 
tential generated by the impurities in the sample has a 
white-noise spectrum. It is significant, however, that the de- 
pendence of the quantity SY(E, ro)  [and hence also SJ(ro ) ]  
on the magnetic field is determined by the large spatial scales 
of the order of min{L,, L,)% I. For this reason we assume 
that the magnetic field dependences obtained below for the 
resistance of the contacts are universal in the magnetic 
fields. 

Using the standard diagrammatic technique" and 
summing the diagrams shown in Fig. lb  we obtain 

x [3Pe,, (0) + P., (2H)  -4P*,, ( H )  I ,  
where 

2 
P.,,(H) = Re Ps,-,,(r0, ro, H ) ,  B = - 

n < v )  ' 

The expression (9) is reminiscent of the analogous for- 
mula obtained for the dependence of the activation energy of 
impurities in a disordered metal on H.I4 The formal differ- 
ence lies in the fact that n ' ( ~ )  is replaced by n (&) and in the 
quantity B. 

In weak magnetic fields, when L, > L,, we obtain from 
Eq. (9)  (the magnetic field is oriented along the normal to 
the surface of the film) 
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Here w, = 4DeH/c. 
It follows from Eqs. ( 9 )  and ( 10) that in weak magnet- 

ic fields the magnetoresistance of the contact depends qua- 
dratically on H, Go ( H )  = Go ( 0 )  + flik H,Hk, where flik is a 
random tensor which depends on the realization of the scat- 
tering potential near the contact. 

In strong magnetic fields, when L, < L,, the quantity 
Go ( H )  undergoes random oscillations. From Eq. ( 9 )  for 
L, > L, >I we obtain (the magnetic field is oriented along 
the normal to the surface) 

< [6Go (H) -6Go ( 0 )  1 2 >  - - 1 
<G>' 2n2hD<v> 

where {(x) is the Riemann zeta function. 
It follows from Eq. ( 1 1  ) that the amplitude of the oscil- 

lations SG, ( H )  increases as H increases. The characteristic 
period of these oscillations AH also increases as H increases, 
so that AH-H. This assertion can be verified by calculating 
the function ( [SG, (H)  - SGo ( 0 )  ] [SG, ( H  + AH) 
-  GO (011 ). 

The qualitative explanation of the results is that the 
contribution of the impurities to SJ(ro ) and Sv(&,rO ) on 
account of the Friedel oscillations of the electron density 
decays in a power-law fashion as a function of the distance 
from the impurity to the point of observati~n, '~ i.e., distant 
impurities make a small contribution. This contribution, 
however, is much more sensitive to the magnetic field than 
the contribution of the nearest impurities. As a result at 
T = 0  impurities located at a distance L, from the observa- 
tion point make the main contribution to Eq. ( 1 1  ), and the 
contribution of impurities to SJ increases in a power-law 
fashion as H increases. 

Another possibility for studying fluctuations of the lo- 
cal density of statesI5 is to measure the fluctuations of the 
conductance as a function of v.  In this case 

Here L, = ( m / e  V) 'I2. 

The quantity Gv as a function of V (at T = 0 )  contains 
all characteristic periods of the oscillations. In addition, the 
amplitudes of the corresponding harmonics increase in a 
power-law fashion as Vincreases, and the important charac- 
teristic spatial scale of the problem is of the order of L v  > 1. 
From the experimental viewpoint this means that the more 

FIG. 2. 

accurately J (  V) is measured the finer the structure that can 
be observed. 

It should also be noted that in the general case the den- 
sity of states of the tip of a tunneling microscope can also 
undergo mesoscopic fluctuations as a function of the mag- 
netic field or energy. This leads to an additive contribution 
to the correlation functions of the conductance, given by the 
relations (10) - (12) .  The magnitude of this correction is 
also determined by the equalities Eqs. (10) - (12) ,  and in 
addition the values for the tip must be used for the diffusion 
coefficient, the density of states, the phase disruption time, 
and the geometric dimensions. 

As already mentioned, we assume that relations ( 10)- 
( 12) are universal and do not depend on the properties of the 
contact, if a(L,, L,, and L,, where a  is the size of the con- 
tact. In particular, for A < a  < I the quantity B in Eq. ( 9 )  
acquires the extra factor ( A  / a )  and for I < a  9 L,, L,, and 
L, the extra factor is ( D a ( v ) f i )  - '. 

Moreover, the formulas (10) - (12)  are also valid for 
the case of a point contact when there is no tunneling con- 
tact. To check this assertion we studied the geometry of the 
sample shown in Fig. 2, when all dimensions, including the 
size of the contact, are greater than 1. In this case the situa- 
tion can be described by Langevin equations with a special 
form of the correlation function of the external currents.I6 
Solving Langevin's equation for L,, L, > a  we obtain the 
expression ( 9 )  with B ( v )  . The expression ( 12) can be 
derived analogously. In the case L, > a s 1  the expressions 
obtained above for 1 < (L,, L,) < a  transform into the cor- 
responding expressions for the amplitude of the fluctuations 
of G as a function of H and V.49'5 

It is important to note that the ergodicity hypothe~is,~ 
according to which averaging over the magnetic field is 
equivalent to averaging over a random distribution of im- 
purities, is not applicable to the case studied above and to 
formulas ( 9 )  and ( 10).  This is evident at least from the fact 
that Eq. (9) depends explicitly on H, so that the amplitude 
S G ( H )  of the oscillations and the characteristic period AH 
increase as H increases. The ergodicity hypothesis is first 
satisfied only when 1 < L, < a .  

3. Conclusion. In Ref. 6 mesoscopic fluctuations of 
G ( H )  were already observed experimentally for a single- 
mode contact. However these experiments were performed 
under conditions when L, is of the order of the size of the 
contacts and the oscillations were determined by the inter- 
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ference of waves inside the channel, while the formula (9) is 
valid in much weaker fields L, > I >  a. In addition, it should 
be kept in mind that all results obtained above pertain to the 
case when the scattering potential has the form of white 
noise. This means that in real semiconductor systems with 
high mobility, when the electrons are scattered by the ran- 
dom potential at small angles, 1 must be interpreted as the 
transport mean free path. 

We note that in applying the results to metal-insulator- 
metal systems with resonance tunneling (see Ref. 9) it 
should be kept in mind that there exists another source of 
fluctuations of G(H)-mesoscopic fluctuations of the ca- 
pacitance of the resonance state in the insulator. Such fluctu- 
ations arise as a result of the screening of this charge state by 
the metallic borders. 

Finally we note that the expression for the correlation 
function of the electron densities ( 6 )  was derived neglecting 
the electron-electron interaction. Including this interaction 
results in effective screening of the density fluctuations. 
When this is done all other results of this work remain un- 
changed, but there arise fluctuations of the electric field 
SE(r)  in the sample. The correlation function of these fluc- 
tuations has the form ( Ir - r l l>  1 > x, where x is the Debye 
radius) 

d2 
<6Ei (r) 6Ej (r') >= (4nx2e)  - <6n (r) 6n(r1) >. 

dri dr,' 

These fluctuation electric fields can be measured with 
the help of a scanning tunneling microscope of atomic 
forces. 

Another phenomenon associated with the existence of 
such fields is adsorption of inert gases on the surface of a 
metal. In this case the correction to the adsorption energy is 
proportional to a(SE12, where a is the polarizability of an 
atom of the adsorbed gas. 

The attraction between macroscopic bodies at suffi- 
ciently low temperatures can also be determined by the fluc- 
tuation mechanism noted above and can compete with the 
Van-der-Waals me~hanisrn."~'~ 

Analogously to Refs. 2, 4, 11, and 14 switching on a 
magnetic field results in fluctuations of SE(r)  as a function 
of H and in a reduction of the quantity ( (6E(r ) )2) ,  i.e., it 
causes the attractive force acting between the bodies and the 
adsorption energy to depend on H. 

In conclusion we thank B. L. Al'tshuler, 0. A. Golu- 
bek, Yu. V. Nazarov, S. V. Ordin, Yu. V. Sharvin, and B. I. 
Shklovskii for helpful discussions. 
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