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It is shown that, in a medium without a center ofinversion, there arises in a system of thermalized 
photocarriers with nonequilibrium spin polarization a current whose direction is reversed when 
the spin is inverted. The photocurrent is generated as a result of spin relaxation and Larmor 
precession of polarized spins in a magnetic field owing to the spin splitting, which is linear in the 
wave vector, of the band states. It was found that there are two contributions to the current: 
relaxational, caused by the delay in the response of the carrier distribution function to the change 
in spin, and kinetic, caused by the appearance of a directed electron velocity and a displacement of 
the center of gravity of the electron wave packet accompanying scattering with flipping of the 
spin. The photocurrent in heterostructures with quantum wells and superlattices, in single 
crystals with the structure of the wurtzite and tellurium, and in deformed crystals with the 
structure of zincblende is calculated. 

1. INTRODUCTION 

In a brief report' we called attention to the possibility of 
generation of a photocurrent accompanying spin relaxation 
or Larmor precession of spins of optically oriented thermal- 
ized carriers in media without a center of inversion (noncen- 
trosymmetric crystals, structures with quantum wells, or su- 
perlattices). In contrast to previously studied mechanisms 
of the circular photovoltaic effect (CPVE),2-7 in this case 
the circular photocurrent decays after the light is switched 
off not during the momentum-relaxation time rP, but rather 
during the lifetime of the directed spin T = T ~ T , / ( T ~  + rS ), 
where r0 is the lifetime and rS is the spin-relaxation time of 
the photoelectrons. In this paper we make a detailed calcula- 
tion of the electric current arising in a system of carriers with 
a quasiequilibrium energy distribution and nonequilibrium 
spin distribution, for different mechanisms of spin relaxa- 
tion. We shall first formulate and briefly clarify the final 
results. The subsequent sections are devoted to justifying 
these results. 

We shall study single crystals or heterostructures 
whose symmetry admits in the effective electron Hamilto- 
nian H, together with the usual parabolic contribution 

( m  is the effective mass of the electrons), a spin-dependent 
term that is linear in the wave vector k 

symmetric quantum well GaAs/Al,Ga, -,As with the nor- 
mal zll(O01) we have 

i.e., a(') = (/3/fi) ( - k,,k,,O), where X I [ (  loo), yll(010). 
As will be shown in what follows, two independent 

mechanisms, one of which can be called relaxational (this 
mechanism is indicated in Ref. 1 ) and the other kinetic, con- 
tribute to the circular photovoltaic effect studied here. We 
shall clarify the nature of the relaxational mechanism: in a 
state of thermal equilibrium the spin density matrix of opti- 
cally oriented electrons has the form 

wheref, (E) is the equilibrium distribution function nor- 
malized to unity (in what follows,f, is a Maxwell function); 
n is the electron density; S is the average spin of the elec- 
trons; and, 

{ M N )  ,,, = ( M N + N M )  12. 

Here it is assumed that r0 and T, are much longer than the 
momentum relaxation time rp and the energy relaxation 
time -r,. In a state with the equilibrium distribution ( 1.4) 
there is no current: 

H(1)=i/2AoQ(i)=p.. v(Ji k. I ,  (1.2) since the current contributions from the spin-dependent 
component of the velocity Av'" = V, (Sa ' " )  and from the 

where o, are the Pauli matrices. The pseudotensor /3 is dif- density-matrix component linear in and 
ferent from zero in a structure having a point group of sym- 
metry transformations in which there exist axial- and polar- dfo d f ~  Apo = n- {H"', os),,, = n ----SO") 
vector components that transform according to equivalent dE dE 

(1.6) 

representations. Three-dimensional media with such sym- 
compensate one another. When S changes the component 

metry exhibit natural optical activity (quartz, tellurium, 
AV") changes instantaneously, while the component Ap re- 

crystals with the structure of wurtzite). In noncentrosym- 
laxes to the function ( 1.6) over the time rP. As a result, the 

metric nongyrotropic crystals, for example, in cubic crystals 
of A,B, compounds, the term in H (" linear in k can be two contributions in (1.5) no longer compensate one an- 

other and there arises the current 
induced by uniaxial deformation of a single crystal or size 
quantization in a structure with quantum wells or a periodic 

j=-en (f) b V k ( Q k  
potential forming minibands in a superlattice. Thus in a dt 
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In the derivation of this formula it was assumed that photo- 
generation of carriers does not occur at the time t. Under 
stationary conditions the quantity Ap differs from ApOby the 
factor 1 - (rp/rO),  which takes into account the indicated 
time lag, and the photocurrent is determined by the expres- 
sion' 

Here So is the average spin of electrons whose energy relaxes 
to the bottom of the band. In the case when the spin depolar- 
ization occurring in the process of such relaxation can be 
neglected, So is the average spin of the electrons at the mo- 
ment of their optical excitation. 

The kinetic mechanism is connected with the spin-de- 
pendent scattering of the current carriers by impurities and 
phonons. It depends on the mechanism of spin relaxation. 
When the D'yakonov-Perel' (DP)  mechanism predomi- 
nates this contribution is, as a rule, less than the relaxational 
contribution (see Ref. 1 ) . 

If spin relaxation occurs primarily by means of the ex- 
change interaction of electrons with paramagnetic ions or 
holes [the Bir-Aronov-Pikus (BAP) mechanism, see Ref. 
81, then 

j=-aen(~,l~,) Vk(Qk('), S). (1.9) 

Here T ; ' is the corresponding contribution to the spin-re- 
laxation rate and a is a coefficient of the order of unity that 
depends on the mechanism of momentum relaxation. For 
the Elliott-Yafet (EY) mechanism of spin relaxation, deter- 
mined by k-p mixing of the conduction and valence bands,' 
the interference of transitions with and without spin flip 
(ballistic contribution) and the displacement of the electron 
in r space in the process of spin-dependent scattering (dis- 
placement contribution, see Refs. 9 and 10) play the main 
role in the kinetic photocurrent. The ballistic and displace- 
ment contributions are equal and the expression for the re- 
sulting current has the form 

where k,T is the thermal energy, Eg is the band gap, 
S = A/(Eg + A), A is the spin-orbit splitting of the valence 
band, and 17 is a coefficient of the order of unity and depends 
on the details of the band structure and the momentum scat- 
tering mechanism. For the kinetic mechanism the current is 
determined by the instantaneous value of the spin S and the 
formulas (1.9) and (1.10) are valid in both the stationary 
and nonstationary regimes. 

Using the rotation of the electron spin in a transverse 
magnetic field it is possible to choose experimental condi- 
tions such that there is no circular photocurrent at the mo- 
ment of generation or it does not contribute to the recorded 
emf, so that only the current of thermalized carriers is mea- 
sured. 

To derive Eqs. (1.7)-(1.10) we require a general 
expression for the collision integral in the kinetic equation 
for the spin density matrix p, in which processes with spin 
flip and the linear in k splitting of the conduction band are 
taken into account. This expression will be derived in the 
next section. 

2. COLLISION INTEGRAL TAKING INTO ACCOUNTTHE 
SPLITTING OFTHE SPIN BRANCHES 

The spin density matrixp of the photoelectrons satisfies 
the kinetic equation 

Here G is the optical-generation matrix and Stp is the colli- 
sion integral. In addition to the characteristic splitting, 
which is linear in k, the Zeeman splitting of the spin 
branches in a magnetic field B is taken into account: 
H,  = fiu.R, /2, where fl, = g,uoB/fi is the Larmor preces- 
sion frequency, ,uo is the Bohr magneton, and g is the elec- 
tron g-factor. Under stationary conditions the derivative 
+/at is equal to zero. 

It is convenient to write first a general expression for the 
collision integral in a basis of characteristic spin states a,, of 
the effective Hamiltonian 

where 

and the indexs = f 1/2 indicates the values of the spin pro- 
jection on the direction of the vector a'" + a , .  

Using the standard methods for deriving a kinetic equa- 
tion (using the diagrammatic technique of Konstantinov 
and Perel' or Keldysh's technique), it can be shown that the 
contribution of elastic scattering of electrons by static de- 
fects to the collision integral has the following form in the 
basis (2.2) (see Ref. 11): 

1 
i- I I}. (2.3) 

Mk'8'kd [ i (&,.,-Ek.,) +6 i (EkS-Ekta2) +6 

Here 6- + 0, N, is the concentration of defects, M,,,,, is 
the matrix element of the transition kls'-ks in the basis 
(2.2) 

h 

and M,,. is the spin matrix of scattering by one defect. 
Neglecting the renormalization of the energy spectrum 

of the electrons owing to interaction with defects, we replace 
the energy denominators by delta functions according to the 
scheme 

Since we are interested in corrections up to first order in 
E,,, delta functions of the type S(E,, - Ek,,I ) can be re- 
placed by the functions 

It is convenient to transform from the basis (2.2) to a 
fixed basis of spin states, which does not depend on the direc- 
tion of k. To this end we multiply (2.3) by the matrix a,,aL 
and sum overs and sf, taking into account the identities 
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(i is a 2 X 2 unit matrix). As a result we obtain for the colli- 
sion integral 

2n d + Ni - 6 ( E k O - E k : )  I {a k k 4 H k t J @ k t k ,  p  ( k )  } sym 

kt 

+ { Q k k , p  ( k g )  @ k , k ,  H k ' }  sym - h ? k k , { H k t l ,  p  (k,) 1 sym Q k , k  
- ' / , ( a  r r , @ ~ , k p  ( k ) H t f + H k ' p  ( k )  Q r r , @ r , r )  I .  (2.6) 

h 

It is convenient to represent the matrix M,,, in Eq. 
(2.4) in the form of a linear combination of 1 (scattering 
without spin flip) and Pauli matrices (scattering with spin 
flip) : 

where A 3 = A,., , B z,:;. = B,., (hermiticity of the interac- 
tion operator) and A,,. = A - ,. - , , B,,. = B - ,. - , (sym- 
metry under time reversal). Neglecting processes with spin 
flip we have 

la.., 1 2 { 6  ( E : + H k 1 - E k , - H k I ' ) ,  p (k,) -p ( k ) }  ,. . 

For superlattices and deformed A, B, crystals we shall take 
into account in the pseudovector B,,., in addition to the 
main contribution B g ! ,  describing spin-dependent scatter- 
ing in deformed single crystals, also the contribution B::! ,  
which is induced by size quantization or deformation and 
which is of the order of flL1)/E Lo' as compared with B::!. 

Substituting the spin-dependent component of the equi- 
librium density matrix ApO [see Eq. ( 1.6) ] into the collision 
integral, we obtain three terms, which generate in the kinetic 
equation for the distribution function Spp terms that are odd 
in k and lead to the appearance of a current 

2n 
(St A p O ) ,  = - ~ , n  6 ( E ~ o - E ~ . )  [f ( E . 7  ++f (Ek ." )  I 

fr kt 

Formulas analogous to Eqs. (2.3), (2.6), (2.7), and 
(2.9)-(2.11) can also be derived for other mechanisms of 
scattering of photoelectrons. In the case of scattering by 
phonons, holes, or paramagnetic ions the corresponding 
contributions to the collision integral include summation 
over the initial and final states of the scattering system. 

3. RELAXATIONAL MECHANISM 

As pointed in Sec. 1, we assume that the following hier- 
archy of relaxation times holds: 

In this case it is not necessary to study the relaxation of the 
energy of the hot photoelectrons to the bottom of the con- 
duction band, and the generation matrix G in Eq. (2.1 ) can 
be written in the form 

where g is the rate of optical excitation of electrons into the 
conduction band, while the quantity So was introduced in 
Eq. (1.8). We shall solve the kinetic equation (2.1) for the 
density matrixp by the method of iterations. For the zeroth- 
order approximation we employ the quasiequilibrium distri- 
butionPo. We note that in a magnetic field the argument of 
the function f, in the expression ( 1.4) for po also contains 
the operator H, . 

In this section scattering with spin flip is neglected and 
the collision integral is reduced to expressions of the type 
(2.8). When the distribution p0 is substituted into them 
these expressions vanish. We shall substitute into Eq. (2.1 ) 
the density matrix in the form p = + Sp and we shall find 
the trace of all matrix terms appearing in this equation. As a 
result we obtain for the component Sp' - ', which is odd in k 
and determines the photocurrent, 

when the inequalities (3.1 ) are satisfied. Here T, is the relax- 
ation time of the electron distribution in k-space, described 
by the polynomial P, (cos 8)  of order I. In the notation of 
the preceding section, for scattering by static defects 

where 8 is the angle between k and k ,  , E = E i. The expres- 
sion (3.3) is applicable under both stationary and nonsta- 
tionary conditions, when the quantities g, n, So, and S 
change over characteristic times longer than T, and T,. 

Substituting Eq. (3.3) into the expression for the ballis- 
tic current 

and carrying out the summation over k ,  we find, finally, 

Hererp is the transport time, i.e., the average relaxation time 
T, appearing in the expression for the mobility. In limiting 
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cases Eq. (3.6) goes over into the formulas ( 1.7) and ( 1.8) 
presented in the Introduction. 

4. KINETIC CONTRIBUTION 

D'yakonov-Perel' mechanism 

If the spin relaxation is determined by the D'yakonov- 
Perel' mechanism, then the kinetic contribution appears 
when the term 

which is cubic in k, is included in the Hamiltonian 
H,  = 1/2fi(unk ), determining the spin splitting of the con- 
duction band. This component is also different from zero in 
undeformed crystals in the absence of spatial quantization. 
In quantum wells only the terms containing k, and k, re- 
main in Eq. (4.1). The terms linear in k, vanish and the 
terms quadratic in k, give the term (1.3) linear ink. Corre- 
spondingly, the velocity operator v contains a component 
that is quadratic in k 

which contributes to the current if the density matrix con- 
tains the component p, which includes a second-order poly- 
nomial and relaxes with a time r2 .  

To calculate p, Eq. (2.1) must be iterated to second 
order in a , ,  including in it aside from a ( ' ) .  The corre- 
sponding contribution to p contains two terms, po and p, . 
The first term does not depend on k and determines the rate 
1 / ~ , , ~ ~  of spin relaxation in the D'yakonov-Perel' mecha- 
nism. 

The second term is equal to 

where the overbar indicates averaging over the directions of 
k. This component makes the following contribution to the 
current: 

For quantum wells the terms in Eq. (4.3) with a, = 0") 
contribute a nonzero current, and in this case it is necessary 
to set r* = rl .  For deformed crystals only the terms in Eq. 
(4.3) containing products of 0") and a'" make a nonzero 
contribution. In this case r* must be set equal to 7, if 0'" is 
the first term on the right-hand side, and to r3 if the first 
term is 

For comparison we also present an expression for 

llrs,DP 

(i/'G,, DP) V=T* [ ~ T ~ u - ~ k r ~ k j ]  . (4.5) 

On averaging over the directions of k only the terms qua- 
dratic in 0") and remain in Eq. (4.5), and correspond- 
ingly r * is equal to r, or 7,. 

BAP mechanism and scattering by paramagnetic ions 

If the spin relaxation is determined by the exchange 
interaction with holes or paramagnetic ions, then B,, in Eq. 
(2.7) does not depend on k and k' and the only term in StApO 
in Eqs. (2.9)-(2.11) that contributes to the current is 

(StApo), . The corresponding contribution to the compo- 
nent of the density matrixp, = - 7, (StApO), for scattering 
by bound holes or ions is equal to 

Here Nh is the density of paramagnetic ions or holes, gh is the 
spin degeneracy, and the trace Sph is taken over the spin 
indices of the holes (ions). 

Bearing in mind that the spin-relaxation time r, for the 
BAP mechanism or in the case of scattering by ions is deter- 
mined by the formula 

-=-- 4n N h  XIS (E,o-EE.,o) sph(1~ l z 6 j t - ~ i ~ j ) ,  (4.7) I 
T.'j g h  k, 

the expression (4.6) can be rewritten in the form 

For the mechanisms studied r ; ' is a scalar and, in accor- 
dance with Eq. (2) ,  it is proportional to the velocity of the 
electrons, i.e., E ' I2. 

Correspondingly the current is equal to 

TP j=-e ~ p ( p ~ 2 ) " a ) = - ~ ~ ~ ~ k ( ~ ( i ) ~ ) -  . (4.9) 
k Tr, BAP 

Here 7 ,BL is the inverse spin-relaxation time r ; ' (E) 
averaged over the Maxwellian distribution. For r, a E" for 
electrons in the three-dimensional case 

n'" r ( v f 3 )  -'/,r (vi-2) a = -. 
2 r ( v + ~ / , )  I 

where T ( x )  is the gamma function. 
For free holes Nh in Eqs. (4.6) and (4.7) is replaced by 

B,,f(ph ) [ 1 - f(ph ) 1, where f(ph ) is the equilibrium mo- 
mentum distribution function of the holes, normalized to 
Nh . Here, as in Ref. 12, it is assumed that the momentum of 
the holes ph is much greater than the momentum of the elec- 
trons k. In this approximation and in the case of annihilation 
interaction with holes, the matrix element B,,, determined 
by the total momentum K z p ,  does not depend on k and ki 
and the formulas (4.6)-(4.10) remain in force. 

Elliott-Yafet mechanism 

In the case of scattering by piezoelectric acoustic oscil- 
lations or polar-optical phonons, Coulomb centers, or im- 
purities with a short-range potential, the matrix element B,,, 
in Eq. (2.7) is determined by the expression 

where 

For A3B5 crystals we have v =  ( 2  - S)/(3 - 8) .  In Eq. 
(4.12) it is assumed that in calculating bLio,j and m only the k- 
p interaction of the nearest conduction band I?, with the 
nearest valence band TI, = T8 + T, is taken into account. 
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In calculating bg: terms linear in k and k, are taken into 
account in the interband matrix elements.' To calculate b::j 
it is also necessary to take into account in the interband ma- 
trix elements the terms quadratic in k (for quantum wells) 
or linear in the deformation. Since these same terms are re- 
sponsible for the linear in k splitting of the conduction band 
b,$j can be expressed in terms of In, and In,,: 

( I )  78 ( I )  ' 3 )  
bkk, = - (2 -6 )  (Qk + Q k ,  1. 

E, 

Ballistic current. It can be shown that of the three terms 
in StApO, determined in Eqs. (2.9)-(2.11), (StApO), makes 
the main contribution. The contributions of the components 
(StApO), and (StApO), is less than the contribution of 
(S~AP')~ in respect to the parameter k,T/E,. We shall 
present expressions, confirming these estimates, for the con- 
tributions of these components to the current in the case of 
quantum wells. ' ' 

In the case of the scattering by acoustic or optical phon- 
ons, determined by the interband constants of the deforma- 
tion potential, the matrix element is Bgy a k + k, while B::: 
does not depend on k and ki (except for the explicit depen- 
dence of cij on q = k - k, ). In this case (StApo) , and 
(StApO), do not contribute to the current. 

For scattering by impurities with a short-range poten- 
tial, when IAkk,12 does not depend on q, the component 
(StApO) ,, according to Eqs. (2.9) and (4. lo) ,  contributes 
the current determined by the expression 

In those cases when [A,,, l 2  depends on q, Eq. (4.13) con- 
tains an additional dimensionless factor 2. If [A,,, I 2  is writ- 
ten in the form F(E,Ei,p), where E = Ei  and El = E i , ,  
then for three-dimensional electrons 

a m 

z =  J Z ( E ) E ~ ~ . ( E ) ~ E  / J E ~ . ( E ) ~ E ,  (4.15) 
0 0 

where 

As the calculation shows, in the case of scattering by 
piezoelectric oscillations or polar optical phonons, when 
IA,,, 1 2 a q 2  and also in the case of scattering by a coul- 
omb potential, when \Akk, l 2  a (q2 + L , 2 ,  - ', the factor 
Z = 1 (L, is the Debye screening length). In the case of 
scattering by acoustic phonons, which is determined by the 
deformation (short-range) interaction, we have 

Here a,  b, d, and c are constants in the deformation potential 
of the valence band or the conduction band. It is obvious that 

in this case the sign of the effect depends on the sign of the 
constant of the deformation potential. 

The displacement current is caused by the displacement 
of the center of gravity of the wave packet of the electrons in 
the process of spin-dependent scattering. In accordance with 
Refs. 9 and 10 this current is determined by the expression 

i = 2ne E l m  Sp{p(k )Mkk . (Pk+Vr . )  Mk.k}6(Eko-Ek.") .  
a k k ,  

(4.17) 

The expression (4.17) is an extension of the formulas of Ref. 
9 to the case when the density matrixp (k )  is not diagonal. It 
can be obtained both by the method developed in Ref. 9 and 
by taking into account the renormalization of the current 
operator by the scattering.I3 The density-matrix component 

which is the solution of Eq. (2.1 ) to first order in Q" ', makes 
a nonzero contribution to the current in Eq. (4.17). 

Substituting Eqs. (4.18), (2.7), (4.11), and (4.12) into 
Eq. (4.9) we obtain for the current an expression that is 
identical to Eq. (4.14) and remains valid for all mechanisms 
of scattering for which M,,, and B,,, are determined by the 
formulas (2.7 ), (4.11 ), and (4.12). In the case of scattering 
by acoustic phonons, which is determined by the deforma- 
tion interaction, there is an additional factor Zidentical with 
(4.16). 

5. QUANTUM WELLS AND SUPERLATTICES 

As indicated above, for symmetric quantum wells H ' " 
is determined by the formula ( 1 . 3 ,  where 

- 
- - zy, k ;. 14-15.2) H ere y, is a coefficient in the expression 

for Q'3', which for A,B, crystals has the form 

In accordance with Eqs. ( 1.8) and (3.3), the stationary cur- 
rent due to the relaxational mechanism is determined for 
S ,  = 0 by the formula' 

The + sign corresponds to i = x and the - sign corre- 
sponds to i = y. The kinetic contribution in the D'yakonov- 
Perel' mechanism in accordance with Eqs. (4.3) and (4.4) is 
determined by the expression 

(the brackets indicating averaging over energy). Here 

The ratio of the contributions (5.3) and (5.2) is equal to 

Here AE = +i2 k / 2mz+ i2d /2md  ,, where d is the size of 
the well. One can see that the contribution (5.3) can become 
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significant for quite wide wells for not very low temperatures 
and for r, < ro . 

For scattering by heavy holes, spin flip does not occur 
for k,  = 0. For this reason the BAP mechanism can become 
significant only if the hole density is high or the tempera- 
tures are high, when the Fermi energy of the holes or k, T 
are comparable to the separation of the levels of the light 
holes E ,  and heavy holes E,,. In these cases the mixing of 
the states E,, and E,, as well as the possible filling of the E,, 
level must be taken into account. In accordance with Eq. 
(4.14), the term (StApo), makes the main contribution to 
the current determined by the Elliott-Yafet mechanism. 
This contribution is equal to 

Here 

The Elliott-Yafet mechanism does not contribute to the 
components r ,;I. In accordance with Eqs. (3.10) and 
(3.1 1) the contributions of (StAp0), and (StApo), to the 
current are equal to 

These contributions, as indicated above, are less than j j "  in 
terms of the parameter k ,  T/E,. As regards the ratio of the 
contributions (5.6) and (5.2), it depends strongly on the 
temperature and on rp.  It is obvious that the contribution 
(5.6) predominates if 

If the light is oriented along the normal to the surface, then 
the current in the quantum wells arises only in a transverse 
magnetic field. In the field B the spin S ( t )  is determined by 
the equation 

In the stationary state, when g = n/ro with So llz, 

where T p 1 = r ; '  i(.l + 7  5 I l . i  I ,  

If at the moment t = 0, the carriers are excited by a 
narrow pulse, whose width is small compared with r, ,  To, 

and R; I, then 

Sl=exp (-tli ,) [QuSo,] .to* sinh (t/.t,*) for QB?8<i/2, ( 5.12) 
~ , = ~ ~ p ( - t / ~ , )  [PBS~,] &sin ot for Q B Z ~ > ' / ~ .  (5.13) 

Here 

For 2R,'i, $1 we have w = R,. As follows from Eq. (1.9) 
and (3.6), in the case that measurements are performed in 
the nonstationary regime with C l $  r $ the relaxation con- 
tribution is S1r, times greater than the kinetic contribution. 

In accordance with the symmetry requirements the di- 
rection of the current in a transverse magnetic field does not 
depend on the mechanism of current flow. Depending on the 
direction of B, the current in a symmetric quantum well can 
be both perpendicular to B (for B11(100) and (010)) and 
parallel to B (for BII ( 110) and ( 170) ). For arbitrary direc- 
tion of B the angle betweenj and the (010) axis is equal to the 
angle between B and the ( 100) axis. The current contribu- 
tion associated with the asymmetry of the quantum well, i.e., 
with fl"' a [nk] ( n  is a unit vector normal to the plane of 
the well), is always parallel to B. 

We shall estimate the expected contributions to the cur- 
rent which are caused by the different mechanisms. Spin re- 
laxation, determined by the linear-in-k splitting of the con- 
duction band, was studied in Ref. 16 for the superlattice 
GaAs-Al, ,, Ga, ,, -As ( 15 A + 15 A). The measured value 
is f l=  10W2 ev .A- ' .  For T, = 5  K, rp =8.10 l 2  S, 
r0 = 10 p 9  S, and rTl1 = 1.2.10 - l o  s the relaxational mecha- 
nism (5.2) makes the main contribution to the current, and 
the kinetic contributions (5.3) and (5.6) are equal to 15 and 
1 %, respectively, of the contribution (5.2). 

In an optimal magnetic field, i.e., for 
0, = ( T I  T, ) - and So = 1/2, at high light intensities 
when the photoconductivity exceeds the dark conductivity, 
the open-circuit field intensity is E,"? = 0 . 5  1 0 ,  V/cm. 
For the quantum wells of sized = 120 A, studied in Ref. 16, 
at T = 77 K and with 7, = 8.10 l 3  s, ro = 4.10- ' I  s, and 

10 r,,, = 3.10 s the relaxational contribution (5.2) also pre- 
dominates. The contributions (5.3) and (5.6) are equal to 1 
and 5%, respectively, of the contribution (5.2). The quanti- 
ty E 2,"" under the conditions indicated above is equal to 
1.3.10 'V/cm. 

6. DEFORMED A, 6, CRYSTALS 

In deformed A, B, crystals 

Here 1 is a unit vector with the components I, = E , ~ / E ,  etc., 
and E = I/'. In accordance with Eqs. ( 1.8) and 
(3.6) the contribution of the relaxational mechanism to the 
current is determined by the expression 

The kinetic contribution in the D'yakonov-Perel' mecha- 
nism, according to Eqs. (4.3) and (4.4), is equal to 

Here (r !,') - I is the contribution to 7 , in Eq. (4.5) deter- 
mined solely by a' , ' :  

The coefficient Q depends on the mechanism of scattering. 
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This contribution to T $: predominates for small deforma- 
tions, while for large deformations R'" makes the main con- 
tribution to - I This contribution is equal to 

s,DP. 

The contribution to the current from the BAP mecha- 
nism or from scattering by paramagnetic ions is equal to, 
according to Eq. (4.9), 

According to Eq. (4.14) the Elliott-Yafet mechanism makes 
the contribution 

Under tension or compression along the ( 11 1 ) axis, when 
I ( ( (  11 1 ), and when the light propagates in the same direc- 
tion, current arises only in a transverse magnetic field, and 

In this case the current is always parallel to the magnetic 
field. 

We shall estimate the contributions made by different 
mechanisms to the current. As an example we shall study p- 
type GaAs with hole density p = 4- 1016 cm-3 and compen- 
sation K = 0.3. For this material the spin-relaxation rate 
was found to be increased by uniaxial deformation under 
compression along the ( 1 1 1 ) axis."-l9 At T = 77 K, accord- 
ing to Ref. 20, T, = 3.10 - '' s, r0 = 10 - s s, and 
T, = 1.5.10- S. Under these conditions the main contribu- 
tion to the current is the kinetic one (6.7) due to the contri- 
bution of the Elliott-Yafet mechanism. We underscore the 
fact that the Elliott-Yafet mechanism does not make an ap- 
preciable contribution to the spin-relaxation rate in GaAs, 
which is determined by the DP and BAP  mechanism^.^' The 
contributions (6.2) and (6.3) are equal to 3 and 5%, respec- 
tively, of the contribution (6.7). Because T [ ' increases as 
the pressure increases, the optimal current is reached when 
( ? : ; ) ) - 1 =  3 - 1 / 2 [ ~  - 1  + (T  j3') - '1. Under the indicat- 

ed deformation and with photoconductivity predominating 
over the dark conductivity, at r0 = l o v 9  s the quantity 
E I::" = 10 - V/cm. If under the same conditions r0 is re- 
duced to 2- 10 - " s, the quantity E ,' increases by a factor 
of 12. 

For the same samples at T = 300 K the times are 
T, = 1.5. 10-l3 s, T, = 10W8 s, and r j 3 '  = 10W'O s. In this 
case the contribution (6.7) is the main one, and the contri- 
butions (6.2) and (6.3) are equal to 0.3 and 28%, respec- 
tively, of the contribution (6.7). Under the maximum pres- 
sure reached in Ref. 20 (P= 4 kbar) we have 
EFT = 55.0 - V/cm. When T, decreases to 5.10 - lo s the 
value of E ,F increases to 10 - V/cm. 

The contribution (6.5) can predominate in crystals 
with paramagnetic impurities. Since r0 and rS decrease si- 
multaneously when the hole density increases, in strongly 
doped p-type samples the relaxational contribution (6.2) 
will apparently be greater than the contribution (6.5). 

7. CRYSTALS WITH WURTZITE STRUCTURE 

The band structure of A, B, and A, B, crystals with a 
lattice of the wurtzite type is similar to that of cubic A, B, 
crystals, oriented along the ( 11 1 ) axis and having C,, sym- 
metry.' The higher symmetry of wurtzite C,, is not mani- 
fested in the effects studied here. For this reason all formulas 
from the preceding section with 111 (1 11) are applicable to 
wurtzite, if C3&/2 is replaced in them by a corresponding 
constant a, determining the spin-dependent splitting of the 
conduction band: 

Here n is a unit vector oriented along the principal axis C,. 
If the crystal-field splitting of the valence band A,, is 

small compared with the spin-orbit splitting A, then the 
expression (4.12) for 7 remains valid. In the opposite limit- 
ing case A,, ) A we have 7 = 1. In the case of excitation with 
light only out of the upper valence band the quantity So is 
equal to 1/2 instead of 1/4 for A,B, crystals. For this geom- 
etry, like in 111-V crystals deformed along the ( 11 1 ) axis, a 
current arises only in a transverse magnetic field. In the ab- 
sence of a magnetic field the current due to the circular pho- 
tovoltaic effect arises only if the light propagates in a direc- 
tion perpendicular to the C, axis. In this case the strong 
birefringence makes it difficult to observe the effect. For this 
reason no quantitative studies of the circular photovoltaic 
effect have yet been performed on wurtzite crystals. 

8. TELLURIUM 

Unlike wurtzite, in tellurium excited by circularly po- 
larized light propagating along the principal axis C, there 
arises a current due to the circular photovoltaic effect in the 
same direction. In a transverse magnetic field there appears, 
as a result of the Hall effect, a transverse current which 
reaches a maximum for In, = T; I. In addition to this cur- 
rent, a transverse current, which is generated by the mecha- 
nism studied here and which reaches a maximum in weaker 
fields, In, = ( Til T, ) - I", should also be observed. 

The spin-orbital splitting of the conduction band of tel- 
lurium is determined by the expression 

For this reason, in accordance with Eqs. (3.6), ( 1.10) and 
(4.14), the contributions to the current from the relaxa- 
tional and kinetic mechanisms, due to the spin relaxation in 
the Elliott-Yafet mechanism, are determined by the expres- 
sions 

Here 

E, is the band gap, i.e., the separation between the top of the 
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valence bands M  ;, or M  ;, and the conduction band M  ;,; 
2A is the separation between the bands M ;, and M  ;,; EL is 
the separation between the lower valence band M i ,  and 
M ;,; and, A' is the separation between the uppermost of the 
bands M  I, or M  ;, and M  ;, . In contrast to wurtzite crystals, 
in tellurium the current is oriented along S,, i.e., perpendic- 
ular to the magnetic field, like the Hall current. Since the 
constant p in the term linear in k in the spectrum of the 
valence band, a constant determining the current due to the 
circular photovoltaic effect, is approximately two orders of 
magnitude larger than the constant a, in Eq. (8.1 ), the con- 
tribution studied here can be separated from the Hall contri- 
bution only for T / r p  2 10'. For this reason it may be more 
convenient to excite two-dimensional electrons located in a 
quantum well at the surface of the sample; these electrons 
make no Hall contribution, while the effect under study re- 
mains. 

"For inelastic scattering StApO has an additional term, containing the 
product SA,,BL:i, that contributes to the current: 
(StApO), - fo (E: ) - fo ( E  y ,  ). Estimatesshow that thecontributionof 
this term to the current is smdl in the parameter (rp/rE) ( T, - T ) / T ,  
where T, is the temperature of the electrons and Tis the temperature of 
the lattice, compared with the contribution of (StAp0), . 

21 In asymmetric quantum wells 0"' can also contain the contribution 
0 - n x  k, where n is a unit vector normal to the surface. 
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