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A simple analytic method is proposed for finding the continuum electron wave function and the 
amplitude of the photoelectric effect in a screened Coulomb field. A compact expression is 
derived for the total cross section for the relativistic K-shell photoelectric effect near the 
threshold, where the cross section is at its maximum. The results agree well with existing 
numerical calculations. 

1. INTRODUCTION 

The relativistic photoelectric effect from the K shell 
(the "K photoelectric effect") near the threshold in the nu- 
clear Coulomb field was studied in Ref. 1. Analytic expres- 
sions were derived for the total cross section, the angular 
distribution, and the polarization correlations through an 
expansion in the small parameters a Z  ( a  = 1/137, and Z is 
the atomic number) and p/v, where p is the momentum of 
the photoelectron, and 77 = m a 2  is the average momentum 
of the K electron (m is the mass of an electron). The total 
and differential cross sections were found within terms - (czZ)~ inclusively, so the equations derived can be used to 
study large-Z atoms, up to uranium. 

Although the corrections to the screening in heavy 
atoms are small, they cause a substantial downward shift of 
the photoionization threshold (about 12% for the uranium 
K shell). In intermediate-weight and light atoms, the screen- 
ing corrections are larger. Numerical calculations of the to- 
tal cross sections for the screened photoelectric effect have 
been carried out by Racavy and Ron2 with the help of a 
modified Fermi-Amaldi potential. Pratt et a1.'s4 have de- 
rived expressions for the nonrelativistic photoelectric effect 

' in a screened field in the dipole approximation and for the 
first correction to the dipole approximation, which stems 
from the term in the expansion of the photon wave function 
which is linear in (k.r)  ( k  is the momentum of the photon). 
This "retardation correction" is on the order of v/c, where v 
is the velocity of the electron, and c the velocity of light, 
while the relativistic corrections are - (u/c) or - ( aZ)  2. 

For small Z, the first correction for retardation near the 
threshold can thus be calculated with the nonrelativistic 
wave  function^.^ This correction disappears, however, upon 
an integration over the electron emission angle. Retardation 
should be incorporated along with relativistic effects in the 
total cross section. 

Below we analytically derive the total cross section for 
the K photoelectric effect near the threshold in a screened 
Coulomb field. As in Ref. 1, the higher multipoles (retarda- 
tion) and relativistic effects are taken into account to within 
terms on the order of ( a Z )  inclusively. Since the relativistic 
corrections are small (about 20% for heavy atoms' ) near 
the threshold, screening is considered only in the leading 
terms of the expressions for the amplitude and the cross sec- 
tion which constitute the nonrelativistic limit of the corre- 
sponding quantities. 

2. ELECTRON WAVE FUNCTIONS IN A SCREENED NUCLEAR 
FIELD 

The literature5-' contains numerous analytic approxi- 
mations of the atomic potential as a finite sum of Yukawa 
potentials. In calculations of the photoelectric effect, one 
needs wave functions for an electron moving in the field 
created by a nucleus with a charge Z and with Z - 1 elec- 
trons. Such a field can be written in the form 

n 

(1 
where 

n 

a,= - l , h-0 .  a.=O. 
i - i  

The other ai and /Zi are chosen individually for each atom. 
Condition ( l a )  ensures the correct behavior of the potential 
at short and long range: 

r - 0  aZ a v ---, v r 2 - - .  
r r 

( l b )  

To simplify the equations below, we introduce the nota- 
tion: 

By virtue of property ( l a ) ,  the result of applying Sn to a 
function which is independent of A is zero: 

The wave function V, and energy E of a bound electron 
can be found by perturbation theory if V - V, in ( 1) is 
adopted as the perturbation. Using the expressions derived 
in Ref. 9, we have, in first-order perturbation theory, 
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Here Yk and E, are the wave function and energy of a K 
electron in the nuclear Coulomb field. In deriving (3)  and 
(4)  we used a series expansion in the parameter Y - rK/rA, 
where r, and r, are the average radii of the K shell and of the 
atom. It is necessary to restrict the discussion to terms - Y' 

here because the screening correction in second-order per- 
turbation theory is9 - (s, v2)'. 

We expand the wave function Y, of the final state of an 
electron with a momentump, in partial waves: 

To derive Y, with the appropriate asymptotic behavior (a  
plane wave plus a converging spherical wave), we need a 
radial function R,, which has the behavior 

RPl (r) rzme-ibl sin (pr-ln/2+E In 2pr+s1), (6 )  

where6 = q/p, and 6, is the scattering phase shift. We write 
6, as the sum 

where a, = arg T ( I  + 1 + il) is the Coulomb phase shift, 
and 9, is the additional phase shift which stems from the 
difference between the atomic field and a Coulomb field. 
Choosing a regular solution u,  ( r )  and an irregular solution 
u, ( r )  of the Schrodinger equation for the Coulomb field, in 
such a way that the condition 

holds (the prime means a derivative with respect to r ) ,  we 
can construct a radial wave function for the screened field in 
the following form: 

Rpl=e-~a~ fpl ( r )  (9)  

where 

W=2m (V-V,) =-2qSle-"/r- 0, 
L+O 

(10a) 

U, (r) = enE/' I l-(l+i+iE) I (2pr) l + ,  

217 (21+2) 

e-nE/2 v, (r) = - 
1 I'(l+i+iE) 1 

.(-2pr) '+' 
P I'(l+l-iE) 

Here F(a, 6, z) and Y (a, 6; z )  are, respectively, the regular 
and irregular confluent hypergeometric functions. 

The Coulomb wave functions are normalized in accor- 
dance with 

ul (r) I .,,-sin (pr-ln/2+E In 2pr+0r), 

1 
(11) 

vl (r) I,,, - - - exp{-i(pr--ln/2+g In 2pr+ol)). 
P 

This choice of u,  ( r )  and u, ( r )  leads to the asymptotic behav- 
ior in (6)  for R,, ( r ) .  In addition, u, ( r )  is a real function, 
while u, ( r )  can be written in the form 

where X, ( r )  is a real function, normalized by the condition 

xl (r) I,+,--cos (pr--Zn/2+E In 2pr+ol). (13) 

We introduce the functionL0 y, ( r ) :  

It is related tof, ( r )  by 

It is convenient to express the function f, in terms of y, 
( f, = L ; Iy, ) when the process occurs in the inner region of 
the atom. In this case, y, ( r )  is determined by the behavior of 
the potential W(r) in the atom, and the potential over the 
entire range of r need be known only to find the normaliza- 
tion factor L,. 

Taking iterations in ( 14), we find a perturbation-theo- 
ry series in the additional potential Win ( 10a). The use of 
this series to calculate L, leads to the appearance of integrals 
of the following sort, which diverge as A - 0: 

However, one can construct an expression for L, in which 
the terms which diverge as A -0 are present only in the phase 
factor and do not affect the cross section of the process. For 
this purpose we introduce the functions 

(here and below, we are omitting the subscript I from the 
functions and the phase shifts which depend on 1). Substitut- 
ing (12) into (14) and (16), we find 

Differentiating (17) with respect to r, and using (18), we 
find 
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where 

1 I I 
,'j' = - X2W, F = - p W ,  B = - u2W. 

P 
(21) 

P P 

The system of coupled equations in (20) is to be solved un- 
der the boundary conditions 

A ( 0  1 ,  A2 (0) =0, (22) 

which follow from definition ( 17). These equations can be 
uncoupled by making use of the substitutions 

A,=g(r) cos 6( r ) ,  A2=g(r) sinft(r). (23) 

Then 

Of=-B+F sin 26+((D-S) sina .6., .6.(0)=0. (25) 

The normalization factor L in ( 19) becomes 

L=g(oo) exp {i6(=) ). (26) 

The integral which determines g(  oo ) remains finite in the 
limit R. + O  because of the oscillatory behavior of the func- 
tions F and S - @. This result means that the integral con- 
verges at distances r < A  - '. At such r, the phase function 
vanishes [ 9 ( r )  +0] as R. -0 and can be found by perturba- 
tion theory. This circumstance leads in turn to a perturba- 
tion-theory series forg( oo ). The only term which diverges as 
R. -0 is in the phase 9( co ) and is given by 

OD OI 

1 2~ 
0 ( = ) = -  J ~ d r = - -  J i r 2 ~ d r = - ~ ~ , l n - - + o ( h ) .  (27) 

0 p 0 
h 

Since the result in (27) does not depend on the angular 
momentum I, the part of the solution which is singular in 
terms ofR. can be separated out as a common phase factor in 
front of the overall wave function of the continuum. This 
fact was pointed out in Refs. 11, 12, and 8. 

3. CALCULATION OF THE AMPLITUDE FOR THE 
PHOTOELECTRIC EFFECT IN A SCREENED FIELD 

The amplitude of the nonrelativistic photoelectric ef- 
fect, Q, is given in the dipole approximation by 

1 
Q =- j ~ ~ * ( - i l e ) ~ .  hr ,  (28) 

m 

where e is the photon polarization vector. We substitute 
wave functions (3) and (5)  into (28). After integrating over 
the angular variables in the sum over partial waves in ( 5 ) ,  we 
are left with only the I = 1 term. Using definitions (9),  ( lo),  
( 141, and ( 15 ), we find the following expression for the 
complex-conjugate amplitude: 

where 

The function GR is related to Y, by the equation 

The integral in (29) converges at distances r-7,-I-r,, 
where the perturbation Wis small, so the amplitude Q can be 
found by perturbation theory. In first order in W we have 

c+ 

P 
TK1 = ure-q'RKa dr. 

We will first calculate the Coulomb amplitude Tc and the 
correction to it, T ;  . Using the Coulomb function u,  ( r )  from 
( lob)  with I = 1, we find 

Tc=N, ($4- p2) -' exp (-2E; arcctg e) , 
N,=2p2 exp (nEI2) Ir(2+i%) I ,  (31) 

Tg1=TcS,v2 [-J/,+69/a6v+O(v2, z-') ] (32) 

(the Coulomb parameter is {) 1 near the threshold). 
The integral Y ( 7 )  in (30b) can be calculated through 

the use of expressions ( 18) and (23) for y ( r ) ,  but this is not 
the simplest approach. We will derive for 7 ( q )  an integral 
equation which can be solved easily in any order of perturba- 
tion theory. For this purpose we consider the integral 

w 

Y (p) = J e-''ry dr, 
0 

as a function of the parameterp. Differentiating with respect 
top, and using a Schrodinger equation for the function y, ( r )  
with I = 1, we find an equation for F ( p ) :  

We write the solution of this equation in the form 

g (p) = (p2+pz) -' exp (21 arctg Y) 
P 

x {c-~~s,  5 ~r (x2+p2) exp (-25 arcg Y) P Y (z+h) d r  }, 

where C is an integration constant. In principle, this con- 
stant may depend on the screening parameter A, so we would 
like to find it without taking the limit A-0. From (35) we 
have 

C = lim P- 00 e-*Ep4Y (p) . 
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The integral 7 ( p )  converges at r-p - I. Its value at p - co 3 - apm Q 1' = - I e n ,  'un., 
dR rn 4Tr (44) 

can be found since at small r the function y( r )  is the same as 
the Coulomb function u ( r )  : 29n2e-'a m 

unr=ooF (E,  A), 00 = = 336- (b)  (45) 
3mo o 

1 
, y(r)=u(r)+-[X(r) juzWdr-~( r )  jXUWdr] F(E, A )  =R(E) [1+20(5L) I ,  E=rlp, (46) 

P 0 0 

=u(r) {1+O(q2Pv)). 

We thus find 

C = lim e-"tp4Ye ( p) =e-ntNp, 
ll+ - 

R (g) = (1l-g-') -3 exp (4-4g arcctg E )  
(37) 

5 94 = I - - g-' + - ~ - ~ + o ( g - ~ ) ,  
3 45 (47) 

where N, is given in (31 ). 
Treating the integral term in (35) as a perturbation, 

and going through an iterative procedure, we find a pertur- 
bation-theory series. The terms of this series can be calculat- 
ed easily if the integrand is expanded in A and p. Retaining 
terms up toil ' inclusively, and restricting the discussion to 
the leading term in the expansion inp, we find, after the first 
iteration, 

y (?l) =TC {l+R/sSav (l-37140v+i71zsv"~. (39) 

We are left with calculating the normalization factor of 
the wave function of the continuum, L in (26), for I = 1. In 
first-order perturbation theory we have 

m m 

We use an expansion of the Coulomb functions u( r )  and 
~ ( r )  in series in Bessel functions.I3 This expansion is effec- 
tively an expansion in powers ofpr/g, and at {Bpr we need 
retain only the first term of the series: 

where J, (x)  and Y3 (x)  are, respectively, Bessel and Neu- 
mann functions. 

Evaluating the integral in (40) with the functions in 
(41), we find 

[expression (42) does not contain a term cubic in A ] .  
Combining (29)-(32), (39), and (42), we can express 

the nonrelativistic amplitude for the photoelectric effect in 
the following form: 

where 

I QC 1 =4nglenpl m-.'NxTEI (43a) 

4. CROSS SECTION FOR THE PHOTOELECTRIC EFFECT 

The differential cross section (da  "'/dR) and the total 
cross section (a "') for the nonrelativistic K photoelectric 
effect are given by the following expressions when two elec- 
trons in the K shell are taken into account ( f i  = c = 1 ): 

The electron momentump is related to the screening param- 
eter A by energy conservation: 

Here E, andp, are, respectively, the energy and momentum 
of the electron in the Coulomb field, and w is the energy of 
the photon. Considering the correction to the energy only in 
the term on the order ofp2, we can write (46) in the form 

This expression has no terms linear in A, so we have 
further support for the validity of the result. Our reasoning 
here is that, if the potential Vin ( 1 ) is expanded in powers of 
Ar, the term linear in A in this expression will not depend on 
r. Its presence shifts the origin of the energy scale in the 
problem, but it cannot affect the probability for the physical 
process, since the total energy is always determined within a 
constant. A result similar to (49) was derived in Ref. 3 by a 
totally different method, through the addition of a polyno- 
mial in Ar to the Coulomb potential. This polynomial was 
chosen in Ref. 8 in such a way that it gives a fairly good 
description of the inner region of the atom. In the outer re- 
gion, in contrast, that potential has the wrong behavior. In 
our approach, an expansion in the screening parameter is 
carried out only in the final expressions. If this expansion is 
illegitimate," the expressions for the cross section should be 
rederived without an expansion in A. In that case, however, 
they lose their attractiveness. It is thus desirable to choose 
the potential as in ( 1 ), with parameters which make it possi- 
ble to use an expansion in A and to retain an acceptable accu- 
racy. A potential satisfying these requirements was found in 
Ref. 8. 

If relativistic effects and the contribution of the higher 
multipoles in the approximation of the Coulomb field are 
now taken into account, as in Ref. 1, we find the total cross 
section for the relativistic K photoelectric effect in the ener- 
gy region - ' 5 aZ to be 

o=cso{P(g, h) -0,393 (aZ) 2-0,144(aZ)' 
+1,023 (aZ) 2g,-Z+0 (a6Z6) ). (50) 

Table I shows results calculated from this expression. 
Shown for comparison in this table are the results of numeri- 
cal relativistic calculations by Racavy and Ron.2 The quan- 
tity F(<, A )  was calculated for the potential of Ref. 8, which 
is an analytic approximation of a numerical Hartree-Fock- 
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TABLE I. Comparison of cross sections for the photoionization of an atomic K shell found from 
expression (50) (01 and numerical calculations by Racavy and Ron2 (uRR ). 

I I I I I 

- - 

*A(n) means A.10" 

Slater potentialI4 (Racavy and Ron used a modified Fermi- 
Amaldi atomic potential, for which there is no analytic 
expression). In the case of uranium, a Moliire potential5 
was used to calculate P(g ,  A )  .That potential is a good model 
of the Thomas-Fermi potential, which was used for uranium 
in Ref. 2. 

It can be seen from Table I that the agreement between 
the analytic and numerical calculations is good, particularly 
in view of the circumstance that the potentials used in the 
calculations being compared here were only approximately 
the same, not identical. 

In conclusion I wish to thank V. G. Gorshkov and M. 
G. Kozlov for useful discussions. 

' ' For the Moliere p~tential,~.' the second term ( - R ' ) in the expansion in 
(49) is greater than the first ( -1 ') for Z <  20. 
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