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A model of individual molecular hyperpolarizabilities is used to calculate the quadratic optical 
susceptibility tensorX::) of a nematic subjected to longitudinal bending. The linear relationship 
between the components of this tensor with the flex-polarization is formal rather than causal. In 
the case of a grating, B deformation of all six types of phase matching should be observed if a 
second harmonic is generated in such a nematic. A study is made of the characteristics of second 
harmonic generation under conditions of steady-state and transient excitation of B-deformation 
gratings. 

If the spatial orientation of a nematic liquid crystal is 
for some reason disturbed, it follows from the symmetry 
considerations that the nematic medium loses its local inver- 
sion symmetry ensured in the unperturbed case by the anti- 
parallel packing of molecules. In fact (see Fig. 1 ) the medi- 
um acquires a preferred direction V n i ,  where n is the 
director of the nematic (the directions n and - n are equiva- 
lent). A generally known physical manifestation of such 
"suppression" of a center of inversion is the direct flex (or 
flexoelectric) effect (see Ref. 1 ) involving the appearance- 
in an orientationally deformed nematic-of a spontaneous 
polarization 

P,=e,n(divn)-e,[n rot nl. 

However, in addition to this quantity-governed essentially 
by the first moment of the angular distribution function 
f ( 0 , ~ )  of the polar molecular axes (Fig. 1)-we can natu- 
rally expect manifestation also of other phenomena due to 
the odd moments f ( 0 , ~ )  in an orientationally deformed ne- 
matic. One of these phenomena is "flex-induced" second 
harmonic generation (SHG) in a nematic, first considered 
in Ref. 2 for the case of orientational deformations with the 
characteristic inhomogeneity scale of the order of the thick- 
ness of the sample. The resultant susceptibility x::), phe- 
nomenologically proportional to P,, is interpreted in Ref. 2 
as SHG in an "external field" due to a spatially inhomogen- 
eous spontaneous polarization. 

Our aim will be determinatkn of the nature of the mi- 
croscopic relationships betweenX"' and P,, as well as inves- 
tigation of the characteristics of the process of flex-induced 
SHG in the case of a spatially periodic (across the thickness 
of a sample) or grating-like deformation of the director of 
the investigated nematic. 

MODELOF INDIVIDUAL MOLECULAR 
HYPERPOLARIZABILITIES 

realize experimentally and the mechanism of the appearance 
of the dipole susceptibility x::) in the S-deformation case is 
fully analogous to that in the B-deformation case, so that we 
shall ignore the S deformation. 

We shall assume that a homeotropic sample of a nema- 
tic of thickness L (Fig. 1) exhibits a grating-like B deforma- 
tion: 

0 (z) = A  (z) sin qz. 

We shall regard the amplitude of the deformation to be 
"slow" on the scale of q-' and small ( A  5 lop2 rad in the 
usual experimental situations), so that we can ignore small 
deviations of the long molecular axes from the preferred axis 
established by the deformation. For simplicity, we shall 
adopt an approximation with an order parameter S = 1, 
since allowance for the real distribution of the molecular 
axes in respect of the angle B does not change qualitatively 
the results, but simply complicates greatly the analysis. A 
nematic molecule is assumed, in accordance with the real 
structure of most nematics, to be completely asymmetric, 
i.e., it is assumed to have no symmetry axes or planes, and no 
center of inversion. The properties of such a molecule are 
described by its dipole moment 

The direction of the transverse component of the dipole mo- 
ment of a nematic molecule is adopted to be the x' axis of an 
"intrinsic" coordinate (reference) system x'y'z, where q, is 
the angle between the x and x' axes. In this intrinsic coordi- 

We must stress first that an analysis given below is lim- 
ited to the case of a grating-like deformation caused by longi- 
tudinal bending (B  deformation) of a nematic. This is the 
most interesting case because of the relative ease of inducing 

bl \:** Y' 

'J-. / 

experimentally such deformations with a controlled wave 

d' # z 
vector q (see Ref. 3). Another possible type of a grating-like 
deformation resulting in suppression of the inversion center 
is transverse bending (S deformation), but it is difficult to FIG. 1. 
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nate system we now define a quadratic hyperpolarizability 
tensor y$ (20 = w + w) for SHG-like processes and we 
assume that this tensor is independent of p. We also assume 
that f (p) is the distribution function of molecules in respect 
of q ,  normalized to unity, and that it is isotropic in the case 
of an undeformed nematic, which corresponds to the ab- 
sence of the spontaneous polarization P,: f O = 1/2n-. 

Before we calculate directly P, and the polarization at 
the doubled frequency P"', we must allow for the antiparal- 
lel packing of the molecules along the z axis, which should 
not be disturbed, as deduced from the macroscopic symme- 
try of the problem (with the polar axis x) .  This can be al- 
lowed for by replacing the real molecules with some "new" 
molecules characterized by p= pI ( p,, = O), and redefining 
the hyperpolarizability as follows: 

where B is the matrix which transforms the coordinates on 
rotation by 180" about the x' axis. Therefore, without re- 
stricting in any way (in ;pite of the obvious symm:try in 
respect of kl) the tensor f ', we find that the tensor y"' has 
only eight independent components (which are in general 
complex variables) : 

On the basis of this model the flex polarization observed 
along the x axis is described by an anisotropic modification 
of the function f (p) in the B-deformation case and the 
expression for P, becomes 

227 

Here, N is the concentration of the molecules. We shall as- 
sume that an optical wave of frequency w propagates in the 
medium and then the approximation of individual (indepen- 
dently excited) molecular dipoles, at a frequency w, we find 
that the amplitude of nonlinear polarization at the doubled 
(second-harmonic) frequency Pj2) is given by 

zn 

Here, p(q) is the tensor .F"' (for a molecule with the 
dipole moment p oriented at an angle p relative to the x 
axis), defiged in the laboratory coordinate system xyz, 
whereas L(w,2w) is the tensor of a local field 
Lu = ( E ~  + 2)/3, where L /Li (w,2w) is the unperturbed 
permittivity tensor of the nematic, diagonal in the xyz sys- 
tem. The tensors p(p) and .j/"' are related in the usual way: 

h 

where A (q,) is the operator representing rotation of the co6r- 
dinate system by an angle q about the z axis. It should be 
pointed out that averaging of Eqs. (2) and ( 3 )  using an 

isotropic distribution function fO(p) = 1 / 2 ~  gives precision 
values for both quantities, which corresponds to the absence 
of the spontaneous polarization and dipole SHG in an unde- 
formed nematic. In the case of a deformed nematic, it is natu- 
ral to approximate f (p )  by the following expression: 

We have gone over here to thermodynamic perturbation the- 
ory [ U(q)/kT< 1 ] and the energy of a molecule with a di- 
pole p oriented at an angle p is represented by the energy of 
the interaction of this dipole with some effective "molecular 
field" h a  [n  curl n] directed in this case along the x axis. 
Such an interaction results in an orientation of the molecular 
dipoles along the + x axis, i.e., it ensures that P, #O. The 
nature of the field h is fairly complex (it is most likely to be of 
steric nature) and will not be discussed here. Calculating the 
polarization of Eq. (2)  using this model function f (p ) ,  we 
obtain 

Calculation of the tensor expression for xj': on the basis of 
Eq. (3)  requires extensive but basically simple calculations 
and gives the following result: 

( 2 )  - P ~ N  
~ i t q  - 4 i  ( 2 0 ) L k i ( o )  L t q ( ~ ) z ~ i k l .  (6)  

The tensor v,, is determined completely by the molecular 
hyperpolarizability .jP and its seven nonzero components (of 
which five are independent) are described by 

In the special case (Fig. 2) when the molecule can be repre- 
sented by an ensemble of independent, arbitrarily oriented 
relative to x'y'z, anharmonic linear  oscillator^,^ the expres- 
sion (6)  simplifies and the tensorx,!;' has just three (out of a 
total of seven nonzero) components: 

+ ( C ra sinz 0. cos 0. cos pa) b i k l } ,  (8) 
a 

where the nonzero components a,, and b,, are as follows: 

FIG. 2. 
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Comparing Eqs. (5)  and (6),  we readily obtain the tradi- 
tional relationship between p' and Pd : 

However, in this case the relationship between X'2' and P,  
can be expressed explicitly in terms of the properties of the 
nematic molecules: p and v, and also the local Lorentz field 
tensor. It should be kointed out that a phenomenological 
linear dependence of x''' on the spontaneous flex pol%riza- 
tion frequently creates an incorrect impression that X'2' is 
due to orientation of the molecules (more exactly, the dipole 
is p) in a field due to the polarization P,. In fact, such a 
static field go does exist in our medium and in the case of a 
grating-like B deformation we readily find from divD = 0 
that 

~ ~ ~ 8 ~ ~ = - 4 n P , , = - 4 n e , q A  cos qz. (10) 

Here, eOI is the component of the permittivity tensor at zero 
frequency; differentiation is carried out ignoring a small de- 
rivative with respect to A. We shall estimate the quadratic 
polarizability induced in such a medium by the field in ques- 
tion employing the general relationship (see Ref. 5)  

Here, 0 is the cubic hyperpolarizability tensor derived 
allowing for the antiparallel packing of the molecules alongz 
and the angular brackets denote averaging over to q, using 
the function fo(q,);The first term in the parentheses is pres- 
ent, since the field 8, is the true electricjeld, in contrast to 
the "molecular field" h and can create x''' not only by the 
reorientation of the molecules, but also by the polarization of 
the molecular orbitals. In our estimates we shall take typical 
values of p, y, and p from Ref. 6: p z  lop3' cgs esu, 
y=: cgs esu, p~ cgs esu (these are the data for 
the nematic called 5CB, which is pentyl cyanobiphenyl). It 
follows from these values that at T=: 300 K we can ignore the 
first deformation-induced term in Eq. ( 11) and then the an- 
swer reproduces completely Eq. (6) apart from the replace- 
ment of h with go .  We thus have 

Using Eqs. (5) and ( lo ) ,  we readily obtain the following 
estimate of the coefficient in the above relationship: 

h + 
gence, we can see that go) is negligible compared with 
X'2'. . - 

This corresponds to the fact that h (estimated from Eq. 
(5)  using the phenomenological expression for Pd and as- 
suming e3=: lop4, A =: lop2, and q=: lo4 typical of the opti- 
cally induced orientational deformations) amounts to h =: 8 
kV/cm, i.e., it is comparable with the external field needed 
for SHG,6 whereas under the same conditions we have 

go=: 50 V/cm, which is clearly insufficient. 
It therefore follows that the linear relationship between 

h h 

X'2' and P ,  cannot be regarded as causal. In fact, x''' and Pd 
are two independent consequences of the general cause: an 
anisotropic modification of f(p) in a deformed nematic 
[representing respectively the third and first moments of 

f ( $ ) l .  
We can describe SHG processes in a B-deformed nema- 

tic representing conveniently P, in Eq. (9)  with the aid of 
the following phenomenological expression: 

X(exp ( iqz)  + exp ( - iqz )  1. (12) 

Therefore, it follows that an alternating-sign grating of the 
quadratic polarizability with a wave vector q is established in 
the investigated medium. It is clear that variation of q can, in 
principle, ensure phase-matched SHG for any variations of 
the polarizations of the interacting waves along the direction 
of their propagation.7 We shall now consider the phase 
matching in greater detail. 

GENERATION OFTHE SECOND OPTICAL HARMONIC IN A B- 
DEFORMED NEMATIC 

It is obvious from Eq. ( 12) that from the point of view 
of SHG a deforped nematic represents a biaxial medium 
since the tensor x"' has a preferred axis x and generally ine- 
quivalent axes y and z. On the other hand, the linear permit- 
tivity tensor is uniaxial (apart from small perturbations 
caused by the B deformation) and has a preferred axis z. 
Therefore, the properties of the SHG process are not the 
same in the cases when the planes of incidence are xz and yz 
(because the effective nonlinear susceptibilities are differ- 
ent). However, the geometry of the wave vectors, governed 
solely by the linear properties of the medium, is the same for 
both planes and it is shown in Fig. 3. 

We shall consider a homeotropic nematic of thickness L 
with a B deformation of the kind described above and as- 
sume that it is illuminated at an angle a in one of the planes 
mentioned above with light of frequency w, which generally 
contains both the ordinary ( 0 )  and extraordinary (e) com- 
ponent (Fig. 3 ) .  Then, in the interior of the sample two 
waves are excited, ENe exp (11, r ) ,  and ENo exp (ik,r), and 
the x and y components of their wave vectors are equal to the 
corresponding components of the wave vector of the inci- 
dent wave. The boundary conditions on the exit face of the 
sample ( z  = L )  ensure that the SHG process produces a 

FIG. 3. 
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wave E, exp(ik,r), with thex andy components of the wave 
vector equal to the corresponding components of the wave 
vector of the nonlinear polarization of the nematic medium, 
i.e., to the doubled component of the wave vector of the inci- 
dent wave, which represents the case of collinearity of the 
second-harmonic wave and the pump wave EN outside the 
sample (see, for example, Ref. 8).  Therefore, the wave vec- 
tor of the "mismatch" A has only the z component and the 
reduced Helmholtz equation for the wave E, is 

8Err 2n02 
2ikrz - = - - I I ~ , ~ , ( ~  ( z )  EN,&N2q exp(--iAz). ( 13 

dz cZ 

Here, II,, is an operator projecting nonlinear polarization 
onto a plane perpendicular to k,; on the right hand side we 
have E N ,  EN,  instead of E 2, to ensure that Eq. ( 13 ) is suit- 
able for the description of the polarization interaction. Using 
Eq. ( 12), we find very time-consuming but basically simple 
transformations reduce Eq. (13) to the following form, 
which applies to any of the six possible polarizations: 
dE, 
-= ignFEN,E,,qA ( z )  {exp (iA,+z) f exp (iAn-z) ) . ( 14) 

d z 

There is no summation over n in the above equation and the 
index itself represents the number of the type of interaction 
in Table I. The index fl identifies the plane which is only the 
plane of incidence (8 = x , y )  The quantity & depends 
weakly on the angle of incidence a and its order of magni- 
tude is 

Here, y is some "typical" value of the component 
( - cgs esu is given in Ref. 6) and A - cm is the 
wavelength of the incident light (pump radiation), i.e., 
g z  lo-" cgs esu. Explicit expressions for & are very cum- 
bersome and they are calculated in the Appendix, where the 
explicit form of the expression for A,. is also given. More- 
over, the values of A + - (a) are described by 

Qualitative information on the possibility of realization of 
one particular type of interaction in one of the planes (ab- 
sence or vanishing of & ) is given in Table I. It is interesting 
to note that the interactions possible in the xz plane are im- 
possible in the yz plane and vice versa. 

Since we are discussing a very "weak" SHG process 
(10'-lo4 photons per pulse in the experiments reported in 
Refs. 6,  9, and 4), then we can naturally assume that the 
pump wave is inexhaustible, i.e., that EN, , ,  (z) = const. In 
this case Eq. ( 14) has the very simple solution 

TABLE I. 

& ( L )  =igmoEW,EN,y A ( z )  {exp ( i B + z )  + ex* (iAn-z) 
o (15) 

Possible realization 

for given values of A(z) and we shall consider the explicit 
form of the latter in the next section. Clearly, phase-matched 
SHG can occur only [this is accurate to within small correc- 
tions due to the phases of the slow functions A (z) ] if A + = 0 
or A- = 0. There are important differences between the var- 
ious types of interactions. In fact, in the case of the interac- 
tions for which the phase matching is impossible (00-0, 
oo - e, oe- e, ee+ e)  for a spatially homogeneous x'~', which 
is true of an SHG process in an external field, the situation is 
asfollows. If q<min{IA(a)()orq>max{(A(a)I),  thereis 
no phase matching for any value of a .  1f min{(A(a) (1 <q  
< max{(A(a) 1 )  there is only one phase-matching peak in 
the angular dependence of the second harmonic signal 
[since A+ (a) = 0 or A- ( a )  = 0 the second "mismatch" 
does not vanish because of the alternating-sign nature of 
A(a ) l .  

However, in the zase of the interactions which are 
phase-matched when ~ ' ~ ' ( r )  = const (these are the pro- 
cesses ee+o, oe+o discussed in Ref. 6) we find that A (a) is 
monotonic and has a variable sign. Therefore, if 
q > max{lA(a) 1 )  there is no phase matching. If 
min.(lA(a)l)<q<CmaxIA(a)l), the phase matching has 
just one peak. If q<min.((A(a)l), there are two phase- 
matching peaks in the angular dependence, which are due to 
vanishing of A+ (a) and A- (a) in turn. Explicit expres- 
sions for the calculation of the relevant phase-matching an- 
gles are given in the Appendix. 

We shall conclude this section by noting that experi- 
mental determination of all six nonzero values of gf makes it 
possible to find, for known values of e, and p, the five inde- 
pendent components of the tensor out of a total of fifteen, 
which provides extensive information on the properties of 
nematic molecules. 

1 
2 
3 
4 
5 
6 

SECOND HARMONIC GENERATION DUE TO OPTICAL 
EXCITATION OF AN ORlENTATlONAL BGRATING 

At present the only way of inducing the required vol- 
ume B-deformation grating is light-induced reorientation of 
the director under the influence of interfering ordinary (0) 

and extraordinary (el waves (see Refs. 3, 10, 11). Some 
refinements are necessary at this stage. Up to now we have 
implicitly assumed that the pump wave EN does not influ- 
ence the orientation of the director. This implies that the 
wave EN (usually a nanosecond pulse from a solid-state la- 
ser-see for example, Ref. 4) is quite powerful, but the pulse 
is too short so that its energy is insufficient for reorientation 
of the director. Therefore, in a typical experimental situation 
we require an additional wave ER (usually of different fre- 
quency w, ) for reorientation of the director. This may be 
continuous-wave radiation (for the steady-state excitation 
of a grating) or a millisecond pulse (for transient excita- 
tion-see Ref. 1 1 ) . It is this last variant that was observed 
experimentally4 and it represented the phase-matched oo -+ o 
SHG. 

We shall now assume that a high-power o-type wave 
00 ' 0 

00 + e 
oe + o 
oe + e 
ee + o 
ee + e ER exp (ikRr-iot) 

515 Sov. Phys. JETP 71 (3), September 1990 

0 
1 
1 
0 
0 
1 

1 
0 
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and a weak (possibly frequency-shifted toward the Stokes 
region) e-type wave 

E, exp (ik,r-iwl+iQt) 

propagate in a homeotropic nematic at some angle S relative 
to the director (Fig. 4), but outside the nematic the two 
waves are collinear. In this geometry (see Refs. 3 and 10) the 
required B deformation in the xz plane is excited in the ne- 
matic medium. 

The equations describing the reorientation amplitude 
and the spatial evolution of Es are of the form3 FIG. 4. 

Here, EOR is the permittivity anisotropy at a frequency a,; 
- 

rc, = ~ ~ 4 ~ q - l  + in; K3 and q are, respectively, the 
Frank elastic constant and the orientational viscosity of the 
nematic; q = q(S). It should be noted that in the first two 
sections we ignored the dependence A (t),  which is justified 
from the point of view of SHG, because a pump pulse EN is 
very short and throughout this pulse the change in A(t) is 
insignificant. For example, A in Eq. (16) is precisely the 
same as in Eq. ( 15) and having calculated it, we can obtain 
the final answer for E, (L)  . 

It is convenient to do this in three different cases. 

E.R sin 6 A = -  ~ o l E n ( ~ .  
8nK,qZ 

It therefore follows that the grating amplitude is constant in 
space and we can deduce directly from Eq. ( 15) that the 
conditions for phase-matched SHG correspond exactly to 

An * = 0, and we also have IE, (L) l 2  a I ER 14,  i.e., the sec- 
ond harmonic signal is proportional to the square of the 
power of the wave E,. 

b) A wave Es is frequency shifted and it experiences 
orientational steady-state stimulated scattering in the for- 
ward direction (see Ref. 3).  In this case if 

= a,, = K,q2q-', we quite readily obtain the following 
expression: 

a )  Waves unshifted along the frequency scale and A wReaR2 sinZ 6 G =  
sufficiently small so that in the first equation of the system 32nn,c cos 6K,@ ' (18) 
( 16) we can assume that E, zconst (Born approximation- 
see Ref. 10). Then, under steady-state conditions, we have Substituting this expression in Eq. ( 15 ), we obtain 

L Z  = b m ~  
exp (G I En 1 ' L )  -2 exp ( G  (En ( ' L / 2 )  cos (G I En ( 'L/2+ A,,) L f l  

(G (En 1 ' / 2 )  '+ (Am++G ( En 1 ' / 2 )  9 

+,- 

bmB='/z 1 gmBENiEN~'Cv~o 1 En) 1 

Here, 8 + , - denotes summation of two identical expres- 
sions, one of which is characterized by A +  and the other by 
A -. An interesting feature of Eq. ( 19) is the fact that it has a 
maximum as a function of a (phase matching peak) not at 

A m ,  = 0, but at A, + + G IE, 12/2 = 0, i.e., the phase- 
matching angle depends on the wave intensity E, . True, this 
correction is slight compared with q: 

Anw, 
4-- 2 104 c ~ - ' ,  

C 

whereas in the case of orientational stimulated scattering a 
characteristic value is G I E, I2L z 6,  where 
G IE, I2/2z 5.10' cm-', but nevertheless it is fully detect- 
able and can be observed experimentally. 

C )  The duration of a pulse of the wave E, is much less 
than rO. In this case the frequency shift is not so important 
(see Ref. 1 1 ) and the system ( 16) reduces to 

d A can sin 6 
-= s, (0, Y )  =so --- 
a~ 8x17 ' 

Here, 

IS the running value of the exposure to a pulse of E, and 
canz sinZ 6 0 ~  

(5= ' 
3zArln,c cos 6" 

Using the second equation in the system (20) to find A and 
substituting it into Eq. ( 15), we obtain 

~ ~ ' E N I E N ,  ds 3s' 
E, ( L )  = - q { - e r p  ( i ~ . + z )  + - exp  ( i h - z )  } dz. 

0 o a= dz 
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Since s(z)  is a fairly complex function 

~ ~ I , ( 2 ( i u z y ) ' / ~ ) ,  

equations should be calculated employing the Fresnel equa- 
tion; 

sin a 
the integral in Eq. (21) cannot be calculated analytically. a. = arcsin(---J, 

All we can do is to assume, by analogy with steady-state 
stimulated scattering, that the experimentally observed ae = arcsin [ - SE: ( I  + s i n 2 a -  
phase matching can be described accurately by the condition 
A, + = 0. In this specific case, we have, 

1 2  
( A l l  

~ , * I E N ~ ~ ~ ( E N Z I ~  
IE7(L)12= cr2 q2 I s ( L )  I 2. (22) sin a 8. = arcain [- (1 i- sin2 a ) -'I. 8,s ellell2 

The expression (22) is readily checked experimentally: the 
secondharmonic signal should be proportional to the coeffi- The corrections for the waves, which are in par- 
cient representing the efficiency of ER + Es ~~nve r s ion  in entheses in Eq. (A1 ), do not exceed 2%. Moreover, the dis- 
stimulated scattering. The results4 confirm satisfactorily the persion between the frequencies and 2w is weak. There- 
relationship (22) for phase-matched SHG in the 00-0 pro- fore, in practical calculations of & (but not in calculations 
cess. of the phase-matching angles!) we can assume that 

We shall now summarize briefly the main qualitative 
results of the present study. 

A 

Firstly, the dipole susceptibility X'2' in the orientation- 
ally defgrmed nematics (known as the flex-induced suscep- 
tibility x'~'  is not due to the electric field resulting from the 
flex polarization, but due to the ordering of the polar axes of 
the molecules associated witJ such polarization, so that the 
linear relationship between x '~ '  and P, is purely-formal. 

Secondly, a B-deformed nematic is biaxial from the 
point of view of SHG, so that a given polarization interaction 
cannot be realized simultaneously in both xz and yz planes 
(Fig. 1 1. 

Thirdly, when a grating-like B deformation is induced 
in a nematic medium, phase-matched SHG is then possible 
for all six types of the polarization interaction and in the case 
of "phase-mismatched" processes (00 +o, ee+ e, oe -+ e, 
oo-e) there is no more than one phase-matching angle in 
the dependence E, ( a ) ,  whereas in the case of the "phase- 
matched" (ee -+ o, oe- o) processes there can be two peaks of 
the same dependence. 

Finally and fourthly, when a B-deformation grating is 
excited under the conditions of an orientational stimulated 
scattering the phase-matching direction for SHG depends 
on the intensity of the pump wave involved in stimulated 
scattering and the phase-matched SHG signal is proportion- 
al to the coefficient representing the efficiency of the 
E, + E, conversion process. This last property can be con- 
verted in terms of multifrequency holography. l 2  

APPENDIX 

We shall now give explicit expressions of if we deter- 

a, = a, = 0, = P,. The expressions for & obtained in this 
way are as follows (the types of interaction are labeled in 
accordance with Table I )  : 

noe3LL2 ( 0 )  L1 ( 2 0 )  gix=0; g," (3yPil+y:21+2y2021) ; 
I ~ C E . ~ : ' ~  cos  PO^ 

0 0 0 

X(2y2?,+yl1,-yiz2)  + sin be sin a,LlI ( 2 0 )  Lil ( o ) L , ( o ) y j s 1 ) ;  

gSx=O; (A21 

mine first the quantities which occur in these expressions: 
n,,,, are the refractive indices of the extraordinary wave at +COS Be sin2 a,LIl2 ( 0 )  LA ( 2 0 )  yp33 
the frequencies of the first and second harmonics; n,,,, are' 
the corresponding quantities for the ordinary waves; +sin B. sin 2a.LlI ( 0 )  ~ , ( o )  L, ( 2 0 )  l : s , )  ; 

L , , ,  (w,2w) are the principal values of the local field tensor 
g,'=O. L, = ( E ~  + 2)/3 at the frequencies of w and 2w, respective- 

ly; a , ,  is the refractive index for the o and e polarizations at It should be pointed out that in practical calculations we can 
the frequency w; Po,, apply to the o- and e-polarized second also ignore the n, (a,P) dependence in the expressions in the 
harmonic signals. system (A2). 

The expressions for n,,,, (a,,P, ) occurring in the above We shall conclude by giving the explicit form of the 
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equation for the phase-matching angle in different geome- 
tries: 

W 
*Q - - [2(n,2(a) - sinz a)"'- (nNi2  (a )  

C 

- $inz a)''- (n,,' (a)  - sin2 a)  ]'"=O. (-43) 

Here, n , ( a ) ,  n,, ( a )  and n,,  ( a )  should be the refractive 
indices of the appropriate waves in accordance with the type 
of interaction labeled by the number m in Table I. Equation 
(A3) is quite complex and for most of the interactions it 
would require a numerical solution. 

'P. G. de Gennes, The Physics of Liquid Crystals, Clarendon Press, Ox- 
ford (1974). 

518 Sov. Phys. JETP 71 (3), September 1990 

*S. M. Arakelyan, G. L. Grigoryan, A. S. Karayan etal.,  Fiz. Tverd. Tela 
(Leningrad) 26, 1326 (1984) [Sov. Phys. Solid State 26, 806 (1984)l. 

3B. Ya. Zel'dovich, S. K. Merzlikin, N. F. Pilipetskii et al., Dokl. Akad. 
Nauk SSSR 273, 11 16 (1983) [Sov. Phys. Dokl. 28, 1038 (1983)l. 

4A. V. Sukhov and R. V. Timashev, Pis'ma Zh. Eksp. Teor. Fiz. 51, 364 
(1990) [JETP Lett. 51,413 (1990)l. 

'S. Kielich, Molecular Nonlinear Optics [Russian translation from Po- 
lish], Nauka, Moscow (1981), p. 277. 

'M. I. Barnik, L. M. Blinov, A. M. Dorozhkin, and N. M. Shtykov, Zh. 
Eksp. Teor. Fiz. 81, 1763 ( 1981) [Sov. Phys. JETP 54,935 ( 1981 ) 1. 

'N. B. Baranova and B. Ya. Zel'dovich, Dokl. Akad. Nauk SSSR 263,325 
(1982) [Sov. Phys. Dokl. 27,222 (1982)l. 

'I. R. Shen, Principles ofNanlinear Optics, Wiley, New York (1984). 
%. M. Arakelyan, G. L. Grigoryan, S. Ts. Nersisyan et al., Pis'ma Zh. 
Eksp. Teor. Fiz. 28,202 ( 1978) [JETP Lett. 28, 186 ( 1978) 1. 

"'B. Ya. Zel'dovich, N. F. Pilipetskii, and A. V. Sukhov, Opt. Spektrosk. 
56, 569 (1984) [Opt. Spectrosc. (USSR) 56, 348 ( 1984)l. 

"T. V. Galstyan, B. Ya. Zel'dovich, E. A. Nemkova, and A. V. Sukhov, 
Zh. Eksp. Teor. Fiz. 93,1737 (1987) [Sov. Phys. JETP66,991 ( 1987) 1. 

"N. B. Branova and B. Ya. Zel'dovich, Pis'ma Zh. Eksp. Teor. Fiz. 45, 
562 (1987) [JETP Lett. 45,717 (1987)l. 

Translated by A. Tybulewicz 

A. V. Sukhov 518 


