
Superconductivity in the Hubbard model with strong repulsion, a small number 
of carriers, and a large coordinate number 

V. I. Belinicher 

Institute of Semiconductor Physics, Siberian Branch of the USSR Academy ofsciences, Novosibirsk 
(Submitted 28 September 1989; resubmitted 3 May 1990) 
Zh. Eksp. Teor. Fiz. 98,93 1-955 (September 1990) 

The problem of the superconductivity of a system of electrons on a lattice with strong single-site 
correlations (a system described by the Hubbard Hamiltonian) is studied. In the framework of 
the strong-coupling method special variables are introduced that reduce the Hubbard variables to 
a system of Bose and Fermi operators and random fields. In the case when the occupancy is close 
to one electron per site and each site has a large number of neighbors the Hubbard model reduces 
to a system of weakly interacting electrons (holes) and local spins. Different magnetic phases of 
the system (ferromagnetic, paramagnetic, and antiferromagnetic) are investigated. It is shown 
that the pairing tendency due to electron correlations is suppressed by paramagnetic fluctuations 
and enhanced by antiferromagnetic fluctuations. 

1. INTRODUCTION 

The discovery of high-temperature superconductivity 
in metal-oxide  compound^'^^ has become a powerful stimu- 
lus to the study of nonphonon models of superconductivity. 
The Hubbard and its various generalizations and 
modifications is the most popular model of such a kind. 
There are both objective and subjective reasons for the great 
attention paid by theorists to the Hubbard model. The objec- 
tive reasons are connected with the fact that the Hubbard 
model correctly describes the nature of the dielectric state 
(Mott insulator) in lanthanum and yttrium systems for stoi- 
chiometric compounds, the antiferromagnetic structure of 
their ground state, and the destruction of the antiferromag- 
netism by doping. This makes it natural to seek the causes of 
the superconductivity within the framework of this model, 
without introducing further interactions. Thegubjective rea- 
sons are connected with the fact that the Hubbard model 
offers possibilities for the construction of dynamical approx- 
imation schemes of various kinds."' A definite role has been 
played by Anderson's criticism of the traditional phonon 
model and by his advocacy of the Hubbard model.9 It is now 
difficult to give a list of references to papers in this direction 
that is in any sense complete. 

In the present paper we develop an approach to the 
Hubbard model that is based on the temperature diagram 
technique for the Hubbard operators. The starting point of 
this approach is a realization of Wick's theorem for Hubbard 
operators by means of a representation of the Hubbard oper- 
ators in terms of Bose and Fermi operators and random 
fields with specified correlation properties. Such a realiza- 
tion is obtained for the Hubbard-operator algebra Pl(1, 2) 
for the case of infinite repulsion, and for the algebra P1(2,2) 
for the complete model. In the case of the algebra Pl(1, 2) 
the Hubbard operators are expressed in terms of the Fermi 
operators of the electrons in the lower Hubbard band, the 
Bose operators corresponding to the spin degrees of free- 
dom, and two random fields, corresponding to the spin fluc- 
tuations and charge fluctuations. In the case of the complete 
P1(2, 2) algebra, to these degrees of freedom one adds the 
Fermi operators of the electrons in the upper Hubbard band, 
the exciton Bose operators that take electrons from the lower 
to the upper Hubbard sub-band, and also an appropriate 

random field. The resulting representations of the algebras 
P1( 1, 2) and P1(2,2) make it possible to write the Hamilto- 
nian of the model in terms of the Bose and Fermi operators 
and the random fields in the limit U) t, where Uis the energy 
of the Coulomb repulsion at a site and t is the electron-hop- 
ping integral between neighboring sites. This Hamiltonian is 
the starting point for the analysis of the magnetic structure 
of the ground state and the question of the superconductivi- 
ty. 

This analysis can be carried out when two small param- 
eters are present:p (the number of charge carriers per lattice 
site minus one, i.e., the small number of carriers in the Hub- j 
bard band), and l/z, where z is the number of nearest neigh- 
bors of a given site. It is everywhere assumed that the lattice 
is alternating.'' In the case of a small number of carriers 
(electrons in the upper Hubbard band or holes in the lower 
Hubbard band), the initial Hamiltonian reduces to a system 
of electrons (holes) and local spins at the sites. 

The analysis of the ferromagnetic state of the model is 
the simplest. This state is realized in the Hubbard model for 
1 % p % t / U  and temperatures T<p'/3tz2, and is consistent 
with Nagaoka's theorem." The ferromagnetic state is ener- 
getically favored, since the strong dependence of the disper- 
sion law on the sign of the spin projection leads to strong 
narrowing of one spin sub-band and substantial broadening 
of the other. The bottom of the latter band is lowered, and 
the electrons (holes) at the bottom of the band lower their 
energy. It is this energy which makes the ferromagnetic state 
energetically favored. Indirect exchange between local spins 
via polarization of the charge carriers also reduces the ener- 
gy of the ferromagnetic state. The elementary excitations in 
the ferromagnetic phase are electrons (holes), with the same 
sign of the projection of the spin along the direction of the 
magnetization, and magnons, whose dispersion law satisfies 
Goldstone's theorem. Because of the strong splitting of the 
Fermi surface in the ferromagnetic state, superconductivity 
is not realized in this state for any reasonable mechanism of 
attraction. 

The paramagnetic state is realized at sufficiently high 
temperatures T > ~ ' / ~ t z ~ ,  "under the ferromagnetic region," 
or T 2 zt(t - p U  /2)/U, "above the antiferromagnetic re- 
gion." The elementary excitations are electrons (holes) that 
are degenerate with respect to spin. An important role is 
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played by fluctuations of the local spins, the excitations of 
which propagate in a diffusive In the lower 
Hubbard band the scattering amplitude is positive for elec- 
trons (repulsion) and negative for holes (attraction), while 
in the upper Hubbard band it is the opposite. This fact was 
first obtained in Refs. 6 and 13, and can be interpreted as an 
effective narrowing of the band as the electrons approach 

I each other, increasing the energy of the electrons and lower- 
ing the energy of the holes in the lower Hubbard band. 

The kinematic attraction of the holes makes a discus- 
sion of the question of superconductivity timely. This attrac- 
tion is greater by a factor of U/t than the previously dis- 
cussed attraction due to the superexchange interaction.'"I6 
However, superconductivity against the background of the 
paramagnetic state does not arise: In this case, spin fluctu- 
ations destroy the superconductivity in accordance with the 
Abrikosov-Gor'kov mechanism." This result contradicts 
the assertion made in the sequence of papers Refs. 6,  13, and 
18 that superconductivity appears. The error made in these 
papers is due to an incorrect calculation of the spin correla- 
tor in the paramagnetic phase. 

The antiferromagnetic state is realized for small hole 
concentrations p < t /U and low temperatures 
T <  zt(t - pU/2)/U. In view of the doubling of the lattice 
constant, the volume of the Brillouin zone is halved and the 
number of hole modes becomes equal to four. Two modes are 
spin-degenerate. The kinematic interaction of the holes is 
attractive on the Fermi surface. The exchange of antiferro- 
magnons is stronger and does not lead to suppression of su- 
perconductivity. This picture does not take into account the 
formation of magnetic polar on^,'^.'^ which, for a sufficient- 
ly small ratio t /U, are charge carriers in the antiferromag- 
netic state. Below, we give a quantitative account of the 
physical picture given above. 

2. DIAGRAM TECHNIQUE AND REPRESENTATION OF THE 
HUBBARD OPERATORS 

The Hubbard model describes a system of electrons on a 
lattice, with the Hamiltonian4 

Here c,+, and c,, are the Fermi operators of an electron at the 
nth lattice site and with spin projection a = f 1 / 2 r  t, 1; 
t,,, is the electron-tunneling integral from site n to site n', 
with t,,. = t,,,; A,, = c,+,c,, is the operator of the number 
of electrons at site n with spin projection a; p, = p - owo is 
the spin-dependent chemical potential, where wo is the 
precession frequency of the electron spin in the external 
magnetic field B andp is the intrinsically chemical potential. 
Our task is to develop the strong-coupling method, in which 
the second and third terms in the Hamiltonian ( 1 ) are taken 
into account exactly and the first term can be treated as a 
pert~rbation.~ 

Such a strong-coupling method has been developed ear- 
lier in the theory of magnetism20321 and is based on the intro- 
duction of Hubbard operators and the construction of the 
theory in terms of them. For this, we note that at lattice site n 
therearefourpossiblestates (nu) = InO), Int), Inl), Intl) ,  
where InO) is the state without electrons, [nu) is a state with 
one electron, and In t 4) = Jn2) is the state with two electrons 
at the site. The Hubbard operators, defined as 

X", = lna)(bn(, and the electron operators are easily ex- 
pressed in terms of these: c,, =Xzl-XA2, 
c,, =xz1 +XA2, c,: = x p - X i ' ,  c,'; = x p + x i l ,  
A,, = X zu + X iZ. Here the operators X T ,  X F ,  X zz, and 
X2," on different sites anticommute, and the other Hubbard 
operators commute. In terms of the Hubbard operators, the 
Hamiltonian ( 1 ) has the form 

For U s  t the contribution of the operators X ;  - " and 
X; u2 is small in zeroth order and below will be taken into 
account in perturbation theory in the parameter t /U. In the 
construction of the temperature Green functions from the 
initial operators c,f, and c,.,, one can express the latter in 
terms of the Hubbard operators X F ,  XT ,  X 2,", and X and 
then average over the bare density matrix 
Po = exp( - [SB:&Y0) together with the temperature S 
matrix 

B 

whereP= l/Tis the inverse temperature, r is the imaginary 
time, and T, is a r-ordered e~ponential.'~ As a result, the 
need arises to calculate the following averages: 

The method of calculating such averages is usually called 
Wick's theorem for Hubbard  operator^.^ To formulate 
Wick's theorem in the case of the operator algebra 

(here the plus sign is for Hubbard Fermi operators, and the 
minus sign for Hubbard Bose operators), we order the in- 
dices a, b = 1,2, ..., N in some way that makes it possible to 
divide the algebra of the X operators into three subalge- 
bras-a Cartan subalgebra XO, including all the diagonal 
Bose operators X r, a subalgebra X - , including the opera- 
tors X ", for a < b, and a subalgebra X +, including the oper- 
ators X ", for a > b. We note that X 0  and X * are graded Lie 
subalgebras with respect to the operations of commutation 
and anticommutation, and the following relations are ful- 
filled: 

The division into the subalgebras X + and X - is not unique 
and depends on the way in which the indices a and b are 
ordered. 

Using the commutation relations between the elements 
of the subalgebra X - and the elements of the complete alge- 
bra X, we can reduce the average (3)  to the trace of just the 
elements of the Cartan subalgebra X O (Ref. 4) : 

Here the parameters yo are determined by the expansion of 

520 Sov. Phys. JETP 71 (3), September 1990 V. I. Belinicher 520 



the Hamiltonian in the elements of the Cartan subalgebra: 

For the single-site averages lal,.,ap(y, ,..., y,) from (6)  it is 
easy to obtain the recursion relation 

1; ..., a p ( ~ ) = ~ ~ ~ ~ . ~ , O p ~ , ~ ~ ~ p f ~ ~ ~ . ' p - i ~ a p ,  (8) 

and the quantities I, are determined as follows: 

where F(y),  obviously, is the thermodynamic potential. 
From the relations (8)  and (9)  there follows the dia- 

grammatic "cross techniquew4 for calculating the averages 
l,...,nFp (YI ,..-,YN ) (6): 

The examples (10)-(13) show that the averages 
I~lal,,,,,nBp (y) are calculated by expanding in the irreducible 
cumulants KnIaI  ,...,,,+,, and the irreducible cumulant has the 
very simple form 

K;iat, n a a d  (y) =&a,, n,daF(y)/a~m. . . dyes (14) 

It may be said that, when they are averaged with the 
bare density matrix p,, the diagonal Hubbard operators be- 
have like random fields whose irreducible cumulants are 
specified by the relations (14). Thus, the Wick 

that makes it possible to calculate the aver- 
ages Y, ( 3 )  has been completely formulated.*' At this stage, 
however, the diagrammatic rules of correspondence for the 
analytical expressions cannot be formulated simply. To for- 
mulate such rules we shall express the Hubbard operators 
XEb in terms of the Bose operators, Fermi operators, and 
random fields whose averages are specified by irreducible 
cumulants of the type ( 14). Such a representation for the 
spin operators in the group SU( 2) was obtained in Ref. 2 1. 

The idea of the derivation of such a representation is the 
following. For the validity of the Wick theorem the explicit 
form of the X operators is not important. Only the correct 
commutation relations between the operators of the subalge- 
braX - and the elements of the complete algebrax, and also 
the correct values of the averages of products of elements of 
the Cartan subalgebra X 0  over the bare density matrix po, 
are important. Following the example of the group SU(2), 
as the elements of the subalgebra X - we must choose simply 

Bose or Fermi operators with certain complications. As the 
elements of the subalgebra X 0  we must choose expressions of 
the particle-number type (bilinear in the Bose and Fermi 
operators), while the elements of the subalgebra X + should 
be obtained from the condition that the algebra X(4) be 
closed. This program can indeed be realized. 

For U / t +  w and when the occupancy at each lattice 
site is less than unity, only the three states InO), In t ) ,  and 
(n l )  are important and it is necessary to construct a repre- 
sentation of the algebra P1( 1,2).  The representation has the 
following form in terms of the spinor field $,, $: , the Bose 
field a + , a, and the random fields @, R: 

Xt++X++=N= (I#+$) +Q, Xoo=l-N, 
(15a) 

Here N is the electron-number operator, and the quantities 
ST =sf + S F ,  s;= - i(s; - S; ), and ST= s; form the 
total-spin vector, which can be written in the form 

where a are the Pauli matrices and the operators s are ex- 
pressed in terms of a  +, a, and @ by a relation analogous to 
that obtained in Ref. 21 for the group SU(2): 

For the operators XO" and X* we have 

To calculate the cumulants of the random fields R and 
@ it is sufficient to give the thermodynamic potential F(x, 
y ) ,  wherex=@=w, andy=  -po,=w,: 

[ I+ exp (x+y/2) + exp (x- y/2) ] (1-exp y) 
[ ISexp (x+y/2) I [ 1 + exp (x- y/2) 1 

and the cumulants for the fields R and @ are calculated from 
formula ( 14) if it is assumed that x is conjugate to R and y to 
@. The expression in ( 16) for the partition function is easily 
obtained from the condition that the averages of the opera- 
tors N and s;, written in terms of the operators X '' and X ", 
coincide with their averages written in terms of the operators 
$: $, and a + a  and the random fields R and @. The fields R 
and @ incorporate the difference of the averages (over the 
bare density matrix po ) of X IT  - X ' ' and $ + $ for the oper- 
ator N and of (XIT -X1') /2  and (q:$c 
- $,+ $, )/2 + a  + a  for s;. The relations ( 15) realize a cer- 

tain non-Hermitian representation of the algebra Pl(1, 2) 
for any values of the fields R and @, and should not be re- 
garded as operator identities, defined in some Hilbert space, 
but only as relations that permit one to calculate Green func- 
tions in the framework of the temperature diagram tech- 
nique. The fluctuation properties of the fields R and @ en- 
sure the correct values of the averages in the Cartan 
subalgebra X O. 

In the case of the complete Hubbard model for U # co it 
is possible to construct for the complete algebra Pl(2, 2) a 
representation that contains [in addition to the operators in 
the case of the algebra P1( 1,2) ] Fermi operators g, ,+ , g,, of 
electrons in the upper Hubbard band, exciton operators that 
carry electrons from the lower to the upper Hubbard band 
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and vice versa, and also the random field E that controls the 
number of electrons in the upper Hubbard sub-band. A rep- 
resentation of the algebra Pl(2, 2)  is given in Appendix A. 

3.THE EFFECTIVE HAMlLTONlAN OFTHE MODEL.THE CASE 
OF SMALL OCCUPANCY 

For U% t the operators X F, X F, and X z2 in the Hamil- 
tonian (2)  can be omitted, since the states ln2) are empty. 
Substituting the representation ( 15) for the X operators into 
(2), we obtain 

The Hamiltonian ( 17) describes a system of electrons 
with four-particle interaction, interacting with a random 
field and a system of local spins s ( 1%). We note that the 
Hamiltonian ( 17b) is non-Hermitian. However, there is no 
inconsistency in this. It specifies the rules for calculations in 
the framework of the diagram technique, and must not be 
regarded as an operator defined in a certain Hilbert space. In 
the case when the number of electrons at each site is small 
and the temperature Tis small in comparison with the chem- 
ical potential, further simplifications are possible. We note 
that the magnitude of the chemical potential is fixed by the 
condition (see Fig. 1 ) 

where the summation over k runs over the Brillouin zone, t ,  
is the Fourier transform of t,,. , and the last of the three 
relations ( 18) is the definition of the number z of neighbors. 
In the case when T, w, ( Ip 1 with p < 0 (see Fig. 1 ), the 
thermodynamic potential F ( 16) is equal to In ( 1 - exp y) ,  
does not depend on the parameter x ,  and differs in sign from 
the free energy of an oscillator with frequency w,. It is ob- 
vious that in this situation all the cumulants of the field are 
equal to zero, and R can also be set equal to zero. 

One can also convince oneself that the spin-spin s-d in- 

FIG. 1. Electron-dispersion law E, = ct,; c is a constant of order unity 
and the horizontal lines are the position of the chemical potential; 
,u - t,,, = E, is the Fermi energy for ,u < 0 (the electron case), and 
t,,, - p  = E, is the Fermi energy for ,u > O  (the hole case). Here, a )  
to <O, t,,, = t,,t,,, = t,,,;b) to >O, t,,, = tLR, tmrr = t o ,  wherek, isthe 
momentum at the Brillouin-zone boundary. In the case of hopping to 
nearest-neighbor sites the cases (a)  and (b) can be reduced to each other 
by a redefinition of the quasimomentum, and therefore the article will 
consider the case (b)  with to > 0. 

teraction [the last term in Pin, (17b)l does not have any 
effect on the dynamics of the electrons and can be omitted. 
In fact, cumulants of the field Q and loops of Bose operators 
a + a  always appear together: 

and cancel each other. The Hamiltonian Rint (17b) is re- 
duced in this case to the form 

and describes a system of electrons with dispersion law 
t ,  - p. To convince ourselves of this, we shall consider the 
Green function (GF)  of the initial electron operators c;, 

G,, ( i z ,  k) = j erp (-iEr-ikr.) Goor (7, n) dr .  (21b) 

Here r is the temperature time, rn is the position vector of the 
cell with label n, c,+, (T) and c,, (r) are operators in the in- 
teraction picture, and S, is the temperature S - m a t r i ~ . ~ ~  By 
replacing the operators c,+, and c,, by the X operators X lj" 
and X c (omitting X z2 and X F) and replacing X lj" and X 
by the operators $,+, and $,, in accordance with the relation 
( 15d) with the contributions of and s omitted, we obtain 
in place of (21a) the expression 

On the basis of Eq. (22) for the G F  G,. (7, n) we can 
construct a perturbation-theory series in Fin, (20) and per- 
form the classification and summation of the diagrams. The 
classification of the diagrams is performed naturally using 
the principle of one-particle irreducibility, i.e., by distin- 
guishing blocks that cannot be separated by cutting one $- 
field line: 

Here E, and 8, are the end operator and mass operator, and 
q = (il, k)  is the four-momentum. The sequence (23) is 
easily summed and leads to the following representation for 
the GF  G,: 

This representation differs from the usual Dyson representa- 
tion by the presence of the end operator E,. The poles of the 
G F  G, are determined by the poles of the propagator g,, 
which coincides with the G F  of the operators $ + , $. Conse- 
quently, the poles of g, determine the excitation spectrum, 
and the end operator E, specifies the residue of the G F  of the 
initial fields c,+, c,. In lowest order of perturbation theory 
the diagrams for the operators 8, and E, have the form 
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F ( x ,  y)=-x+ln{[2 ch(y/2) ] (1-exp y)) .  (28) 

It follows from the expression (28) for F that the field fl 
does not fluctuate and is equal to - 1, while the correlators 
of the field coincide exactly with the corresponding corre- 
lators for spins = 1/2. Consequently, we can write the effec- 
tive Hamiltonian in the lower Hubbard band when it is al- 
most completely filled in terms of the hole operators h ,t and 

h n  

where the cross denotes the hopping integral t,, a circle cor- 
responds to the end vertex, which is equal to 1, and a point 
corresponds to the bare four-fermion vertex 

and the operators of spins s for s = 1/2: 

It follows from the construction given above that the 
electron-dispersion law E, in lowest order both in the inter- 
action and in the parameter p (the number of electrons per 
unit cell) has the form t, - p.  The electron-scattering am- 
plitude in lowest order inp is determined by the sequence of 
diagrams 

The last term in Pi,, (30b) is a correction of order t /U to 
the first contribution and is a part of the Anderson superex- 
change25 that is important for the establishment of antifer- 
romagnetic order when the occupancy is close to unity. It is 
derived in Appendix A. 

The principal properties of the ferromagnetic state, and 
the region of temperature and hole concentration (on the 
low-concentration side) in which it is realized, can be estab- 
lished in the self-consistent field approximation, which is 
valid in the parameter l/z. We shall assume that the ferro- 
magnetic state is realized, and determine in this state the 
spectrum of the holes and magnons and also the correlators 
of the longitudinal components of the spin. We then find the 
free energy of the magnetic state and determine the region in 
which it exists. The hole-magnon Hamiltonian is obtained 
from (30b), if the spin operators are replaced by the Bose 
operators a +, a and the random field @ in accordance with 
(15c) (Ref. 21 ). As T-0 the quantity @-, - 1/2, and we 
obtain the well known Dyson-Maleev representation. The 
Feynman diagrams for the mass operator 8, of the holes, the 
mass operator P, of the magnons, and the end operator E, of 
the holes have the form 

In leading order in l/z the diagram (26a) is the leading dia- 
gram and the scattering amplitude is given by the relation 
(25). The smallness of the diagram (26b) is easily estab- 
lished by performing the summation over the frequencies, 
expanding the denominator in a series in t,, and tk2 ,  where k, 
and k, are the momenta of the intermediate lines, and inte- 
grating over the loop momentum using the relation ( 18). We 
note that we can sum the series (26) in explicit form, obtain- 
ing for the scattering amplitude F(E, k )  

Here E = E,, + E , ~  = ck3 + E , ~  and k = k,  + k, = k, + k, 
are the energy and momentum of the colliding particles. The 
relations obtained fully determine the character of the state 
in the case of small occupancy and strong attraction: The 
electron gas is paramagnetic, and the dispersion law and 
scattering amplitude ark of order t and do not depend on U. 
These results can also be obtained in the gas approximation 
by other, more direct methods.24 

4.THE FERROMAGNETIC STATE FOR OCCUPANCY CLOSE 
TO UNITY 

The Hubbard Hamiltonian ( 1 ) possesses electron-hole 
symmetry: It preserves its functional form when the electron 
operators are replaced by hole operators. After the Mott 
transition (the formation of two Hubbard sub-bands and a 
forbidden band between them) the electron-hole symmetry 
is preserved: There is complete similarity between the prop- 
erties of electrons in the upper Hubbard band and those of 
holes in the lower Hubbard sub-band. For definiteness, we 
shall discuss holes in the lower Hubbard sub-band. The 
chemical potentialp in this case is positive, and in the case of 
importance to us (T(p, w, (2p) the expression for the 
thermodynamic potential F is simplified: 

The end operator E, relates the Green functions of the initial 
electrons ( c;, c,,) to the G F  of the Hubbard holes: 

523 Sov. Phys. JETP 71 (3), September 1990 



The straight lines in (3 1 ) correspond to holes, the wavy lines 
to magnons, and the dashed lines to longitudinal spin corre- 
lators, including the cross. These correlators are equal to a 
sum of magnon loops and the corresponding correlators of 
the field @, denoted by a shaded circle: 

Dressed correlators of the field @ are obtained from the bare 
correlator by means of the following perturbation-theory se- 
ries: 

Here empty circles with the appropriate number of dashed 
lines denote bare correlators of the field @. Analogous series 
can be written for higher-order correlators of the field @. 

In lowest order in l/z it is sufficient to sum the sequence 
(34a) and the analogous sequences for higher correlators. 
As a result of summation of the Taylor series for the dressed 
correlators of the field @ one can use Eq. ( 14) with the ther- 
modynamic potential determined by Eq. (28), if the bare 
frequency w, is replaced by the renormalized frequency 

here p,,? are the Fermi distribution functions of holes with 
spin projection + 1/2, and the quantity y in this case be- 
comes equal to - &,. The quantity x changes analogously 
(x-Pp, ), wherep, is the renormalized chemical potential 

the field f2 in this case remains equal to - 1. We can now let 
o, -0 and obtain the following self-consistent equation for 
the average value of the spin s: 

Here m is the average number of magnons at the given tem- 
perature, and m, is the Bose distribution function of the 
magnons. In order to "close" the relations (35) and (37), 
we supplement them with the dispersion laws E; and w, of 
the holes and magnons, respectively:' 

These relations are valid in the leading order in l/z and (in 
the case of the expression for w, ) in the limit of k small in 
comparison with the Fermi momentum kF of the holes. It 
follows from (38b) that Goldstone's theorem is fulfilled for 
the magnon-dispersion law. The hole-dispersion law E: de- 
pends strongly on the sign of the spin projection, so that, at 
reasonable temperatures, only holes with one projection are 
excited. As T-0 the number of magnons tends to zero and 
@+ - 1/2. In leading order in p we have E,,? = - t, + ,u 
and E, = p ,  and the end operator E,+ = - 1 while 
E; = 0. Consequently, at T = 0 in leading order in p, a 
contribution is made to the Green functions of the physical 
electrons by only one type of hole, i.e., there is only one pole. 
The temperature of the transition to the ferromagnetic state 
can be found by using the fact that, for p <  1, the principal 
contribution to all the integrals is given by momenta k that 
are small in comparison with the Debye momentum r/a ,  
where a is the lattice constant. In the case t ,  > 0 we have 

and the Curie temperature can be found from the self-consis- 
tency condition (37). For this, we note that when m in the 
dispersion law of the holes is calculated in leading order in 
l/z it is necessary to retain only the first diagram of (31b); 
then this condition can be written as 

By making use of the hole-dispersion law (38a), we obtain 
for the Curie temperature 

Here EF = zt - ,u is the position of the Fermi surface of the 
holes, reckoned from the bottom of the band; the hole con- 
centration is a function of E,: p = (EF/t) 3 /2 /3~2.  

We shall discuss the question of the magnetic energy of 
the ground state. The energy contribution linear in the hole 
concentration is determined by the following two diagrams: 

and has the analytical form 

Here the first contribution is the kinetic energy of the holes, 
and the second is the energy of the indirect exchange interac- 
tion of the holes with each other. At low temperatures the 
second contribution is the main one, and the energy gain of 
the ferromagnetic state is equal to z2(EFt) '/2/16r2 per unit 
cell of the crystal. The interaction of the holes is due to the 
second term in the Hamiltonian (30b). Only holes with op- 
posite spin projections interact, and the interaction is attrac- 
tive. However, because of the strong splitting of the Fermi 
surface, superconductivity cannot be realized in the ferro- 
magnetic state. 
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5. THE PARAMAGNETIC STATE OFTHE HOLE SUBSYSTEM 

The paramagnetic state is realized at sufficiently high 
temperatures T> Tc = z2(E,t) ' " / 2 ~ ~  above the ferromag- 
netic region, or at T> zt(t - p U  /2)/U above the antiferro- 
magnetic region. In this state the local spins s, at the sites are 
disordered ( = O), and the structure of the paramagnetic 
state can be investigated in the leading approximation in the 
parameter l/z. It follows from the Hamiltonian (30b) that 
the hole-dispersion law has the form 

and Eq is equal to - 1/2 - p. To find the spin correlators in 
the paramagnetic phase one can develop a diagram tech- 
nique for expanding the averages (s:, ... s:, ... s::) in irreduci- 
ble cumulants, as in the expansion (12) for averages from 
the Cartan subalgebra. In the given case there are no simple 
formulas for the bare irreducible cumulants, but the diagram 
technique itself works fully. In particular, the lowest bare 
correlators for spin 1/2 are equal to 

where i, j, I, and k are vector indices, and n, m, p, and r are 
site labels. All the correlators are static, i.e., proportional to 
S(w, )...S(w, ), where w, ,..., w, are the frequencies flowing 
into the lines. Consequently, effects of the spin-diffusion 
type1'.'* are absent in the framework of this cumulant dia- 
gram technique and are nonperturbative effects. 

The finite width of the spin correlators does not affect a 
number of phenomena (such as the scattering of holes by 
paramagnetic fluctuations) that are determined by integrals 
over the frequency. The usefulness of the cumulant diagram 
technique is connected with the fact that the contribution of 
higher correlators to integral quantities of the mass-operator 
type is small in the parameter l/z. In the calculation of the 
pair spin correlator K t it is sufficient to sum the sequence of 
the chain diagrams, which is of leading order in the param- 
eter l/z: 

where the polarization operator II, has the well known form 

The expressions (45), (46) for K g display a characteristic 
pole for k = 0 at the temperature of the transition to the 
ferromagnetic state. If we take into account the Anderson 
superexchange [the last term in the Hamiltonian (30b) I ,  
the polarization operator II, acquires an additional contri- 

bution II?, equal to 

ILaf =)l exp (ikr,) It,,' I IU. 

On the boundary of the Brillouin zone, exp(ik.r, ) = - 1, 
and for p = 0 the correlator K i  possesses a pole at 
T = zt */U. This pole corresponds to a transition to the anti- 
ferromagnetic state with increase of the lattice constant. The 
pole of the spin correlator K,  at k = 0 determines the phase- 
transition line between the paramagnetic and the ferromag- 
netic phase: 

Tp,, ( p )  = - ~ t ~ / U + 3 ' ~ ~ ~ p ' ~ ~ t / 4 n ' ' ~ ,  (47a 

while the pole of the spin correlator Kk at k = a( 1, 1, 1 ) / a  
determines the phase-transition line between the paramag- 
netic and the antiferromagnetic phase: 

T,, ( p )  =zt(t-pU12) lU. (47b 

The phase-transition lines T,, (p) and TpSof (p)  are depicted 
in Fig. 2. 

The hole-dispersion law E; (43) and the spin correla- 
tor K :  (45)-(47) determine the principal excitations in the 
paramagnetic phase, and we can turn to the discussion of the 
question of superconductivity. The bare amplitude for scat- 
tering of holes with opposite spin projections is determined 
by the relation (25). It is negative for holes, corresponding 
to attraction. This fact was first obtained in Refs. 6 and 13, 
and can be interpreted as an effective narrowing of the band 
as the electrons approach each other, so that the energy of 
the electrons is increased and the energy of the holes is 
lowered. The kinematic attraction (25) makes a discussion 
of the question of superconductivity timely. The attraction is 
renormalized slightly in leading order in l/z on account of 
the summation of the diagrams (25), and is determined by 
the relation (27), but the fact of the attraction is not changed 
by this. We note that the kinematic attraction (25) is greater 
by a factor of U/t than the previously discussed attraction 
arising from the superexchange intera~t ion. '~"~ 

In discussion of the possibility of the realization of su- 

FIG. 2. Lines of phase transitions between the paramagnetic and the anti- 
ferromagnetic phase: T,,,,.(p) is the series of curves 1-4, and Tp,f is the 
series of curves 1 ' 4 ' .  The solid, dotted, dashed-dotted, and dashed curves 
correspond to different values of the ratio t / U ,  equal to 0.2,O. 15,O. 1, and 
0.05, respectively. The hole concentration per lattice site is plotted along 
the horizontal axis, and the temperature in units of zt 2 / U  is plotted along 
the vertical axis. 
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perconductivity it is necessary first to decide whether the 
superconductivity is formed on account of Bose condensa- 
tion of local pairs or whether a BCS-type state with anoma- 
lous averages is realized. The analysis of the poles of the 
scattering amplitude (27) for E, = - t, + p and 
k = k, + k, = 0 can be reduced easily to the analysis of the 
roots of the equation 

herep(&) is the spectral density of states. Equation (48) is 
easily reduced to an algebraic equation for simple models of 
the density of states: p ( ~ )  = 1/2t, or 
p ( ~ )  = 3( t  - ~ ~ ) / 4 t  A. One can convince oneself that in 
each case there is one root for E - 2p, equal to 0.46t, or 
0.43t0, respectively, which corresponds to a resonance in the 
hole conduction band. There are no bound states below the 
bottom of the hole band, so that local pairs do not arise. 

To analyze the possibility that a superconducting state 
of the BCS type is realized, we shall consider the system of 
Gor'kov equations26 for the normal and the anomalous 
Green functions of the initial Fermi operators c;, c,,. By 
means of the relations (15d) and (29) the Green functions 
of the operators c;, c,, can be reduced to Green functions of 
the operators h z,  h,,. It is convenient to make use of the 
Nambu formalism,27 introducing two-component field op- 
erators C, = (c,, ,c,+; ), C , f  = (c; ,c,, ) for the physical 
electrons and H, = (h,, ,h ,iI ), H ,+ = (h 2 ,h,, ) for our 
holes. Introducing into the Hamiltonian 2Y ( 1 ) the anoma- 
lous terms c+c,  cc and defining matrix Green functions in 
terms of operators C C ,+ 'by relations of the type (2 1 ) , we 
can use E^qs.'(lSd) and (29) to express the matrix Green 
function G, of the initial fields c, in terms of the matrix 
Green function 8, of the fields H, by means of the matrix 
end operators: 

The expressions given above for the end operators are ob- 
tained for p <  1 in leading order in l/z, i.e., in the leading 
loop approximation.,$ follows from the relations (49) that 
the Green function G, of the physical electrons is propor- 
tional to the Green function 8, of our holes, and the question 
of the superconductivity can be resolved in terms of the hole 
Green function 8,. We note that the Green functions F, and 
F,+ are mutually adjoint, whereas the Green functions f, 
andf; satisfy the simple relation 

The hole Green functions 8, satisfy the usual (in the 
theory of superconductivity) matrix Dyson equation 

here c7, is a Pauli matrix. In lowest o r d e ~ i n p  and l/z there 
are two diagrams for the mass operator 8,: 

The first diagram in (52) gives the correction of order p to 
the hole-dispersion law and contains the kinematic attrac- 
tion of holes that stimulates the appearance of superconduc- 
tivity. The second diagram in (52) describes the scattering 
of holes by paramagnetic spin fluctuations. This interaction 
is analogous to the scattering by paramagnetic impurities 
that was considered by Abrikosov and Gor'kov," which de- 
stroykthe superconductivity. Our task is to solve Eq. (5 1 ) 
with 8, (52) and to elucidate the condition for the appear- 
a n F  of superconductivity. For this we give the explicit form 
of8,  (52): 

here Z:,P are the normal mass operators and 8,' are the 
anomalous mass operators. Each of the mass operators Z 
and 8 is equal to a sum of a kinematic and a spin contribu- 
tion ( Z  = Zk + ZB and 8 = €Ik + W), which have the form 

E'k' 

&'k' p'k' 

H e r e e m  = (g,, + g,  - , )/2, and K, is the static spin corre- 
lator (45). Solving the algebraic equation (5 1 ) , we obtain an 
expression for the function 8, in terms of the masso'perators: 

By substituting the expression (55) for the GF  8, and Eqs. 
(54) for the mass operator, we obtain a closed system of 
equations for the mass operator and for elucidation of the 
possibility of superconducting solutions. Remaining at the 
qualitative level, we can make use of the criterion of Ref. 17 
for the existence of superconductivity: The superconducting 
gap A: with neglect of spin fluctuations should be greater 
than the width fir, (of the energy level at the Fermi surface) 
due to electron scattering by spin fluctuations. For this we 
find the superconducting gap A: = (8; '8; )I/,, where 
8; are the anomalous kinematic mass operators at zero 
momentum. Omitting the mass operator 2;" in the expres- 
sion (55) for f ,' , substituting f ,' into the relation (54b), 
summing over the frequencies 6, and using the smallness of 
the Fermi momentum k ,  in comparison with the momen- 
tum r / a  at the Brillouin-zone boundary, we obtain the BCS 
self-consistency condition for the 

Confining ourselves to the case of zero temperature, we 
obtain 

This integral over E is calculated by dividing the range into 
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two regions t, - E 5 2ZF and t, - E> 2BF. In the first region 
the spectral density of states p ( ~ )  is equal to 
[ (zt - ~ ) / t  1 "2/4.~2t, while in the second it depends on the 
chosen model of the density of states. Performing the inte- 
gration over the first region and replacing the contribution 
of the second by a constant, we obtain 

A.O=EF exP [-ci/top (to-2EF) ] =EF exp [-c,(t/,!j',)'"]. (58) 

Here c, and c, are constants of order unity. The spin-relaxa- 
tion frequency T, is determined by the imaginary part of the 
mass operator for i< = E~ and has the form 

Using the smallness of the Fermi momentum (k,a 4 1 ), we 
obtain for T, the following integral representation: 

For U/t- W ,  when the paramagnetic state is above the fer- 
romagnetic region, the integral in Eq. (60) is strictly greater 
than unity. For a certain finite value of U/t, as follows from 
the diagrams of Fig. 2, the parameter zt ,/UT cannot be 
greater than 2 and the integral (60) cannot be greater than 
1/3. Consequently, 

The other contributions to the mass operator (52) are small 
on the Fermi surface in the parametersp and T/z2t in com- 
parison with those taken into account. 

Comparing T, (60) and A: (58), it is easy to arrive at 
the conclusion that T, %A:, i.e., that the spin fluctuations 
destroy the superconductivity. This result contradicts the 
assertion in the sequence of papers Refs. 6, 13, and 18 that 
superconductivity is realized in the paramagnetic phase on 
account of the kinematic attraction. In these papers the spin 
correlator in the paramagnetic phase was calculated incor- 
rectly: The contribution of the fluctuations of the local spins 
was omitted and a contribution to the electron spin fluctu- 
ations that is small in the parameter p was taken into ac- 
count, leading to the conclusion that spin fluctuations are 
suppressed at T&,. The spin-correlator width due to the 
flipping of a local spin by holes has order of magnitude 
4z2ZF~ / r3 t .  Despite the fact that Z, < fir,, the renormal- 
ization of the interaction vertices is small in the parametersp 
and l/z, and can be disregarded in the rigorous self-consis- 
tent solution.(given in Appendix B) of Eqs. (54) and (55) in 
the strong-coupling region. 

6. THE ANTIFERROMAGNETIC STATE FOR OCCUPANCY 
CLOSE TO UNITY 

The antiferromagnetic state is realized for low hole con- 
centrations p < t / U  and low temperatures TSzt  '/U. The 
physical reason for the antiferromagnetism lies in Anderson 
superexchange;,$ the idea of such superexchange was first 
put forward by Kramers in the 1930's (Ref. 19). As follows 
from the calculation given in Appendix A, the reason for the 

superexchange lies in virtual transitions of electrons from 
the almost filled lower Hubbard band to the upper band on 
account of the s-d interaction of the spin of the electrons with 
local spins at the sites. 

First we shall describe qualitative ideas about the na- 
ture of the charge carriers in the antiferromagnetic state for 
t ( U. Because of the doubling of the lattice constant and the 
halving of the volume of the Brillouin zone, two hole bands, 
degenerate with respect to the spin projection, arise. The 
width of these bands is substantially smaller than the width 
of the bands in the ferromagnetic and paramagnetic phases. 
In fact, hopping of a hole to a nearest-neighbor site is possi- 
ble only on account of quantum fluctuations of the spin at 
that site, while hopping to the next sites within the same 
magnetic sublattice has a substantially lower probability 
than hopping to a nearest-neighbor site in the paramagnetic 
or ferromagnetic phase. 

The narrowing of the hole band in the antiferromagnet- 
ic phase leads to the formation, from the hole, of a magnetic 
polaron'5s'9 for t<  U. The formation of a ferromagnetic re- 
gion around the hole leads to a loss of superexchange energy 
of the order of t  '/U to the binding, but at the same time the 
hole gains potential energy on account of the broadening of 
its band. One can convince oneself that it is advantageous for 
two holes to form a ferromagnetic pocket. If we disregard the 
Coulomb repulsion of the holes, they all gather into one fer- 
romagnetic droplet. When the Coulomb repulsion is taken 
into account the droplet size is finite, but the droplets form a 
lattice that is pinned to the impurities, and the system is an 
ins~la tor . '~  The situation when the droplets each consist of 
only two holes, and form a Bose condensate, is exotic. 

In this section we shall discuss the question of the possi- 
bility of superconductivity of "bare" holes, not surrounded 
by a ferromagnetic region. Such holes can exist for a not too 
small ratio t /U. We shall confine ourselves to the case when 
the temperature T is equal to zero. The starting point is the 
Hamiltonian (30) for the hole-spin system. Assuming the 
lattice to be alternating," we determine the state of the spin 
subsystem. For sublattice 1 we shall use the representation 
( 15c), and for sublattice 2 we shall use the analogous repre- 
sentation with the axis of quantization in the opposite direc- 
tion: 

here a,+, a , ,  a;, and a, are Bose operators. At T = 0 we 
have Q ,  = Q2 = - 1/2 and we obtain an effective Bose 
Hamiltonian, the quadratic part of which has the form 

Here TaB (k)  is the Fourier transform of the Anderson su- 
perexchange: 

m 

x exp [ikr,+ike, (a+) a/2], (63) 

where r, are vectors of elementary translations of the anti- 
ferromagnetic crystal; the indices a, 0 = f 1 label the mag- 
netic sublattices; e, is the unit vector in the direction 
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between the two sites in the unit cell; 
Tk = TII (k )  - TI1 (0) + [TI ,-  (0) + T- ,,, (0)] /2  and 
P k  = [TI,- 1 (k )  + T p  1.1 (k)]/2. 

The Hamiltonian (62) can be diagonalized by means of 
the u, v transformation4 

where c,, c,,? , b, , and b ,,? are Bose creation and annihilation 
operators for antimagnons. The coefficients u, and v, satisfy 
the relation u: - u: = 1 and have the form 

The antimagnons b, c possess the same dispersion law w, 
which, for small k, has an acoustic character: 

In order to find the dispersion law of the holes and their 
wave functions in the antiferromagnetic state, we go over to 
the self-consistent field approximation in respect of the spins 
s,. For this it is necessary to find the average value of the 
zeroth component of the spin at a site: 

Substituting SO (67) into the Hamiltonian (30), we obtain 
the quadratic Hamiltonian of the holes: 

Here taa (k )  is determined by the relation (63), if 4 1 t,,. I '/U 
is replaced by t,,. ; h ,+,, and hka, are hole wave functions 
with spin projection a a t  site a in the unit cell. From (68) it is 
easy to find the hole-dispersion law E * (k )  for arbitrary 
t,(k). We shall confine ourselves to the case 
Itll ( k )  1 4 It,, - ,  ( k )  (/z, i.e., hopping to a nearest-neighbor 
site is dominant. In this case, for the dispersion law E; we 
have 

~ r * = * q ~ l t k l ,  t k ~ t ~ , - ~  (k) ,  q= (1/4z)'". (69) 

The hole wave functions e: (k) ,  where a i s  the spin pro- 
jection and Y = + 1 labels the solutions, have the form 

here E: is the solution of the conjugate problem; the spin 
projection a is the quantum number that labels the solutions; 
q, is the phase of the matrix element t,. Using the hole wave 
functions (70), we can easily obtain the effective interaction 
Hamiltonian for the hole operators pzl and p:, : 

where the matrices A,  B, C and D have the form 

It follows from the Hamiltonian (7 1 ) that holes from 
the lower band attract each other, while holes from the up- 
per band repel each other. Here there is a strong interaction 
mixing the hole bands. To answer the question of the sign 
and magnitude of the interaction on the Fermi surface it is 
necessary to solve the equations of the ladder approximation 
for the scattering amplitude TE$$2k4: 

Taly,, f 8 

T;;~P:+, = i;taa" [6a,@6.0 + Jl 
k', k-L ; k g ,  

,+ E - 8;: - 

here k = k ,  + k , = k 2 + k 4 ;  E=E;, +&l3=&f2+~l4 ,  
~aY.m = 

k,k, vp2(ltkllAaflByS+Itk,1DapCyS)/4 is the Born 
scattering amplitude. 

It is natural to seek the solution of Eq. (73) in the form 
Tklk3;k2k4 = Fklk3 U(k, E) ,  where summation over index 
pairs ay is assumed. For Uwe obtain the following solution: 

and the matter reduces to the inversion of a 4 x 4  matrix, 
which does not present a problem. The poles of U(k, E) give 
the spectrum of the bound states, and one can convince one- 
self that i f p ( ~ )  = const, E = + 0.834v2t,,, and the bottom 
of the band corresponds to Em,, = - v2to, then bound 
states of holes are absent, i.e., the situation is analogous to 
the paramagnetic case. 

For simplicity, we shall not give the complete expres- 
sion for the scattering amplitude, but confine ourselves to 
the case k = 0, E = 0: 

i.e., T does not depend on the index y. It follows from (73) 
that the scattering amplitude of holes in the lower band is 
positive, but the force of attraction is suppressed by a factor 
of 2v4 = 1/22 in comparison with that for the bare Hamilto- 
nian (71). 

To answer the question of the sign of the total interac- 
tion at the Fermi surface, it is necessary to consider the sign 
and magnitude of the interaction due to the exchange of anti- 
magnons. It has been known for a long timeZs that the ex- 
change of antimagnons induces repulsion in an s state and 
attraction in a p state. Our situation differs from the usual 
situation in that the initial Hamiltonian (30) is non-Hermi- 
tian, and therefore a separate analysis is required. Using the 
hole wave functions (70), we obtain from the Hamiltonian 
(30) the following spin-hole Hamiltonian for the holes in the 
lower hole band: 

Here the subscript on the spin operators labels the sublattice. 
Substituting the representations (61) and (64) into (76), 
we obtain the following effective Hamiltonian 
P; = z:$ + P J 2 :  
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We do not give the Hamiltonian with three operators b and c, 
since its contribution to the hole scattering is small in the 
parameter l/z. The hole-scattering amplitudes for the ex- 
change of one and two antimagnons have the form 

For small momenta k, ,..., k, and for energies E,, ,..., 
on the Fermi surface, taking into account the expressions 
(65 ), (66) for w,, u,, and v,, we obtain 

It follows from the estimates (82) and (8  1 ) that exchange of 
one antimagnon induces repulsion, while exchange of two 
induces attraction. The attractions and repulsions cancel 
each other on the Fermi surface, but, because the region of 
attraction in frequency is greater by a factor of (k,a) ' (see 
Fig. 3 ) ,  it is not ruled out that superconductivity can be 
realized in this situation. 

Two limiting cases are possible. In the first, the charac- 
teristic one-magnon exchange energy w, = 4 (22) '/'k,t '/U 
and two-magnon exchange energy 2R = 8zt '/U are smaller 
than the Fermi energy E ", k ka2t /2z'/2. In this case the 
kinematic interaction is unimportant near the Fermi sur- 
face, since it is weaker than the antimagnon interaction by a 
factor of 4t /z3"U. The condition for realization of this case 

FIG. 3. Qualitative behavior ofdifferent interactions of holes in the vicini- 
ty  of the Fermi surface. Curve 1 corresponds to one-antimagnon ex- 
change, curve 2 to two-antimagnon exchange, and curve 3 to the kinemat- 
ic attraction. 

is wF4E; or t / U g  kFa/862z2.5 x lo- '  for k,az l/z 
and z = 6. It is clear that for such a small ratio t /U the 
charge carriers are magnetic polarons'9 or RVB droplets.29 
In particular, for w, <2fl the ratio t / U S  and the bot- 
tom of the magnetic-polaron band in the three-dimensional 
case for z = 6 lies at E = - 5t, while the bottom of the hole 
band lies at E = - 1.2t. 

The conclusion reached in Ref. 30, on the basis of the 
potential shown in Fig. 3, that superconductivity can be real- 
ized in the antiferromagnetic phase pertains to the case of 
very small t /U, when the holes are unstable against the for- 
mation of magnetic polarons. 

In the second case, the magnon-exchange energy is 
greater than the Fermi energy: 2fl)wF)Ez or 
1 % t  /Uk  kFa/8dz. In this case, the contributions of the 
one-magnon and two-magnon exchange to the interaction of 
the holes cancel. But this does not mean that the kinematic 
interaction (75) leads to superconductivity. Because of the 
large force of the magnon interaction (8 1 ), (82), correc- 
tions in the parameters t /U, k,a, and l/z are important in 
this case. The calculation of these corrections lies outside the 
scope of this paper. 

We note that a superconductivity mechanism due to 
two-phonon exchange was proposed in Ref. 3 1. The contri- 
bution of one-phonon exchange in this case is suppressed 
because of the strong dispersion of the dielectric permittivi- 
ty. 

CONCLUSION 

In this paper a diagram technique for the strong-cou- 
pling method in the Hubbard model has been developed sys- 
tematically. This diagram technique differs from that of 
Refs. 6 and 4 in that it is possible to introduce physically 
illustrative dynamical variables and investigate the structure 
of an arbitrary order of perturbation theory. We have stud- 
ied the structure of the simplest types of ground states and 
the elementary excitations in the Hubbard model with a car- 
rier concentration close to one per lattice site. The use of the 
small parameters t/U, p, and l/z has made it possible to 
investigate the ferromagnetic, paramagnetic, and antiferro- 
magnetic states of the system. The tendency to superconduc- 
tivity is due to the kinematic attraction of holes, but spin 
fluctuations destroy the superconductivity in the paramag- 
netic phase and substantially alter the character of the inter- 
action of the holes in the antiferromagnetic phase. 

We note that in this paper we have not taken into ac- 
count the long-range Coulomb interaction, which for p< 1 
makes the application of perturbation theory to the hole gas 
difficult and hinders the appearance of superconductivity. 
The methods and results of this paper differ substantially 
from those in the well known sequence of papers (Refs. 16 
and 32). This is connected with the fact that our work has 
used the parameter l/z, while Refs. 16 and 32 essentially 
used the parameter 1/N, where N is the number of one-elec- 
tron states per lattice site. In the framework of the approach 
developed, the most urgent task is to analyze the spin-liquid 
~ t a t e , ' ~ , ~ '  in which the spin fluctuations are suppressed by a 
factor of at least EF/to in comparison with the paramagnetic 
case. It is of interest to consider the more reali2tic 

The author is grateful to A. A. Abrikosov, E. G. Batyev, 
R. 0. Zaitsev, Yu. M. Kagan, Yu. V. Kopaev, A. I. Larkin, 
V. S. L'vov, L. A. Maksimov, S. V. Maleev, V. L. Pokrovskii, 
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APPENDIX A 

Below we give a representation of the algebra P1(2,2) of 
the operators Xab of the complete Hubbard model in terms 
of the Fermi fields $,+ , $,, q, 2 ,  q,, of the electrons in the 
lower and upper Hubbard bands, the Bose fields a + , a, a + , 
a of the magnons and excitons, and the random fields R, @, 
E. The elements of the Cartan subalgebra and the spin opera- 
tors have the form 

From the Fermi operators Xo", X*, X2", XU2 it is conven- 
ient to organize two spinors pu = X04 v, = ( - X I2,X 12), 
po+ = X*, Y,+ = ( - X2',X2');  then 

where 

is the metric spin matrix and 

XoZ=a, X2"a+ (I-2%-51- (cp+cp)-a+a)-$+~v+. (A3) 

To calculate the cumulants of the random fields R, @, 
H, we give the thermodynamic potential F as a function of 
theparametersx=w, =pp,y-wr = -Dw0,z= - p U :  

The cumulants of the fields R, @, E are equal to the deriva- 
tives of F with respect to the parameters x ,  y, z. Substituting 
the representation (A1 )-(A3) of the operators X Ob into the 
Hamiltonian (2),  we obtain the Hamiltonian of the com- 
plete Hubbard model in our variables: 

For - z = pU& 1, which is practically always fulfilled, the 
expression (A4) for the free energy F goes over into the 
expression ( 16) for F, and the field Z can be set equal to zero. 
For U s  t the Hamiltonian (A6) can be used to obtain cor- 
rections to the Hamiltonian for U/t = w . Such corrections 
are important for us when the occupancy is close to unity. 
They have the structure $,+$,, s, .s2, s, .($:u$, ), and 
($,+ q2 ) ($;t +b4 ). For us, only the s,  .s2 contribution is im- 
portant, since the Hubbard Hamiltonian is degenerate in the 
limit U /t = w and for occupancy close to unity. This contri- 
bution is determined by the following diagram: 

and represents indirect exchange via electrons of the almost 
completely filled lower Hubbard sub-band, or part of the 
Anderson ~ u ~ e r e x c h a n g e ~ ~  responsible for the interaction of 

local spins. The remaining corrections of order t /U are un- 
important for us, since they are corrections to contributions 
already present. 

APPENDIX B 

In this appendix we shall prove that Eqs. (54), (55) 
have no superconducting solution in the weak-coupling re- 
gime ( 8 ,  8 + (<EF for 8,8 + #O). Such a proof is carried 
through most simply by replacing the dressed spin correla- 
tor K, by the bare spin correlator, which only reduces the 
spin fluctuations and facilitates the appearance of supercon- 
ductivity. After this replacement the dependence on k in 
Eqs. (54), ( 55 ) is contained only in the form t, , and, there- 
fore, introducing the variable E = t, , we can consider all the 
mass operators as functions of E and 6 and replace sums over 
k by sums over E: 

1. 

Next, one can convince oneself that in the equations for the 
mass operator 2:', 8;' values to - E (< to and g=: / 8 1 < to 
are important, while in the mass operator Bf,g values 
to - E=: to and {=:to are important. Since for large to - E 

and f the presence of the superconducting gap is unirnpor- 
tant and 8{,' describes the renormalization of the hole-dis- 
persion law E,, this renormalization is small in the param- 
eter l/z and can be omitted. This situation is analogous to 
the proof of Anderson's t he~ rem.~* ,~ '  Introducing the nota- 
tion 

2,""-iEa(E), 

we obtain 
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In the derivation of (B2)-(B4) we have omitted the contri- 
bution Ha (52) of the scattering of holes by holes to the nor- 
mal mass operators, since it is small in the parameterp, and 
also, in the numerators of the sums (B3 )-( B5 ) , the variable 
E is replaced by to with logarithmic accuracy in 8 / to .  Equa- 
tions (B3 )-(B5 ) are reduced to a single nonlinear algebraic 
equation. We introduce the function A(<): 

A ( E )  = (3t:/4) &'(a, E )  ; ( ~ 7 )  
8 

then it follows from (B3) and (B5) that 

Substituting (B8) into (B7) and performing the summation 
over E, we obtain a relation for A(<): 

and also a self-consistency condition for the parameter 19 k,  

which follows from (B4) : 

Equation (B9) is easily solved by the method of iterations. 
Using the smallness of 8 k :  

we obtain 

In the absence of spin fluctuations, A(<) - = 0 and the de- 
nominator of (B10) for g-0 and E-  to - 2E, is proportion- 
al to 18 12=A1)2; this leads to the estimate 
(EF/to ) ln(gF/19 I ) for the magnitude of the right-hand 

side of (B10) and to the solution (58) for the gap. Since 
A (<) (B11) for <- 0 is equal to 1 - { /v, the right-hand side 
of the self-consistency condition (B10) ceases to depend on 
8 and is of the order of (EF/to ) ln(E,/to ), so that the self- 
consistency condition for the gap does not have a trivial solu- 
tion with 8 #O. 
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