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The Dirac constraint technique is used to analyze the properties of the relaxation model of a 
liquid. It is shown that the fluidity of a liquid can be described as a manifestation of gauge 
invariance. A phenomenological Hamiltonian describing a shear phase transition is constructed. 
It is shown that this transition is of first order and constitutes the onset of a new gauge quantity in 
the low-temperature phase. Some experimental consequences of the phase transition are 
discussed. 

1. INTRODUCTION 

A tremendous number of studies of structural phase 
transitions (PT) in crystals have been made in the past few 
decades (see, e.g., Refs. 1 and 2).  The description of these 
(PT) reduces theoretically in many cases to a model of 
transverse optical modes that are as a rule soft. The question 
is: is a similar phase transition possible in liquids? Of course, 
one cannot simply use the Landau Hamiltonian to describe 
such a PT in a liquid, in view of its fluidity, i.e., lack of 
elasticity with respect to shear. For PT in a crystal, the soft 
mode is "frozen," but the displacement in it has a fully de- 
fined value. The shear coordinate in a liquid, however, has 
no direct physical meaning. 

An attempt is made below to construct a phenomeno- 
logical description of a shear PT in a liquid. The liquid is first 
described, following Leontovich3 and R y t ~ v , ~  as a system of 
relaxing tensors interacting with the shear. This model is 
analyzed by the Dirac constraint model. Dirac weak con- 
straints are usually used for nondissipative systems. It is 
shown in the present paper that Dirac constraints can be 
used also for dissipative systems by doubling the dimension- 
ality of phase space through introduction of additional ficti- 
tious Dirac-constraint variables. It is found, in particular, 
that the fluidity of a liquid can be explained as a manifesta- 
tion of a certain gauge invariance. This approach is used next 
to formulate the Hamiltonian F of the PT. The harmonic 
part o f F  leads at the PT temperature to mode instability in a 
wide range of momenta q, and not only at q = 0 as in the 
usual PT theory. As to the anharmonic terms in F, they van- 
ish at T = T,. A consistent allowance of such a weak anhar- 
monicity leads to an effective polynomial Hamiltonian. Its 
analysis shows that the PT is of first order. The phase transi- 
tion is described by a variable $Ap. For r < 0  
(r = ( T - T, )/T, ) the modulus of the equilibrium value of 
kp becomes inifinite, while a change of I$:, 1 by a finite 
amount and an arbitrary change of the phase of $:p does not 
change the state of the system. The PT constitutes in fact the 
onset of this distinctive gauge symmetry. 

2. GENERAL FORMULATION 

2.1. According to Leontovich's theory,3 as developed 
by Rytov4 and used mainly to described depolarizing scat- 
tering of light (see, incidentally, Ref. 5 ) ,  a liquid is charac- 
terised by an isotropic-dilatation tensor ucc, by a shear ten- 
sor ii,, by relaxing scalars pD, and second-rank zero-trace 
tensors (Sp @ = 0).  

The potential and kinetic parts F, and F, of the free 
energy and the dissipation function $,, are given by the 
expressions 

FLR=Fp+Fk, 

where 

p, is the density; u, ( r )  is the displacement component at the 
point r of the liquid, Nand L are respectively the interaction 
constants of the shear iiUp with and of div u with pee; K 
is the hydrostatic compression modulus; r " and r " are the 
relaxation times. Compared with Refs. 3 and 4, we have add- 
ed in (2 )  a term describing the contribution of the kinetic 
energy of the anisotropic fluctuations, and the corre- 
sponding mass density M. 

The equations of motion have the usual form 

WEE (r) =-~~FP/QEE (r) ,  
(4)  

M&,O (r) =-SFp/S~aa(r)  - ~ ~ q , ~  (r)  . 

It follows from (4)  that the high-frequency shear modulus 
p = N2. In the w r g  1 regime the shear and bulk viscosities 
are respectively 77, apr a and 77, a L 2r '. The isotropic and 
anisotropic parts V, and Va of the interaction with the exter- 
nal electric field E are given by 

V i  = J dSr (Alp,+B div u)'E2, ( 5  

where A,  B, and Care the corresponding constants. It must 
be emphasized that the presence of the factor @, + Nii, in 
(6) is rigorously mandatory. If, say, we use + L,  iiap, 
whereL, f N ,  weget for thecorrelator ( V a  (0) Va ( t ) )  = UJ; 
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this would mean, for example, the presence of purely elastic 
depolarized scattering of light with an infinitely large cross 
section, which is of course absurd. The mechanism that en- 
sures the presence of $, + Nii,, in ( t ) ,  notwithstanding, 
e.g., the variation of the parameters themselves with tem- 
perature, remains unclear. 

2.2. To answer this question, we consider6 the symme- 
try of (1 ). The expression for Fp is invariant to motions 
$ap '@a0 + S$ap and Cap +Pa" + Siiap such that 

The free energy of the liquid does not change for shear 
deformation in the form of a transverse wave. Recognizing 
the arbitrary dependence of S$, and Siiap on the spatial 
coordinates, we can regard the motion ( 7 )  as a gauge trans- 
formation that does not alter the state of the liquid. To take 
the gauge into account it is natural then to use the additional 
weak constraint (see the Appendix for details) 

1 
P , ( ~ ) ~ ( ~ , B - V ~ V B / A ) ~ B ( ~ ) + ~ N V ~ ( ~ ~ ~ - V ~ V ~ / A ) I ~ R ~ ( ~ ) ,  

P, (r)  =O. 
(8  

Herep, ( r )  andjp, ( r )  are conjugate momenta that ensure a 
displacement of the variables ua and at the point r of the 
liquid. According to Dirac,' the weak coupling means that 
physical meaning is possessed only by values of V that satis- 
fy, after setting up the Poisson brackets and taking (8)  into 
account, the relation 

Of course, the Hamiltonian F should satisfy the weak 
equality [F, Pa ( r ) ]  ~ 0 .  Simple calculations show that 
[FLR, Pa ] = 0. It follows from (9)  that the quantities qaD, 
u a ~  - 9 and qaP + L, cap taken separately have no meaning if 
L, #N, but a physical meaning is possessed by the quantity 
Fap + Ncap 3 

Correspondingly, the divergence of the correlators 
($ :p ) = (ii& ) = cc leads to no experimental conse- 
quences whatever and does not preclude the use of the qua- 
dratic Hamiltonian ( 1 ). 

One might question the extent to which weak Dirac 
constraint (8), (9)  can be applied to the system (4)  in which 
relaxation terms play an important role. The weak Dirac 
constraint is usually employed in nondissipative field theo- 
ry. Let us show that a weak Dirac constraint can be used in 
our dissipative system. To and use next Dirac constraints in 
the resultant Hamilton function. Many methods of formally 
describing dissipation in the framework of Lagrange and 
Hamilton functions have been published. We shall use the 
simple method of Ref. 8. To simplify the equations we omit 
the here-inessential tensor indices of ii, and $ap. The Leon- 
tovich-Rytov equations take the schematic form 

According to Ref. 8 to recast the equations q, = f, (q,q,t), 
Y = 1,2, ... ,n in Lagrange form we must introduce also n 
supplementary purely fictitious variables q, + , , ... ,q,, . In 

this case the Lagrangian Lf takes the form 

To obtain Eqs. ( 10) for our situation we introduce the ficti- 
tious variables q, and q,, find ( 1 1 ), and then obtain by the 
usual rules the Hamiltonian 

wherep, ,p, ,p, , andp, are the momenta respectively conju- 
gate to the variables u, p, q, , and q,. From ( 12) follow Eqs. 
( 10) and also the equations of motion for the fictitious co- 
ordinates 

N 1 
G = - N  (- Po q. + , q.) , 

1 4 - -  - -q5+-  
za - (  Ma)+-c M 4* 

Note that q, and q, do not attenuate but increase exponen- 
tially with time. This raises no difficulties in our case, since 
q, and q, are fictitious quantities. It should be noted that on 
the whole unusual dependences on the time and on other 
variables occur almost always in the Lagrangian or Hamilto- 
nian descriptions of dissipative systems. For example, the 
equation x = yx can be obtained by using the Lagrangian 

Let us return to the question of the Dirac constraint. 
The Hamiltonian Hf is compatible with the weak constraint 

Introduction of the constraint (14) produces in the right- 
hand sides of ( 10) an arbitrary function A ( t ) ,  for by virtue of 
( 14) we can add to Hf the quantity A ( t )  Pf. The appearance 
of the quantity A ( t )  in ( 10) is quite natural, since [p,Pf] # O  
and [u,Pf ] #O, i.e., the quantities p and u are not observa- 
b l e ~  but depend on the gauge. As to the quantity p + Nu, its 
equations of motion do not depend on A(t), since 
[p + Nu, Pf ] = 0, and the corresponding dispersion equa- 
tion coincides in the limit M-0 with those obtained in Refs. 
3 and 4. 

The presence of the weak constraint ( 14) in the Leonto- 
vich-Rytov model was first demonstrated by us in Ref. 6.  It 
was assumed there, however, that this constraint is con- 
served only approximately, and it is violated by dissipation. 
Expression (14) makes it possible to apply a weak Dirac 
constraint to systems with dissipation, and actually dissipa- 
tion does not disrupt the weak constraint. One cannot ex- 
clude the possibility of this approach being useful for the 
analysis of a larger group of problems than in the present 
paper. 

It is known from experiments on depolarized scattering 
of light that the spectrum of the correlator of the anisotropic 
characteristics of the liquid does not contain S(w) at the 
frequency w = 0. We can satisfy this condition phenomeno- 
logically by assuming V, to be proportional to a Poisson 
bracket of several Qap with free energy F: 
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Putting, for example QaB = j, and F = F,, , we obtain 
for Va Eq. (6). Equation ( 15) is more general than (6). In 
fact, allowance for anharmonicity in F can cause the mini- 
mum of F to be reached at certain stationary time-indepen- 
dent values qaB + NiiclB. According to (6)  this would lead 
to a peak S ( o )  in the spectrum of the depolarized light scat- 
tering. This scattering can be eliminated with the aid of weak 
Dirac constraints. Indeed, assume a trajectory in coordinate 
space, with q and p respectively the coordinate along it and 
the conjugate momentum. If the Hamiltonian satisfies the 
condition dF/dq = 0, we can incontrovertibly a weak con- 
straintp-0, [p,F] = 0 such that q becomes unobservable. 

The "inertial" variables can thus be eliminated. The in- 
teraction with the remaining ones can be represented, with- 
out loss of generality, in the form (15), which will be used 
from now on. The stationary time-independent quantities 
occur in the phase transition. It will be shown later, however, 
that the phase transition acquires a new symmetry proper- 
ty-gauge invariance, which guarantees the absence of pure- 
ly elastic scattering by these static quantities @, + NiiaB. 

2.3. We now describe the phase transition. Assume that 
that it accompanied by instability of transverse waves. We 
denote by $iB that part of 

which corresponds to the transverse waves (see the Appen- 
dix). Assume that the harmonic part of the free energy (with 
the kinetic energy subtracted) is 

where T, is the PT temperature. 
In the Leontovich-Rytov theory we have K2 ( r )  a S(r) .  

Expression ( 17) is a formal generalization of ( 1 ) . Assume 
that the kernel K2 ( r )  = 0 at r >  RK2 (RK2 is of the order of 
the interatomic distances) and that the eigenvalues of the 
kernel K2 ( r )  are positive. Let us make expression (17) 
clear. Recall the description of PT in crystals. We introduce 
first the free-energy part Fl 

where u(R) , ,  is the displacement in the ith cell. F, corre- 
sponds to mode instability in a wide momentum range. The 
next step is to introduce (without the factor r) into F the 
term 

which describes the interaction between cells, with faB $0 as 
T-0. This causes dispersion of the soft modes to appear in 
F = F, + F2 and one of these modes freezes as r -+ + 0. 

We consider now a PT in a liquid. We take a point r and 
a small region of size - R,, surrounding it. The free energy 
of this small drop can be written, by analogy with the crys- 
tals and with Ref. 4, in the form ( 17). What is now the inter- 
action V(r, - r2 ) between drops centered about r ,  and r,? 
According to (6)  and (15) the interaction between aniso- 
tropic fluctuations is of the form 

where f is the corresponding weighting function: for PT we 
have V,, a r ,  i.e., V is negligibly small. All modes with mo- 
menta q 5 R 2 I, are therefore softened in a liquid as T - + 0, 
and not only one of them as in a crystal. Since ($'I a r - 
anharmonicity of order n also makes a negligibly small con- 
tribution a (SF/S+h1)" a r n'2 to F. What is substantial, 
however, is the interaction between the local densities F of 
the free energy. 

Let us consider in greater detail the case of anharmoni- 
city 

with bare Fih (17). We omit for simplicity the tensor and 
other subscripts. How is F = Fib + Fiah to be calculated if 
Fish is itself dependent on F ?  We divide Fioh into R >) 1 parts 
and "include" them in succession. In each step, an arbitrar- 
ily small part of Fish is included as R - co , so that to calculate 
the free-energy density P we can use the value of Fobtained 
in the preceding step: 

0) F ( l ) = F o ( I ) = n p l ( l )  jK.1 ( 1 ) - ( 2 )  1 lp1 (2 )d (2 ) .  

1 )  F ( l ) = F o ( l ) + R - ' F o ( l )  J K 4 [  ( I ) - @ )  1 F 0 ( 2 ) d ( 2 )  

2 )  P ( 1 )  =F, ( I )  =F ,  ( I )  +R- 'F l (1 )  

Changing to the continuous variable, we obtain in the nth 
approximation: 

Any acceptable analysis of the nonlinear equation ( 19) 
can be made in the case RK4 % RK2 (where R,, and RK1 are 
the "action" radii of the kernels of the anharmonic and har- 
monic parts of F, respectively). The radius RK2 is compara- 
ble with the dimension of the short-range order regions. 
Averaging F, ( r )  over a region of size -RK,, denoting by V 
the volume of the liquid and by F,, the averaged value of F,, , 
and neglecting the fluctuations, we obtain in the mean-field 
approximation an expression for the effective Hamiltonian 
F e  

We emphasize that the effective Hamiltonian (29) is a non- 
linear functional of e. In the paraphase ( T  < 0) the mini- 
mum of F, corresponds to the small quantities I $'/. When 

1 $'I is increased, a situation in which the denominator of F, 
reverses sign becomes in principle possible. Such a transi- 
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tion, however, calls for overcoming an infinitely high barrier 
and we shall not consider it. In the condensate phase ( T  < 0)  
the minimum of F, 

corresponds to I $' I = w . In this case Fc is independent of $l 

in an overwhelming part of the F, phase space; as a result, 
turns out to be a redundant variable and for T < 0 we can use 
the gauge [see (A6) below] 

The weak coupling (21 ) ensures the absence of elastic 
scattering by the static quantities j$ll = W .  It is customary 
in field theory to postulate from the outset a gauge symme- 
try, although it can also be spontaneously violated. In our 
case the phase transition, which can be arbitrarily called a 
gauge transition, leads to the appearance of symmetry of 
(2 1 ) in a condensate. If r < 0 there is no correlation between 
the phases &D(rl ) and $&(r,) at ( r ,  - r, I > R K Z .  Since 
SF/S$AD = 0, out ofall the harmonic and anharmonic inter- 
actions in a condensate, only the interaction between the 
free-energy densities turns out to be substantial. 

3. CONSEQUENCES OF PHASE TRANSITION 

A transition from a phase with gauge symmetry (21 ) to 
the paraphase is of first order, with a transition heat K K ,  '. 
The interaction with anisotropic external fields a [QaD,F ] 
is equal to zero in the condensate phase. In the paraphase 
this interaction leads to anisotropic-field scattering intensity 

In experiments on depolarized scattering of light, one of the 
attributes of the discussed phase transition might be a kink 
on the plot of the scattering intensity J, against temperature. 

Dilatational fluctuations of the density p(q)  as func- 
tions of the momentum q can interact with the shear part F, 
of the free energy. The corresponding part of the Hamilto- 
nian is of the form: 

Here So (q) is a structure factor, while S, (q)  is an analogous 
quantity indicative if the interaction of Fe/V with Jp(q)  12. 

The intensity of scattering by dilatational fluctuations 
of the density is given by 

The discontinuity of F, at T = 0 leads to a discontinuity of 
the scattering intensity in the PT. Fourth-order anharmoni- 
city in solids corresponds usually to an increase of the elasti- 
city with increase of temperature. In our case this corre- 
sponds qualitatively to a positive S, (q)  and to a jumplike 
decrease of I ( q )  on going from the condensate to the para- 
phase. 

Let us discuss the anomalies of the dissipative proper- 
ties. A theory of dynamic phenomena in PT in the mean-field 
approximation is usually developed under the assumption 
that the parameters of the dissipative function $are indepen- 

dent of temperature. In our case the expression for $should 
be compatible with the fluidity requirement on the liquid. 
Let us show that this leads in the paraphase to the relation 
(25 

where T OC is finite as T- + 0; @ iD and iiiD are the parts of 
@,/, and Gap corresponding to transverse waves [see (A2) 1. 
Starting from (8), (12), (14), (17), and (24), we write 
down the equations of motion for the physical quantities. 
Changing to Fourier expansions in the momentum and fre- 
quency 

cp.0 ( r )  = (2n)-% J &@(q,  o)exp(iqr-iot)d3q d o ,  
(26) 

K2 (r) = (2n)-' K2 ( q )  exp (iqr) dap 

and neglecting the contribution of the kinetic energy of the 
anisotropic fluctuations ( M - .  0) , we obtain the dispersion 
equations of the longitudinal (27) and transverse (28) 
waves 

-iota" 
po~"=N2q2Kz ( q )  .t 

2rK2 ( q )  -ioPc ' 

Since the phase transition takes place on tra~lsverse waves, 
Eq. (27) has no singularities as T+ + 0 (Eq. (27) contains 
for simplicity only the interaction of ucc with isotropic fluc- 
tuations pa, ). Assume that T "I is finite as T+ + 0. Then for 
any arbitrarily low frequency w there exists a value 
171 < WT "'/Kz (q) such that the propagation of a transverse 
wave of frequency w goes over into the solid-state regime, 
i.e., there will be no fluidity for T-. + 0. We must therefore 
stipulate T "I-r a, where a>1. If a > 1, we have at any fre- 
quency, not necessarily a low one, for a transverse wave and 
sufficiently small T > 0 

i.e., we would have a viscous-flow regime. This is incorrect, 
since a transition into the solid-state regime should take 
place at high frequencies. It must therefore be assumed that 
a = 1. The dispersion relation for transverse waves takes the 
form 

The transition w.r OC-2K2 (q) from the solid-state re- 
gime to viscous flow is independent of T, and the high-fre- 
quency shear modulus, and the viscosity are proportional to 
T. Since the dissipative function is not negative, expressions 
(24) and (25) are not valid at r < 0. For r < 0 the quantity 
@ iD becomes a gauge function and makes no contribution to 
the dissipative function. At small but finite M, there is al- 
ways an immediate vicinity of the point T = 0 in which the 
approximation M = 0 is apparently invalid. An analysis of 
this situation is outside the scope of the present paper. 

Note also a certain similarity property of F. It can be 
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seen from (17) and (18) that the substitution 
dD r Q a D  171 - 'I2 leads to F = F ( @ ) ,  i.e., the temperature 
dependences ofall the quantities at  IT^< 1 can be obtained by 
changing over to QmD. It must be borne in-mind, however, 
that such a similarity transformation works only within the 
limits of a definite sign of T;  a continuous transition from 
T > 0 to T < 0 is impossible. 

4. BRIEF DlSCUSSlON OFTHE EXPERIMENTAL SITUATION 

Many, frequently contradictory, experimental data 
have been published (see, e.g., Refs. 9-14) on PT in liquid 
metals. Let us consider the relatively well studied PT in liq- 
uid rubidium and cesium. According to Refs. 13 and 14, in 
liquid cesium at 580 K and 930 K and in liquid rubidium at 
550-600 K and 920 K the temperature dependences of the 
viscosity ?,I and of the density po have weak anomalies in the 
form of kinks. It is difficult, unfortunately, to compare these 
experimental data with (16)-(29), since it is known that ?,I 
andp, are determined in liquids primarily by the activation 
energy of formation of cavities for the ion hopping, and by 
the frequency of the hops.15 The calculation of these quanti- 
ties, is, of course, not the subject of our study. 

The experimental on neutron scattering by liq- 
uid rubidium and cesium point to the existence, in the same 
temperature ranges, of a shift (but in a narrow temperature 
interval) of the position of the maximum of the structure 
factor S(q) ,  and a jumplike change of the derivative dS(q, 
T)/dT at T z  T,. Let us show that these results agree qual- 
itatively with the calculations of the present paper. The neu- 
trons are scattered by density fluctuations Ap. Assume a me- 
dium with uniform density p,, in which a small 
displacement u( r )  takes place. It follows from the continuity 
equation that this leads to the density change: 

A~k-po div u+po (div u)'+p0 (uV)div u. (30) 

The first term of (30) describes the intensity SI, (q) of scat- 
tering by dilatational excitations ucc. It follows from (23) 
that S(q)  undergoes a jump-as a rule, a decrease-on going 
from the condensate to the paraphase. The temperature de- 
pendence of the shear part of the free energy F, at T > 0 can 
also lead to a jump of the derivative dSll (q,T)/dT as 
T+ + 0. The contributions of the longitudinal waves to the 
second and third terms of (30) are small, introduce no qual- 
itatively new effects, and can be neglected. 

Let us consider the contribution of the combined action 
of transverse u, and longitudinal u, waves [the last term of 
(30)] to the scattering intensity Sll,, (q). Simple calculation 
yields 

within the framework of the phenomenological description. 
There occurs therefore in the paraphase an additional scat- 
tering Sll,, (q) whose intensity is proportional to - T. There 
is no such scattering in the condensate phase. At T = 0 a 
jump takes place in the derivative dSII,, (q,T)/aT. The pres- 
ence ofSll,, (q) is by itself peculiar to a liquid. In a crystal, for 
example, So (q)  consists of spikes S(q - H),  where H is the 
reciprocal-lattice vector. In this case, 

What is peculiar to the liquid is the temperature dependence 
SlI., ( 9 )  a T .  

Further studies of PT in a liquid and, in particular, a 
detailed measurement of the temperature dependences of 
S(q) ,  of the energy spectrum S(q, w ), and of the heat capac- 
ity and heat of the transition, as well as of the acoustic prop- 
erties, are desirable. 

APPENDIX 

The Hamiltonian ( 1 ) corresponds to Poisson brackets 
of the displacements, tensors, and conjugate momenta: 

(a) ( b )  a'B' 
[@=e (r) , PCLFB. (r') ]=sap (r-r') , 

In other words, u,, @ $), g, $' and the conjugate momenta 
Pa, j$), 1/3p&) are pair-wise independent variables. Note 
that pa ( r )  is the real momentum density of the liquid parti- 
cles, then Eq. ( A l )  is not met, and instead 

[pa (r) , pB (r') I =6 (r-r') erne, rot, pf .  . . 
By analogy with field theory, we assume ( A l )  to be 

valid), i.e., that the momenta commute with one another. 
This is not contradictory in the scope of the Leontovich- 
Rytov model. We consider a system in which there are sever- 
al relaxing tensors @ $ (Sp@ '") = 0, a is the number of the 
tensor) and several PT that occur at temperatures T,, , re- 
spectively. Assume by analogy with a solid, that an instabil- 
ity to transverse wave is present in the PT. That part of the 
free energy Fwhich is ofinterest to us is expressed in terms of 
quantities $$)' corresponding to transverse waves 

( 0 )  

where Vo is the volume per atom of the liquid. Recognizing $ap =qa~  +NaZas, 
that at t > 0 $ $ ) L = ~ a ~ r l ~  ( ~ B ~ - v ~ v ~ I A )  $:Pa)+ a*~. 

T 6F 
ul (q)a  -$l(q) ct- In the quadratic approximation we have 

Nq 6$l(q) ' 

we get 

1 

(A31 
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where g is a numerical constant that cannot be determined ta= (T-T,,) /T,,, 
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where Nu is the interaction constant. The fluidity condi- 
tion-the weak coupling (8)-is realized in the form of the 
relation 

P a  (r)  GO, 

Let a PT take place at a = 0. There appears therefore at 
T,, <O, besides (A4), a new gauge condition (AS) 

The prime on the summation sign means absence of a term 
with a = 0. For T,, < 0 we have thus the conditions (A5) and 
(A61 

At T,, < 0 the displacement u, ( r )  does not interact effective- 
ly with $$'. 

Assume that we continue to cool the liquid. The interac- 
tions of u, with ( a  = 0, 1, ... ) will then be "turned off' 
in succession. If the number of such tensors is finite below a 
certain temperature, either the liquid ultimately freezes into 
a crystal or glass, or we arrive at the condition 

Obviously, (A7) is not compatible with any transverse shear 
motions iii,, i.e. the system contains only longitudinal exci- 

tations with finite speed of sound. According to the Landau 
criterion this corresponds in principle to superfluidity. Tak- 
ing into account the schematic character of the model, the 
statement (A7) can hardly be taken too seriously. If, how- 
ever, the number of tensors @ $) below a certain temperature - .  
is infinite, we have a condensation point TCa near a certain 
temperature T,,, at which an infinite number of relaxing ten- 
sors is produced. One cannot exclude the possibility of iden- 
tifying T,,, with the melting temperature. 
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