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A new approach is suggested for describing NMR at large values of the nuclear polarization 
p ( 1 - p < 1 ) in the spin-wave approximation. The shape of the NMR line is discussed. Saturation 
equations are derived. The specific heats of the spin system are calculated. 

1.  INTRODUCTION ground state for the Hamiltonian Po = - woSz + Pdz is 

The growing research interest on the dynamics of solid- the state in which all the spins have their maximum z projec- 

state spin systems at low temperatures1 stems from the de- tion. We denote this state by 10). It is not difficult to verify 
velopment of methods for dynamic polarization of nuclei'.2 that the state 

which make it possible to achieve values of the nuclear-spin I 
polarization close to unity. The spin temperature corre- I k)= --= z e x p  (ikl) SI- 1 o), (3)  
sponding to such polarizations is well below the lattice tem- I N  , 
perature. 

We assume that a system of nuclear spins in a strong 
polarizing field H, (directed along thez axis) is also subject- 
ed to an rf field 2H, cos wt, directed perpendicular to H,. 
This system is described by the Hamiltonian 

where w, = yH,, w, = yH, ( y  is the gyromagnetic ratio), 
the operators S, ( j = x,y,z) are the projections of the total 
spin angular momentum onto the j axis, and A?,, is the part 
of the dipole-dipole interaction (DDI) which is secular with 
respect to the z axis. In the absence of an rf field, Hamilto- 
nian ( 1 ) consists of two commuting parts, and the equilibri- 
um density matrix 

po=cxp { a ~ o S z - P d % d l } / S ~  exp {aooS,-pd%,,} (2)  

is determined3 by two independent thermodynamic param- 
eters (reciprocal temperatures), a and Pd. 

Under the conditions aw, < 1 and ~,w,,, < 1 (w,,, is 
value of the DDI in frequency units) the high-temperature 
approximation is valid. In that approximation it becomes 
possible to expand (2)  in am,  and fi,w,,, and to retain only 
the terms which are linear in these parameters.'s4 At low 
spin temperatures, with a m ,  2 1, and possibly P,w,,, R 1, 
important deviations from the predictions of the high-tem- 
perature theory arise. Those deviations are known as "non- 
linear effects."' The existing approacheP9 for the case of a 
high nuclear polarization (am,  % 1 ) remain of a high-tem- 
perature nature in terms of /j:, and thus cannot be taken to 
describe the saturation of the NMR line and other effects 
which are accompanied by a pronounced cooling of the DDI 
reservoir. It is furthermore not possible to follow the transi- 
tion of the system of nuclear spins to a magnetically ordered 
state.' 

In the present paper we offer an approach for describing 
diverse phenomena in a system of nuclear spins with a high 
polarization for arbitrary values of the dipole temperature, 
in particular, for the case P,w,,, 2 1. This approach starts 
from an examination of elementary excitations of the spin 
system from the state of complete order. 

Since we have [w,Sz, PdZ ] = 0, these operators have 
a common basis, consisting of their eigenfunctions. The 

where S ; is the lowering operator for the spin at site 1, and 
N is the total number of spins, is also an eigenstate of A?,, 
with an eigenvalue greater than 10). The state I k) is a state 
with one flipped spin and a polarization p = 1 - 2 / N  (for 
spins S = 1/2). The lowest-lying excitations of the system 
are thus the spin waves in (3) .  Correspondingly, states with 
a high energy are (approximately) states with several excit- 
ed spin waves." As in a description of magnetic materials,' ' 
one can thus treat this system of spins as a gas of interacting 
magnons. 

The role played by the magnon-magnon interaction de- 
creases in importance with decreasing magnon density n / N  
and thus with increasing polarization p = 1 - 2 n / N .  At a 
low density, the primary processes are the creation of mag- 
nons by the rf field and a four-magnon process: the scatter- 
ing of a pair of spin waves (magnons) by each other. In the 
absence of an rf field, and at a fixed value of the polarization, 
scattering processes lead to an equilibrium distribution for 
the numbers of magnons: 

where E, is the energy of the magnons with wave vector k, 
andflandp are the reciprocal temperature and the chemical 
potential, i.e., two independent thermodynamic parameters 
which play the same role as a and P, in (2).  When a weak rf 
field, of a strength such that the magnon creation rate is 
considerably lower than the rate at which an equilibrium is 
established by scattering processes, is applied to the system, 
distribution (4)  remains the same, but P and p vary slowly 
in time. The saturation of the spin system by a weak rf field 
can be described in these terms. Under the condition 
1 - p( 1, with a weak interaction of magnons, the thermo- 
dynamic characteristics of the system can easily be ex- 
pressed in terms of n , .  In particular, for the magnetization 
M and the total energy E w e  have 

In a state of total thermal equilibrium (in the absence of 
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an rf field) we have p = 0. A weak rf field drives the system 
away from equilibrium, and the system then evolves through 
a sequence of quasiequilibrium states. If, at saturation, the 
energy of the magnons created by the rf field is lower than 
the average energy of the magnons which already exist in the 
system, this system will cool down (below we will discuss 
only the case B > 0).  Since the number of magnons in the 
system increases in the process, it follows directly from (4)  
that the chemical potential p increases upon saturation in 
this regime. Whenp reaches the lower boundary of the mag- 
non spectrum, E ~ ,  a Bose condensation begins in the gas of 
magnons and gives rise to an ordering of the transverse com- 
ponents of the nuclear magnetic moments. As we will see 
below, this ordering arises at temperatures pw,,, 9 1 under 
the condition 1 - p <  1. The reason is that in the case of a 
high longitudinal polarization the transverse components of 
the magnetic moments are reduced, so the interaction be- 
tween them is weakened. Consequently, even if we ignore 
Bose condensation there exists a wide temperature range in 
which this new approach is applicable. 

Below we construct a Hamiltonian for the spin system 
of a solid in a strong magnetic field in the spin-wave repre- 
sentation, discuss the shape of the NMR line, derive satura- 
tion equations, and calculate the specific heats of the spin 
subsystems. This new approach can also serve as the starting 
point for studying spin-lattice relaxation at low tempera- 
tures, dynamic nuclear polarization, and the transitions of a 
spin system to an ordered state. 

2. SPIN-WAVE REPRESENTATION OFTHE HAMlLTONlAN 

Let us examine Hamiltonian ( 1 ) for a system of N nu- 
clear spins (S = 1/2) at the sites of a regular lattice. In a 
strong field (w, ,w,,, ), the DDI Hamiltonian 

where O,,,. is the angle between the vector 6 = 1' - 1, which 
connects the positions of spins 1 and 1' and thez axis, and the 
operator S j  projects the spin of the nucleus at site 1 onto axis 
J ( i=x , y , z ) .  

Our problem here is to analyze the dynamics of the sys- 
tem at temperatures so low that excitations of the system 
from the 10) ground state can be described in the spin-wave 
approximation." In this case the spin operators 
S,' = S;" + iSr are replaced by Bose creation and annihila- 
tion operators a,+, a,, by means of the following relations:I2 

Taking Fourier transforms, we go over to magnon cre- 
ation and annihilation operators: 

1 1 
a f  = --zal+ exp (-ikl) , a, = - xal exp(ikl) 

I N  1 VW (7)  

Using the Fourier components of the DDI constants, 

and the orthogonality relation 

we find the following representation of ZdL: 

where 

The Hamiltonian of the interaction with the field H,, 

shifts the energy E; by w,, so the energies of the system be- 
come 

The Hamiltonian Z, = X, + Pd, describes a gas of mag- 
nons with a conserved number of particles. Here E, are the 
energies of the magnons, T:,p/4N is the scattering ampli- 
tude for magnons with wave vectors k and p, and q is the 
momentum transferred in the course of the scattering. 

Assuming the amplitude of the rf field to be small, and 
restricting the discussion to one-magnon terms, we can write 
the Hamiltonian of the interaction with the rf field as 

zr, = - ~ ' h  mi (ao+a,+) cos ot. (15) 

This interaction alters the total number of magnons and thus 
the z projection of the total magnetization. The total Hamil- 
tonian can thus be written in the following form (we are 
omitting an inconsequential constant) : 

As in research on spin dynamics, it is convenient to trans- 
form to a rotating coordinate system394 in which the system 
of spins can be described by a time-independent Hamilto- 
nian. To make this transformation, we need to make a trans- 
formation in the equation for the density matrix, 

This transformation is 

p ( t )  = e r p (  - iwt z a k + a k ) p ' ( t )  exp ( i o t  z a k + a k ) .  ( 18) 
k k 

Now ignoring the terms which oscillate at a frequency of 20, 
we find that in the evolution equation 

idp'ldt = [%", p*] (19) 

the Hamiltonian X* does not depend on the time and is 
given by 
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where 

To transform from spin operators, which act in a finite- 
dimensional space, to Bose operators, which act in an infi- 
nite-dimensional space, we need a special study.'' The re- 
sults of a corresponding analysis show" that this approach 
is legitimate as long as the magnon density n/N is small. 
Hamiltonian ( 16) is thus a good approximation of Hamilto- 
nian ( 1 ) at high values of the polarizationp = 1 - 2n/N. 

The spectrum E ,  (2, ) is anisotropic and depends on the 
orientation of the crystal with respect to the field H , .  The 
state with the lowest energy is always realized at the bound- 
ary of the Brillouin zone at k #O. Asa simple illustration we 
consider a crystal with a cubic lattice in the [OOl] orienta- 
tion, and we retain only the interactions with nearest neigh- 
bors. We then find from (5),  ( 11 ), and ( 14) 

yZhZ 
er=uo -!- -(2 cos k,a - cos k,a - cos k,a) , 

2aS (22) 

where a is the lattice constant. The energy E ,  reaches its 
minimum value in the case 

If we wish to discuss the case of low dipole temperatures, 
pa,,, , 1 ,  in which only states near the bottom of the band 
are excited, we can use the long-wavelength approximation; 
i.e., we can restrict the discussion to small values of 

where I is a unit vector along the z axis. Dispersion relation 
(22) can then be put in the form 

where g, is the angle between Sk and I, and c = y2ii2/4a3 

3. SHAPE OFTHE NMR LINE 

The spatially uniform rf field in ( 15) leads to the cre- 
ation and annihilation of magnons with a wave vector k = 0. 
We first consider the limiting case p-. 1. In this case the 
magnon scattering processes become inconsequential, and 
the spectrum of the Hamiltonian Zo = Zz + ZdZ be- 
comes a spectrum of one-magnon excitations &,. Selection 
rules imposed by energy conservation have the consequence 
that transitions in the spin system (the creation of magnons) 
are caused only by an rf field with the frequency [see ( 11 ) 
and (14)] 

The shape of the NMR absorption line in the limit p +  1 is 
thus a S-function at the frequency to. For spherical crystal 
samples with a cubic structure we would have b ,  = 0 (Ref. 
1). The shift of the NMR line given by (26) is thus not of 
fundamental importance, and we will assume below that the 
sample is spherical and that the crystal lattice has a symme- 

try high enough that we can assume b, = 0. 
The broadening of the level E , ,  and of the NMR line 

along with it, occurs because scattering processes keep the 
lifetime T, of a magnon with k = 0 finite. The average life- 
time of magnons with k = 0 is given by13 

where the occupation numbers n, are described by distribu- 
tion (4).  Expression (27) also determines the width of the 
NMR line. 

According to the fluctuation dissipation theorem,14 an 
absorption line (the imaginary part of the susceptibility) is 
related by a Fourier transformation to the response function 
describing the response of the system to an infinitely weak 
perturbation. In the case at hand, this perturbation is an rf 
field pulse which rotates the spins through an infinitely small 
angle around an axis perpendicular to the field H , .  This 
response function is proportional to the correlation func- 
tion' 

R,(t) =< [S-, S+ (t) ] >=Sp [S-,  S+ ( t )  ]pa, (28) 

where the density matrix p, is given by (2) ,  S -f = XISl*, 
and the time dependence of the correlation function is deter- 
mined by the DDI in the transformation to the rotating coor- 
dinate system. Using (6)  and (7)  to transform this correla- 
tion function, we find a response function expressed in terms 
of magnon creation and annihilation operators: 

The pulse which we are discussing here creates a nonequilib- 
rium number of coherent magnons with k = 0. Since there 
are few such magnons (the pulse is infinitely weak), the time 
evolution of their number is determined by the scattering of 
these magnons by equilibrium (thermal) magnons. Their 
number (and thus the transverse magnetization) therefore 
decreases exponentially with the time: 

R o ( t ) - (  [a,, a ,+])  exp (-lti/.ro) =exp (-ltl/.to). (30) 

The response function of the NMR line is thus a Lorentzian 
curve which is truncated at the frequency A-a,,, and which 
has a half-width r ; I: 

The function g( A), which is related by a Fourier trans- 
formation to the response function R,  ( t ) ,  vanishes at one of 
the A values.' In the discussion which follows, we show that 
the corresponding values satisfies 1 A 1 R a,,, under the con- 
ditions for which the approach of this paper is applicable. 

At high dipole temperatures, pa,,, < 1, at which we 
have n/N< 1 (this case is possible withp # 0) ,  we can ignore 
the terms quadratic in n, in (27) by virtue of the condition 
n,/Ng 1, and we can take np through the summation sign. 
Using ( 12), we then find 

Using 
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and using the estimate w,;' for the local density of states, we 
find 

This estimate of the linewidth agrees with that derived in 
Ref. 1 by a moment method under the assumption of a Lor- 
entzian lineshape. 

Up to this point, the four-magnon term in ( 16) has been 
considered only in connection with magnon scattering pro- 
cesses. However, we need to allow for the circumstance that 
the four-magnon term causes not only a damping of spin 
waves but also a shift of their frequencies. This shift is deter- 
mined by the diagonal part of I?:, ( q  = 0 and k = p - q ) .  
This diagonal part can be written in the form 

where 

To find an approximate expression for the shifts AE,, we 
take an average of ( 3 5 )  over the quasiequilibrium distribu- 
tion of magnons [the density matrix corresponding to this 
quasiequilibrium is given by ( 3 9 )  ] : 

In particular, for the shift of the level with k = 0 we find 

where we have used r;,, = 0 [see ( 12) 1. At high tempera- 
tures, at which n, can be taken through the summation sign 
in ( 3 7 ) ,  it is a simple matter to show, with the help of ( 12) ,  
that we have = 0. 

The case of low dipole temperatures, flw,,, & 1 ,  is one of 
practical interest. We denote by E* the energy of the lowest- 
lying state in the magnon spectrum &,. Since only the states 
near E* are occupied in this case, it is a simple matter to find, 
with the help of ( 1  1 ), (12), and ( 1 4 ) ,  that the level shift 
A&* near E* is 

In this case there is also a shift of the center of the ab- 
sorption line, by an amount 

This shift of the center of the line is accompanied by a change 
in the wings of the line, in such a way that the first moment, 
M, , remains zero at b, = 0. The shift of the center of the line 
is of a fluctuational nature here and is analogous to the shift 
calculated in Ref. 15. 

4.SATURATlON OFTHE NMR LINE 

The saturation process can be described as follows. The 
application of rf field ( 15) ,  whose frequency w may differ by 

the Larmor frequency w, by an amount A  = w, - w, 
changes the z component of the magnetization and thus the 
total number of magnons. If the rate of change of the number 
of magnons is low in comparison with the rate at which an 
equilibrium is established as a result of scattering [the latter 
rate is on the order of a,,, ( 1 - p )  according to ( 3 3 )  1, the 
system remains in a quasiequilibrium state in the rotating 
coordinate system, and the density matrix becomes 

where the partition function Z is found from 

and the parameters P ( t )  and p ( t )  vary slowly in time. 
Using the standard method's3 for seeking a solution of 

Eq. ( 1 9 )  with the structure in ( 3 9 ) ,  we find the saturation 
equations 

dn/dt=h7JV (A), 

dE/dt=O, 

where 

are the total number of magnons and the energy of the sys- 
tem, 

W (A) ='12noik ( A )  ( 4 3 )  

is the probability for transitions stimulated by the rf field, 
and the lineshape function is 

rn 

Here 

The shape function g ( A )  is identical to that introduced in 
the preceding section of this paper. The function g ( A )  is 
sometimes expressed in terms of the symmetrized correla- 
tion function ( [ a ,  ,a$ ( t )  ] + ), where [ a ,  ,a; ( t )  ] + 

= a,a, ( t ) a $  ( t ) a , .  In the case at hand, it is a simple matter 
to show that 

m 

It follows, in particular, from ( 4 6 )  that under the condition 
p = 0 we have g ( A )  = 0. With p = E* - w <0, however, 
Bose condensation" begins in the system, and the dynamics 
of the system cannot be described by Eqs. ( 4 1 ) .  The Lorent- 
zian approximation, ( 3  1 ), of the function g( A )  thus does 
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not contradict the rigorous results of Ref. 1 under the condi- 
tion 1A1 5 wloc. 

Saturation equations (41 ) reflect energy conservation 
in the rotating coordinate system and the change in the num- 
ber of magnons in the system as a result of transitions in- 
duced by the rf field. From (41 ) we directly find the follow- 
ing equations for the rates of change of the reciprocal 
temperature and the chemical potential: 

The specific heats E, , E,, n, , and n, here are determined by 

An advantage of this approach is that the specific heats 
E,, ED, n, , and nD of the spin systems which appear in (47) 
can be calculated from the E, spectrum and relations (4)  
and (42). Since the quantities which are actually measured 
experimentally are' the polarizationp(t) and the dipole en- 
ergy of this system, Ed ( t )  = E - n(t)A, we will use (41) to 

p = w, - A, but Bose condensation begins as early as 
p = E* < wo - A, and the approach developed here can no 
longer be taken to analyze the behavior of the spin system. 

We turn now to the question of the steady state reached 
in the course of the saturation of the system. For this purpose 
we consider the case in which the saturation occurs at the 
wing of the NMR line. If the temperature in the steady state 
is such that the condition &, w,, % 1 holds, the magnons are 
primarily in a narrow energy band near the lowest-lying 
state in the magnon spectrum, E*. In the course of the satura- 
tion process, a level shift occurs [see (38) ] as a result of the 
interaction of magnons. When this shift, p, becomes 
equal tow - E* ,  the frequency of the rf field is at the edge of 
the line, and no further saturation of this system can occur. 
We thus find an expression for the steady-state polarization: 

Since the saturation occurs at the edge of the line, i.e., since 
wehavew-&*<w0 --~*=;w,,,thenwehave 1 -ps ,< l .  

5. CALCULATION OFSPECIFIC HEATS 

In this section we will calculate the specific heats E,, 
ED, n,, and nD in the two limiting cases pw,, < 1 and 
pw,,, ) 1. As in the discussion of the saturation equations, 
we carry out all the calculations in the rotating coordinate 
system. 

derive equations which determine the time evolution of these High dipole temperatures (pwlo, 
quantities. The corresponding equations are 

We carry out an expansion in the small parameter 
dp/dt=-2W(A), PEL ( E ~  = E; + A) in expression (4)  for the magnon 

dE,/dt=-NA W (A). 
(49) 

numbers. Within terms on the order of &; we find 

At saturation [under the condition W( A) > 01, the po- nk = - 1  BE^' exp[$ (A-p) I 
exp[B(A-p) 1-1 {exp[p(A-p) I-1)' 

. (51) 
larization decreases monotonically, and at A = w, - w > 0 
the dipole energy of the system also decreases. In this sense 
we can assume that at A > 0 the dipole system cools down. 
This effect is completely analogous to the cooling of the DDI 
reservoir in the theory of saturation at high  temperature^.^ 
Since the dipole energy is proportional to the reciprocal (P) 
of the temperature of the dipole subsystem in the high-tem- 
perature case, under the conditionp > 0 the decrease in Ed is 
accompanied by a decrease in P - I .  At low temperatures, 
the relationship between Ed and P is more complex. 

Another interesting question is the change in the chemi- 
cal potentialp ( t )  in the saturation process according to Eqs. 
(47). If the system is in thermal equilibrium before satura- 
tion begins, we have p (0) = 0 in the laboratory coordinate 
system. When the rf field is turned on, a zero value of the 
chemical potential in the laboratory coordinate system no 
longer corresponds to the equilibrium value. After the rf 
field is applied, the system tends toward a state of thermody- 
namic equilibrium in the rotating coordinate system, in 
which the Hamiltonian does not depend on the time. In this 
rotating coordinate system, the chemical potential is 
ji = p  -w = p  - w, +A, whilepand nkarethesameasin 
the laboratory system. A value ji = 0 would correspond to 

Using 

and also 

exp [P(A-p)l - 1 = 2 / ( 1 - ~ ) ~  exp [B(A-p)I, (53 

we find 

E,='12(l-p) [-PA+ '/3~2w?o,l, (54) 

EB='lz(i-p) ( ' / 8 w ~ 0 c + ~ Z - ~ p ) ,  (55 
n,=-'lzB (I-P), (56) 

ne=1/2(I-p) [A-p-'/,pw ,,I. (57) 

Low dipole temperatures (pw,,, $1) 

For this case we restrict the discussion to a system with 
the simple spectrum in (22). Noting that only the low-lying 
states are excited, we choose the dispersion relation as in 
(25). Switching from a summation to an integration in the 
expression for the total number of magnons, we find 

(58) 

E. B. Fel'dman and A. K. Khitrin 542 542 Sov. Phys. JETP 71 (3), September 1990 



where V is the volume of the sample. Manipulations of the 
integral in (58)  similar to those carried out in Ref. 14 make it 
possible to rewrite (58)  in the simpler form 

where 

and where we have used V =  Nu3. Using (59) ,  we find 

Correspondingly, from the expression for the energy we find 

(63)  

Here we have ignored the energy-level shifts in ( 3 8 ) .  When 
they are taken into account, the second term in (63)  is re- 
placed by A + 3 hE* - 8c. Expression (63)  can be rewrit- 
ten as 

E =  
3 f i  NC 

32n" [ $  ( t )  c]".  
+(A-8c)n.  (64)  

k=l 

Hence 

E,= - 
12 

I6n"[ca ( t )  1% 

1,5+ (A-8c)  /3 ( t )  k 
kals e x ~ [ - ~ p ( t )  1, ( 6 5 )  

k-i 

Eg = 
12 

64(nc)"[B ( t )  ] ' / z  

Z ( 4 p  ( t )  (A-8c)  [p ( t )  k+1,5] k+6p ( t )  k + l 5 )  

We note in conclusion that an analysis under the condi- 
tion w > wo ( A  <O) would be carried out in a completely 
similar way. The quantities /3 and ,u would change sign, 
while the role of&* would be played by the energy of the state 
in which E, has its maximum possible value. 

I '  The chemical potentialp is being considered in the rotating coordinate 
system here. 
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