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A scale-invariant theory is derived for the linear optical properties of nontrivial fractals (fractal 
clusters) in the collective region, i.e., near the center of the absorption band. A model of dilute 
fractals is introduced and is used to find the shape of the wings of the absorption line in the binary 
approximation. Strong fluctuations of the local fields in nontrivial fractals are described. These 
fluctuations cause a giant intensification of the Raman and nonlinear parametric scattering of 
light by fractals. A theory is proposed for the spectrally selective and polarization-selective 
threshold photomodification of fractals. The linear spectra and photomodification of fractals 
have been simulated numerically by the Monte Carlo method. The results of this simulation are 
compared with the analytic theory. The values of the optical spectral dimension are found for 
fractals ofthe types studied. 

1. INTRODUCTION A fractal is called "nontrivial" if D is smaller than the di- 

Mandelbrot has introduced the concept of "fractals," 
which are self-similar (scale-invariant) mathematical ob- 
jects which have some nontrivial geometric proper tie^.'.^ 
Several physical realizations of fractals exist (see, in particu- 
lar, the review by Zel'dovich and Sokolov3 and the collec- 
tion of papers in Ref. 4).  In the present paper we will be 
discussing what we regard as one of the most important real- 
izations: fractal clusters (see, for example, the review by 
Smirnov5 regarding the properties of these entities). 

By "fractal cluster" we mean a system of interacting 
material particles, called "monomers," which has the prop- 
erty of scale invariance (in the statistical sense) in an inter- 
mediate range of sizes r, namely, R, < r g  R,, where R, is a 
characteristic distance between nearest monomers, and R, 
is the size of the cluster. For brevity we will call such clusters 
"fractals." This usage should not lead to any misunder- 
standing, since we will not be discussing other realizations of 
fractals here. 

Fractals are quite common in n a t ~ r e . ~ . ~  Examples are a 
wide class of products of diffusion-controlled aggregation in 
liquids and gases; particles in colloidal solutions, sols, and 
gels; soot and smoke particles; and most macromolecules. 
Rough surfaces, disordered films on surfaces, and porous 
objects (microfilters and adsorbents, including activated 
charcoal, porous glasses, aerogels, several heterogeneous 
catalysts, etc.) also exhibit a fractal structure in an interme- 
diate range of sizes in many cases. 

A consequence of the scale invariance of fractals is a 
power-law dependence of the correlation functions on the 
coordinates. In particular, the binary density-density corre- 
lation function in the intermediate asymptotic region can be 
written in the form 

where the index D is called the "fractal dimension" (more 
precisely, the "external Hausdorff dimension") of the frac- 
tal [expression ( 1 ) also fixes the definition of the constant 
R, 1. A consequence of ( 1 ) is that the number of monomers 
in the fractal, N, and the average density of the fractal, p, 
have the behavior 

mensionality of the space in which the fractal is embedded 
(i.e., if D < 3, in the case at hand). It can be seen from (2)  
that the density of a nontrivial fractal asymptotically (at 
R, % R, ) approaches zero. This property, combined with 
the strong binary correlation in ( 1 )-which results in a sub- 
stantial binary interaction between monomers-is responsi- 
ble for the major role of fluctuations in a nontrivial fractal. 

Among the physical properties of fractals, the optical 
properties have been studied least (in the collection of pa- 
pers in Ref. 4 on the physics of fractals, for example, there 
are no corresponding reviews). The linear optical (dipole) 
polarizabilities of fractals have been the subject of several 
theoretical Two of these ~tudies,~.' which were 
based on various modifications of the mean field method, did 
not deal fully with strong fluctuations (in the density, local 
fields, etc.) in a fractal. In two papers coauthored by one of 
the present  author^,^^^ the fluctuations in the nearest neigh- 
borhood of a monomer played a governing role. Those pa- 
pers, however, used the binary approximation: The interac- 
tion of a monomer with only its nearest neighbor was 
considered exactly; the effect of the other monomers was 
dealt with only by means of a Lorentz field. 

If the monomers are high-Q optical resonators (e.g., 
microscopic particles of noble or other metals having a 
prominent luster), the strongly fluctuating local fields in a 
fractal may be significantly stronger than the exciting exter- 
nal field. It is this circumstance which is responsible for the 
huge Raman scattering by  fractal^.^.' As always, nonlineari- 
ties increase the role of fluctuations. This effect is pertinent 
to the huge size of the nonlinear optical polarizabilities of 
fractals which was predicted in Refs. 10 and 11. 

This prediction has been verified experimentally for 
phase conjugation in degenerate four-wave parametric pro- 
cesses involving fractal clusters of silver.I2 Recent experi- 
ments have revealedI3 a photomodification of such clusters 
which is selective in terms of the wavelength and polariza- 
tion of the light. The effects which have been observed are 
rich in physical content, hold the promise of significant ap- 
plications, and thus deserve a deeper theoretical study. 

Our purpose in the present paper is to derive a theory 
for the optical properties of fractals, dealing fully with their 
fluctuation properties, but going beyond the binary approxi- 
mation. We focus on the scale-invariant theory. 
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2. BASIC EQUATIONS AND ACCURACY OF THEIR 
SOLUTIONS 

We consider a model fractal of a system of N polarizable 
monomers with a dipole-dipole interaction at optical fre- 
quencies. The monomers are at the points ri. The dipole mo- 
ments di induced at the various monomers obey the well- 
known system of equations 

where the Greek letters specify tensor components (a  re- 
peated index implies a summation), the Latin letters number 
the monomers, X, is the dipole polarizability of an individ- 
ual monomer (which is assumed to be isotropic, so that some 
unnecessary complications can be avoided), EIO' is the elec- 
tric field of the external (exciting) radiation at the position 
of monomer i, rU = ri - r,, and n'g' = rg/rU. 

For use below, we will rewrite Eq. (3) as an operator 
equation. To do this, we introduce the matrix W, with the 
elements 

yhich acts in the 3N-dimensional space of the vectors 2 and 
E 'O' with the components ,. 

(ia 1 d) =dim, (ia 1 i(')) =E,~O' .  ( 5 )  

The basic system of equations then becomes 

where we have introduced the complex variable z with a real 
part-X and an imaginary part-3: 

To find the accuracy properties of the solution, we 
make use of an expansion in the eigenfunctions of the opera- 
tor W (the same expansion turns out to be the most powerful 
computational approach in a numerical simulation, as we 
will see below). The symmetric real matrix W is diagonal- 
ized by the orthogonal transformation 

where diag(w, ) is a diagonal real matrix of the eigenvalues 
w,, and the superscript T means transposition. The formal 
solution of our basic equation (6)  has the obvious form 

Expressing the unknown values d ,  in terms of the eigenval- 
ues w, and the components of the corresponding eigenvec- 
tors ( n )  U J ia )  on this basis, we find 

We will be discussing the case in which the cluster di- 
mensions R, are much smaller than the wavelength of the 
radiation, A. The external field EjO' can then be assumed to 
be uniform (independent of j). In this case the dipole mo- 
ment induced at monomer i can be expressed in terms of the 

corresponding linear polarizability XI:; in the following way: 
( f )  (0 )  

dia=~ae Ea . (11) 

It is clear from ( 10) that the following expression holds for 
x:; : 

As an analytic function of z, the polarizability x:; is 
different from that in the expression in terms of the frequen- 
cy w. In particular, this function is not "real," in the sense 
that we havex$*(X) #x$ ( - X). Nevertheless, the stan- 
dard Kramers-Kronig formula holds here in terms of the 
variable X, as can be verified directly on the basis of solution 
(12): 

ce 

Here we are using the standard notation for an integral 
which is to be understood in the principal-value sense. We 
will also derive several other exact relations for XI:; below; 
these relations are consequences of the real nature of the 
eigenvalues w, , the orthogonality ofthe matrix Uin (8),  and 
the positivity of S in (7),  which reflects the normal absorp- 
tion in the monomer (we are assuming that there is no popu- 
lation inversion). 

Some exact sum rules also follow from the form of solu- 
tion (12): 

m OD 

1 - J 1m di' (X) dX=6.@, f Fie x::' (X) dX=O. ( 14) 
-0, - 0, 

We see, in particular, that the integral absorption" over X is 
conserved: It is the same as that of an isolated monomer. 

We can now derive an exact relationship which is an 
analog of the optical theorem. For this purpose we find from 
( 12), with the help of (8), a quadratic form of the polariza- 
bility summed over the monomers: 

Carrying out an elementary expansion in simple fractions in 
(15), 

and introducing the average polarizability of the monomer 
in a given cluster, 

we find the exact relationship which we need: 

Using ( 18), we can find the square of the local electric 
field Ei acting on a monomer, averaged over a cluster. This 
field determines the enhanced Raman scattering by a cluster 
and also the photomodification of the cluster (more on this 
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below). The local field is related to the solution of system 
(6)  in the obvious way: 

We assume for definiteness that the exciting field is directed 
along the z axis. From ( 18) and ( 19) we find 

This relationship is reminiscent of the Callen-Welton 
theorem (or fluctuation dissipation theorem). A result 
which is the same as (20) aside from the notation has been 
derived previously in the binary approximation [see Eq. 
(45) in Ref. 91 and has served as the basis of a theory for the 
huge Raman scattering of fractals. 

We wish to stress that Eqs. (13), (14), (18) ,  and (20), 
derived above, areexact. They are valid for an arbitrary clus- 
ter (fractal or otherwise), without any averaging over real- 
izations ?r orientations. The only important points are that 
the clu ,ter consist of monomers between which there is a 
binary interaction, that these monomers exhibit a linear re- 
sponse to an external field, and that they have a normal ab- 
sorption (without a population inversion). 

We now make use of the symmetry under rotation. 
After we take an average over the orientations of the cluster 
as a whole (we denote this procedure by (...), ), the polariz- 
ability tensor reduces to a scalar: 

For the first moment o f x  we find, directly from ( 12), 

According to ( 14), the first term on the right side of (22) is 
zero. The second term can be put in the form Z,,  (ial W I ja) 
with the help of (8).  Making use of the fact that interaction 
tensor (4)  vanishes when we convolve in terms of the indices 
a ando, we reach the conclusion that the second term is also 
zero. We thus find the exact sum rule 

which means that the center of the absorption of the cluster 
is at the point X = 0. 

The equations derived above are universal because (in 
particular) of the use of the variables X, S, which are natural 
for this particular problem. These variables of course depend 
on the frequency w, but not in a universal way. Although to 
do so is not necessary for the theory, it is useful to think of 
the w dependence of monomers which have one prominent 
resonance, with a frequency w,, a transition dipole element 
d,, , and a relaxation rate (homogeneous width) I'. We then 
have 

where fl = w - w,. We see that in this case X is the relative 
frequency deviation, while S is the relative width of the reso- 
nance in an isolated monomer. The first of relations (14), 
combined with (23), results in the satisfaction of the well- 
known dipole sum rule for the polarizability. 

3. POLARlZABlLlTY OF A FRACTAL IN THE COLLECTIVE 
REGION 

In deriving the exact results above, we did not make use 
of the specific properties of fractals. Nevertheless, we will 
make substantial use of these results below in our description 
of the collective polarizability of a fractal. 

The self-similarity which is a fundamental property of a 
fractal entity means that the fractal reproduces itself upon a 
variation in a spatial scale. Since a fractal is in general a 
random entity, this reproduction occurs in a statistical sense. 
A variation in the length scale implies a simultaneous change 
in the scale of the eigenvalues w, and of the variable X. It 
follows that the intermediate asymptotic behavior of observ- 
able quantities as functions of w and X must be a power-law 
behavior. 

We will first describe Imx(X)  (the absorption), and 
then we will use ( 13 ) to examine Re x(X) .  Using (7),  we see 
from ( 12) that a universal power-law behavior of Im x ( X )  
can prevail only if IX I $-a, in which case we can write 

where (...) means an average over the ensemble of fractals. It 
follows in particular that the absorption determines the ei- 
genstates for which w, = X. These states are characterized 
by a coherence length L,, and they are "collective" (i.e., 
delocalized among many monomers) in the intermediate 
asymptotic region: 

We will estimate the length L, below on the basis of the 
transformation properties of a quantity upon a change in 
spatial scale. 

In the collective region, (26), the absorption profile 
Im x ( X )  must be a power law. The eigenvalue problem of 
the operator W does not have an exact symmetry under a 
change in the sign of w,. Consequently, there is no parity 
with respect to X. We thus cannot immediately rule out the 
possibility that the indices will be different for X >  0 and 
X <O. However, sum rule (23), combined with the scale in- 
variance of the system, guarantees that these indices are 
identical for the absorption and that furthermore the corre- 
sponding coefficients are equal to each other. A symmetric 
power-law dependence thus holds in region (26) (and at 
IX 1 %  6 ) .  The coefficient of this power-law dependence is de- 
termined by R, and can be estimated from dimensionality 
considerations: 

where do is some index which we will call the "optical spec- 
tral dimension." From the requirement of convergence in 
the first of sum rules ( 14) we conclude do > 0. We wish to 
stress that the symmetry of the absorption with respect to X 
is an inexact property, prevailing only in the collective re- 
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gion (compare with the discussion below of the binary re- 
gion). 

Let us examine the transformation properties of quanti- 
ties upon a change in the minimum scale R, (a  renormaliza- 
tion transformation). We assume an initial value R, = 1 
(i.e., we are expressing lengths in units of R, ). An increase 
in R, implies a coarsening of the spatial resolution with 
which we are looking at the fractal. This increase can be 
achieved in the following way: l 4  In the fractal we distinguish 
fluctuations with a length scale 1% 1. We combine the mon- 
omers involved in such a fluctuation into a new (renormal- 
ized) monomer. It follows from the property of self-similar- 
ity that the resulting cluster is a fractal, with the same 
critical exponents and with a value R, -1. The renormaliza- 
tion transformation conserves the absorption profile in 
(27), with a new parameter X [under the condition that the 
condition for a collective nature, (26), remains satisfied]. 

Let us determine the X renormalization law and the 
coherence length L,. The total absorption of the fractal 
should be conserved under a renormalization transforma- 
tion. This requirement reduces to the following requirement 
when we make use of (2)  and (27): 

It is clear that X transforms in accordance with 

In the case of a trivial fractal (D  = 3) we would have 
IX I a R , 3, regardless of the exponent do;  i.e., we would 
have Re X, a R i. The effect is to reproduce the proportion- 
ality of the polarizability of the composite monomer to its 
volume. 

For greatly disordered systems such as fractals, Alex- 
anderi4 has suggested that collective states with a certain 
value of the frequency (the role of the frequency is being 
played here by the variable X) are characterized by a single 
coherence length, which is simultaneously the wavelength 
and the localization radius of the excitation. This property is 
a consequence of the self-similarity of the fractal and its col- 
lective states. When we go over to the trivial (three-dimen- 
sional) system, the generality of this property is obviously 
destroyed: The excitation localization radius may be far 
larger than the wavelength (the case of Anderson localiza- 
tion). 

Using (29), we can construct from X and R, {he sole 
invariant of the renormalization transformation, which has 
the dimensionality of a length. According to the discussion 
above, this invariant must be equal to L,: 

In the D = 3 case, expression (30) has a singularity (not 
surprisingly, in view of the discussion above). This singular- 
ity nevertheless has a simple physical meaning. To demon- 
strate it, we consider the inverse of relationship (30), which 
is the dispersion relation for excitations of the fractal: 

For D = 3 we see that IX I does not depend on L, (the excita- 
tion wavelength). This situation corresponds precisely to 

the dispersion relation (the presence of a spectral gap) for 
long-wavelength surface plasmons, into which dipole excita- 
tions of a fractal convert in the limit D- 3. 

With a normal dispersion relation, the "frequency" X 
should fall off with decreasing wave vector, i.e., with increas- 
ing L,. Using (3  1 ), we see that this requirement leads to a 
limitation do < 1, which we will adopt below (this limitation 
is also supported by the numerical calculations, as we will 
see below). We will not make any further use of the renor- 
malization transformation; we go back to our initial value 
R, = 1. Condition (26), which defines the collective region, 
then takes the following form, when we make use of (30): 

In other words, this region stretches out in the direction of 
small IX I and thusoccupies thecenter of the absorption band 
[cf. (24) 1. The necessary condition for a power-law behav- 
ior, /X  I sS, is evidently compatible with (32) only if the 
quality factor Q of the resonance at the monomer is high: 

It follows from (32) that as the fractal approaches the state 
of a trivial fractal (D- 3) the region of collective behavior in 
terms of X degenerates to a point, which is the point corre- 
sponding to the frequency of the surface plasmons. The finite 
width of the zone of collective states of the fractal is thus due 
entirely to its nontrivial nature. 

We now seek the relationship between the absorption of 
the fractal, Im x(X) ,  and the density of its eigenstates, v(X), 
which we introduce in the usual way: 

This density is normalized to a single monomer. Its mean 
value is zero because the trace of interaction tensor (4)  is 
zero: 

0 m 

j v (1) dX=3, 5 xv (x) dx = Sp (W) =O. (35) 
- ce - m 

The value of the first integral in (35) is determined by the 
vector nature of the interaction between monomers. 

Singling out the terms with i = j in expression (25), 
making use of the orthogonality of matrix U in (8 ) ,  and 
comparing the result with (34), we find 

It follows from (35) that the first sum in this expression 
satisfies both sum rules for Im X, ( 14) and (23). Corre- 
spondingly, the zeroth and first moments in terms ofX of the 
second term in (36) are exactly zero. Since this term must 
also have a power-law dependence on X under condition 
(32), it is zero. In the collective region we thus have 

Relationship (37) has a transparent physical meaning. 
In a greatly disordered system such as a fractal, all the col- 
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lective eigenstates contribute to the optical absorption with 
equal weights. We wish to stress that relationship (37) 
between the absorption and the density of states is not exact. 
For example, it is easy to see that at the wings of the absorp- 
tion profile described in the binary approximation (as dis- 
cussed below) this relationship is violated. In ordered sys- 
tems, the sum rules hold, and only a few states of the 
corresponding symmetry contribute to the absorption. 

A power-law behavior of the density of eigenstates of a 
fractal as a function of the frequency was originally intro- 
duced by Alexander and Orbach" for a problem involving 
mechanical vibrations (fractons). The index 2, which corre- 
sponds to do in (37), was called a spectral (or "fracton") 
dimension in that earlier study. In general, the value of a 
spectral dimension is determined by the internal geometry of 
the fractal. For a vector problem it is also determined by the 
method by which the fractal is embedded in three-dimen- 
sional space.14 In principle, a spectral dimension may also 
depend on the potential of the interaction between mon- 
omers. In terms of the magnitude of the optical spectral di- 
mension, d, thus does not necessarily have to be the same as 
the vibrational spectral dimension 2 in Ref. 15. 

A dispersion-relation for oscillations of a fractal was 
derived in Refs. 14-16 in a variety of ways. In our notation 
that relation is 

and is clearly different from ( 3  1 ) . In particular, for a trivial 
fractal (D = 3) relation (38) predicts a gap-free dispersion 
law which is linear at 2 = 3. Analysis of Refs. 14-16 shows 
that the approach taken there is valid only for excitations of 
a Goldstone type (acoustic phonons, magnons, and so 
forth), whose creation and annihilation operators transform 
in the long-wavelength limit into the generators of symmetry 
transformations (translations, rotations, and so forth) of 
the system. The dipole excitations which are pertinent to the 
problem at hand are not Goldstone excitations, since they 
transform into surface plasmons, for which there is a gap in 
the spectrum [see the discussion of Eqs. (31) and (32) 
above]. For the problem at hand, it is thus dispersion rela- 
tion (31), rather than (38), which holds. 

We conclude this section of the paper with a brief dis- 
cussion of R e x ( X ) .  Since the kernel of Hilbert integral 
transformation ( 13) does not by itself ensure convergence, 
both the collective region ( IX / < 1 ) and the wings of the ab- 
sorption profile ( JX I $1  ) contribute to Re x ( X ) .  Conse- 
quently, Re x ( X )  is not described by a power law, even in 
region (32). The same conclusion could be reached by work- 
ing directly from ( 12). 

4. DILUTE FRACTALS IN THE BINARY APPROXIMATION 

In the preceding section we examined the collective re- 
gion, in which the natural excitations of the fractal are deter- 
mined by the long-range interaction and span many mon- 
omers. The observable quantities determined by such 
excitations are insensitive to the structural details of the 
fractal, and they are also insensitive to the nature of the 
short-range interaction of monomers. They are character- 
ized by universal power laws. In the present section of the 
paper we describe the wings of the spectrum of a fractal (the 
region ( IX I k 1 ). In this case the external field interacts with 

natural excitations of the fractal, which are localized at only 
a few monomers, according to (32 ) .  Consequently, observ- 
able quantities are generally sensitive to these details. 

Since it is impossible in principle to formulate a univer- 
sal description of the wings of the fractal spectrum according 
to the arguments above, we would like to use a model of a 
fractal with an extremely simple small-scale structure. As 
such a model we introduce "dilute" fractals, which are con- 
structed by coarsening the structure of the original fractals. 
Instead of the renormalization transformation described 
above, we use a simple and efficient coarsening algorithm 
which we call "dilution" (hence the name of the model). 
This algorithm can be summarized as follows: Each mon- 
omer of the original fractal is either left in place, on a random 
basis with some probability P< 1, or taken out of the fractal, 
with a probability of 1 - 0. The fractal as a whole is then 
compressed in size by a factor of (1/0) The result is a 
fractal which has the same critical exponents determining 
the intermediate asymptotic behavior, and it has the binary 
correlation function in ( 1 ) (R, = 1 ) . This correlation func- 
tion is valid to small distances on the order of 
r, = (0) < 1. Obviously, there is no change in the polariz- 
ability of the monomer (the variablez) upon dilution, while 
the overall radius of the fractal decreases by a factor of r,. In 
the limit fl-0, a repeated dilution would again generate a 
dilute fractal, differing only in the value of R,. 

Dilution (random decimation) eliminates local struc- 
ture of the fractal (the connectedness, the distance to the 
nearest neighbor, the number of nearest neighbors, etc.) 
without altering the properties at intermediate scales 
r, < r <  Rc and thus without altering the behavior of quanti- 
ties in the collective region (as discussed above). 

To describe the short-range interaction, which is im- 
portant at IX I k 1, we adopt the binary approximation, 
which was used in Refs. 8-1 1. In other words, we take the 
interaction of each monomer with its nearest monomer into 
account exactly, while we ignore the effect of other mon- 
omers. The polarizability tensor of a monomer in a pair, x$', 
is given by8 

where r, is the radius vector of this nearest neighbor, and 
n = r,, /r,, . After taking an average over r,, , we find the po- 
larizability of a monomer in the fractal: 

wherep(r, ) is the distribution with respect to distance to the 
nearest neighbor. Under the condition IX I $6  we find from 
(40) [cf. (25) 1 

rz 
Irn x = - rn4 [ 2 p  (r,)  0 ( X )  + 2"" ( 2 " ~ ~ )  0 (- X ) ]  I p n = l ~ ~ - l / l  , 9 

where O ( X )  is unit step function. 
Under the condition IX / $ 1, small distances r,, domi- 

nate (41 ) . At such distances we have the following asympto- 
tic behavior, which follows from ( 1 ) and which is universal 
for dilute fractals: 
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Substitution of (42) into (41 ) leads to an expression for the 
shape of the remote wing of the absorption profile of a dilute 
fractal: 

2nD 
Im x = - I X  I - (1+D/3)  [0 ( X )  + ZD/"-'O ( - X )  1. (43) 

9 

Although this is a power law, the power is greater than 1.0 in 
absolute value, and the spectrum is asymmetric under a 
change in the sign of X, in contrast with the behavior in the 
collective region [cf. (37) and the discussion which fol- 
lows]. By adding a third monomer to the pair of nearest 
monomers, we can show that the binary interaction de- 
scribes the wing shape in (43) correctly on the order of the 
parameter 1/X '. 

In the case r, - 1, the distribution p ( r ,  ) cannot be 
found in a universal form, since it is determined not only by 
( 1 ) but also by higher-order correlation functions. To find a 
rough estimate, we ignore these higher-order correlations. 
The number of monomers in a fixed region around a given 
monomer then obeys a Poisson distribution, and we can 
write 

Substitution of (44) into (40) leads to the expression 

where the function of a complex variable S,  (z) is defined by 
the integral representation 

OI 

and its analytic continuations. The function SD (z) is analyt- 
ic in the complex plane with a cut along the positive ray of 
the real axis; z = 0 is a branch point. The polarizability in 
(45) satisfies all the exact relations derived above. 

Expression (45) has the same shape as one derived pre- 
v i ~ u s l y , ~ , ~  but the function S,  (z) is quite different. The rea- 
son lies in an incorrect averaging over the configurations of 
the pair of monomers in the fractal in Refs. 8 and 9 [an 
incorrect transformation from ( 14) to ( 15) in Ref. 91. We 
wish to stress that all the results of Refs. 8-1 1 nevertheless 
remain valid if the function SD (z) as in (46) is substituted 
into them. 

It is a straightforward matter to show that the density of 
eigenstates of a fractal is symmetric with respect to X in the 
binary approximation and is given by 

The relationship between Im x ( X )  and v ( X )  given by (37) 
is not valid in the binary region. It begins to hold, however, if 
we put the polarizability in (40) in a form symmetric with 
respect to X. The contribution of the binary region thus does 
not disrupt the normalization of relationship (37) for the 
collective region. 

In the binary approximation, one can derive a theory 
for the threshold photomodification of fractals. We recall 
that this effect was observed experimentally by Karpov et 
al.I3 After intense radiation, with an intensity above a cer- 

tain threshold, is applied, the spectra of the fractal clusters 
undergo irreversible changes: Persistent gaps, which are se- 
lective in terms of frequency and polarization, appear in 
them. 

Let us assume that the modification is local and that a 
given monomer becomes modified if the field intensity at it 
(which we will take to be simply the square of the ampli- 
tude) exceeds a certain threshold I, = const: 

In the binary approximation, a pair of nearest monomers 
constitutes a closed system, and the fields at these monomers 
are furthermore equal. We can thus use (20) and find the 
gain of the local field intensity: 

The experimental data of Ref. 13 suggest that this modi- 
fication of monomers is of the nature of a melting or evapora- 
tion. It is thus reasonable to assume that the modified mon- 
omer ceases to contribute to the polarizability of the fractal. 
In this case we find the following expression for the quantity 
of interest-the change in the polarizability (per monomer 
of the original fractal) as a result of the photomodification- 
from condition (48) with the help of (49): 

Here X ,  is the value of the variable X for the frequency at 
which the photomodification was carried out, 
G,,, = 1 + X :/a2 is the maximum possible value of the 
gain factor Gat the given Xm , I  is the intensity of the external 
field, and I,, = Im/G,,, is its threshold value. 

5. RESULTS OF A NUMERICAL SIMULATION 

Fractals of three types, generated by the Monte Carlo 
method, were used (a  software random-number generator 
was used to generate the fractals). 

1. Random walks (D  = 2) were constructed on a cubic 
lattice (the monomers were placed at the sites which were 
visited) and then diluted by a factor of 1000 (P = 0.001; see 
the discussion above). The clusters resulting from this dilu- 
tion contained a mean number of monomers N = 30 (in a 
control, there were N = 15 ) . 

2. Self-avoiding random walks" were constructed by 
trial and error with a step of fixed length and a random direc- 
tion. The monomers were placed at sites and were treated as 
mutually impenetrable spheres with a diameter equal to the 
step of the walk. If a certain step resulted in an intersection of 
spheres, it was discarded. A dilution by a factor of 20 was 
carried out (P = 0.05). The resulting clusters had a mean 
number of monomers = 25. Their fractal dimension, de- 
termined from function ( 1 ), was D = 1.8, in reasonable 
agreement with the known value" D = 1.7. 

3. Witten-Sander clustersI8 were constructed through a 
simulation of a diffusion-controlled aggregation on a cubic 
lattice and then diluted by a factor of 20 to N = 25 mon- 
omers. The value D = 2.5 which was found was close to the 
value 2.51 in the literature." 

As a control, we also used a gas of monomers (D  = 3 ) . 
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The reason for the moderate dilutions in cases 2 and 3 and 
the reLbson why we did not use a very large number of mon- 
omers in the resulting clusters was a limitation in computa- 
tion power. As we will see below, however, even for these 
fractals the polarizability per monomer, X, is essentially in- 
dependent of the number of monomers. 

The polarizability was calculated in accordance with 
( 12) through a diagonalization of matrix (4)  by the Jacobi 
method.I9 That method has the advantage in principle that 
the solutions it generates automatically satisfy exact rela- 
tionships ( 13), ( 14), and ( 18). It also has the advantage (as 
a computational method) that after going through the dia- 
gonalization one time for each cluster one can find solutions 
for arbitrary X and S through a simple summation. As a 
control we also carried out a direct solution of the original 
system of equations, (3),  by the Gauss elimination method 
and by the square-root method. In all cases, these three inde- 
pendent methods led to results which were in excellent 
agreement with each other. The individual polarizabilities 
which were calculated were averaged over a large number of 
realizations (75 or 150 in the N = 15 case). In this case the 
statistical error in the polarizability did not exceed 1 % (of 
the value at the maximum). 

We will demonstrate the basic results here for fractals 
constructed in the random-walk model, since the theoretical 
parameter values are well known in this case: D = 2, 
R, = R,  (68) - where R,  is the step of the lattice. Fur- 
thermore, in the construction of the fractals the limitation in 
terms of computation facilities was unimportant, so it was 
possible to achieve a large dilution (P = 0.001 ). Unless oth- 

FIG. 1. Polarizability of a fractal ( D  = 2, N = 30) for various values of 
the parameter 6: 1-4.33; 2-0.10; 3-0.01. 

erwise stipulated below, we will mean fractals of specifically 
this type. We will discuss other fractals in order to demon- 
strate behavior as a function of the fractal dimension 
( D  = 1.8-2.5). 

Figure 1 shows the results of a calculation of the linear 
polarizability x as a function of the variable X for various 
values of the parameter 6. We see that the Im x (X)  absorp- 
tion profile is a peak, whose width decreases, and whose 
height increases, with increasing Q = 1/S. In accordance 
with the results derived above, the S dependence is weak at 
IX I 2 S. The obvious increase in the statistical noise with de- 
creasing S agrees with (18) (the optical theorem). The 
width of the absorption profile of a fractal is significantly 
greater than the width of the resonance in an individual 
monomer ( -8). Qualitatively, the behavior of the polariza- 
bility for fractals of other dimensions is similar to that shown 
in Fig. 1. 

Figure 2 shows the results of an absorption calculation 
for fractals containing quite different mean numbers of mon- 
omers w. We see that the dependence on has already essen- 
tially reached saturation at %> 15. This fact is a reason for 
using such a characteristic as the polarizability per mon- 
omer of a fractal. 

A fundamental theoretical prediction is a universal 
power-law behavior as a function of IX I ( a  scaling) of the 
absorption [see (27) ] and of the density of states [see (37) ] 
in the collective region, (32). This prediction is illustrated 
by Fig. 3. We see that a power-law behavior of these two 
quantities is indeed exhibited at small values of IX I, within 
the statistical noise. For the other fractals we find a similar 
agreement. It also follows from Fig. 3 that the absorption 
and the density of states satisfy relationship (37) quite accu- 
rately. 

Here are the values of the optical spectral dimension 
(for D = 1.8, 2.0, and 2.5, respectively) found from Fig. 3 
and from corresponding data for fractals of other types:*' 
do = 0.43(3 ), 0.38 (3) ,  and 0.49 (2)  in terms of the absorp- 
tion; and do = 0.54(8), 0.33 (5 ), and 0.5 1 (6),  respectively, 
in terms of the density of states. It follows that for fractals of 
a common type the indices of the functional dependences 
Imx(X)  and v(X) differ by less than two standard devia- 
tions; i.e., the difference is statistically insignificant. In all 
cases, we find do < 1, in agreement with the arguments 
above. Note also that there is no significant correlation 

FIG. 2. The absorption of a fractal (D_= 2)  for 6 _= 0.03 and two values of 
the mean number of monomers: 1-N = 30; 2-N = 15. 
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FIG. 3. Absorption of a fractal as a function of X >  0, in full logarithmic 
scale. 1-Found from exact expression ( 12); 2-expressed in terms of the 
density of states in accordance with (37).  The corresponding straight 
lines were found by linear regression ( 8  = 0.01 ) .  

between do and D. For a trivial fractal ( D  = 3) ,  there is no 
obvious power-law behavior as a function of IX 1, in agree- 
ment with the theory [see, in particular, the condition defin- 
ing the collective region, (32) 1. 

As was shown above, the wings of the absorption profile 
( IX I 2 1 ) for dilute fractals should be described correctly 
(within the parameter 1/IX I ) by the binary approximation. 
A systematic calculation o fx (X)  in this approximation was 
carried out by the following numerical procedure. The near- 
est neighbor of each monomer was found. The quantity 
x?'(X) in (39) was calculated. An average was then taken 
over all monomers of the given cluster and over all clusters. 
Figure 4 compares the absorption calculated by this method 
with the result calculated by exact expression (12) 
(S  = 0.33). We see that the agreement between the binary 
approximation and the exact calculation is indeed very good 
at IX I > 2. Even near the center of the profile the differences 
between the binary approximation and the exact calculation 
are small; the reason is that the value of 6 is not very large. 
Specifically, the maximum coherence radius of the excita- 
tions, which can be found from (30) by substituting in 
IX I = S, is L,  - 2 for the dimensions given above. In other 
words, it is not much greater than R, = 1. In this case a 
universal scaling-invariant behavior does not develop, even 
near the center of the profile, because of the violation of 
condition (33). 

Also shown in Fig. 4 is a result calculated from approxi- 
mate analytic expression (45) (curve 3).  Its agreement with 
the result of the exact calculation is also good in the region in 
which the binary approximation is valid (at the wings of the 
profile). The agreement at the center is poorer than for the 
systematic binary approximation (curve 2 ) .  

Figure 5 shows corresponding data for S = 0.03. It fol- 
lows from a comparison of this figure with the preceding 
figure that all three curves agree well with each other at the 
wings of the profile ( IX I > 2) .  The absorption peak near the 
center of the spectral profile, in contrast, is not described by 
the binary approximation in any of its modifications. This 
symmetric peak (the binary approximation predicts an 
asymmetric absorption profile) is of a collective nature. Its 
shape is a power law (cf. Fig. 3).  

The numerical simulation of the threshold photomodi- 
fication of clusters (see the discussion above) was carried 
out in the following way. For the external radiation (causing 

FIG. 4. Absorption of a fractal with S = 0.33. 1-Calculated from exact 
expression ( 12); 2--calculated in the binary approximation through the 
use of (39) and a numerical averaging; 3--calculated in the binary ap- 
proximation from approximate expression (45 ) .  

the modification) the following were specified: the value of 
X = X,, , the extent to which the intensity exceeded the pho- 
tomodification threshold (K = I/I,, - 1 ), and a linear po- 
larization parallel to the z axis. Photomodification condition 
(48) was written in the form 

With X = X,,, , the values of /E, 12/1 were found from ( 12) 
and ( 19). Those monomers for which the photomodifica- 
tion condition was satisfied were eliminated from the clus- 
ter. After the elimination of these monomers, the absorption 
spectra of the cluster were determined numerically, for a 
linear z polarization (parallel) and for a linear xy polariza- 
tion (perpendicular) of the probing radiation. An average 
was then taken over the ensemble of fractals. 

Figure 6 shows the changes caused in the spectra by the 
photomodification as calculated by the numerical procedure 
described above and also as calculated in the binary approxi- 
mation, in accordance with (50).  We can draw some conclu- 
sions from these results. The photomodification is spectrally 
selective and also selective in terms of polarization; these 
conclusions agree with the experimental facts.') In the case 
of the z polarization of the probing radiation, the dip is ob- 
served near the modification frequency ( X  = X, ), while for 

FIG. 5. The same as in Fig. 4, but for 6 = 0.03. 
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FIG. 6 .  Changes in the cluster absorption spectra during photomodifica- 
tion for ( 1,2) parallel and (3,4) perpendicular polarizations of the modi- 
fying and probing radiation (the positive direction along the ordinate 
corresponds to a decrease in the absorption during photomodification). 
2,4--Exact calculation (see the text proper); 1,3-calculation in the bina- 
ry approximation ( X , ,  = - 1, 6 = 0.33, K = 0.25). 

the xy polarization the dip is centered around the "mirror" 
frequency (X = - X, /2). 

It follows from Fig. 6 that the binary approximation 
reproduces the qualitative features found through the nu- 
merical calculations. It thus becomes possible to offer an 
interpretation of the observed spectral and polarization se- 
lectivity. According to (39) at negative deviations of the 
modifying radiation (X, < 0),  most of the pairs which reach 
resonance with the radiation are directed along the field (for 
these pairs, the vector n is parallel to the z axis). For the z 
polarization of the probing radiation, these pairs provide an 
absorption near X = Xm , while for thexy polarization of the 
probing radiation they provide an absorption near 
X = - Xm/2. The following established facts can also be 
explained on the basis of the binary approximation. As IX / 
increases, the spectral and polarization seleclivities intensify 
(the binary approximation becomes more valid in the pro- 
cess). The maximum selectivity of the modification is ob- 
served near the threshold, i.e., at small values of K. 

6. CONCLUSION 

Here we will briefly review the basic physical principles 
underlying this study and some of the results which we find 
of most interest. In this paper we have described the linear 
polarizabilities of fractals (or of fractal clusters). As the sole 
spectral variablez = - X - is we used the inverse polariza- 
bility of an isolated monomer, in ( 7 ) ,  and the point X = 0 
corresponded to the resonant frequency of the monomer. 
Exact relationships derived for the polarizability, (14), 
( 18), and (23), and the scale invariance of fractals underlie 
the theory. In addition to the analytic study, we carried out a 
numerical solution of the basic equations, taking an average 
over the ensemble of fractals. In particular,we calculated the 
polarizabilities of fractals over a wide spectral range (Fig. 
1) .  

The transformation properties [see (29) ] of the vari- 
able X (the reciprocal polarizability of a renormalized mon- 
omer) under a change in the minimum scale R, (a renormal- 
ization transformation) were established. Using these 
properties, we found estimate (30) of the coherence length 
of normal excitations of the fractal. With that estimate, we 
were in a position to classify these excitations. Specifically, 
for monomers having a sufficiently high resonance Q [see 

(33) 1 the overall spectral range breaks up into a collective 
region (32), and a binary region ( IX I 2 1 ). 

In region (32), which corresponds to the central peak 
of the absorption spectrum, the eigenstates of the fractal are 
of a collective nature, i.e., delocalized over a large number of 
monomers. The absorption and the density of states of the 
fractal are power-law functions of IX 1, with identical powers 
(equal to do - 1, where do is the optical spectral dimension 
and lies in the interval 0 < d o  < 1 ) and with numerically re- 
lated coefficients [see (37) and Fig. 31. This behavior is 
universal, independent of the structural details of the fractal 
at small scale (the coordination numbers, the connected- 
ness, etc. ). The dipole-dipole interaction of the monomers is 
asymptotically exact and universal at the distances of inter- 
est, on the order of L, > R,. From a comparison with the 
results of the numerical calculations, we determined the val- 
ues of the optical spectral dimension, which turned out to be 
approximately the same for the fractals studied, do ~ 0 . 5 .  

In the wings of the absorption profile (at IX I 2 1) the 
states of the fractal are two-particle states. These states are 
sensitive to the small-scale structural details of the fractal 
and to the interaction between monomers, so they cannot be 
described in a universal way. In this connection, we intro- 
duced a model of a dilute fractal, for which the small-scale 
structure is extremely simple and is determined by binary 
correlation function ( 1 ), which depends on the Hausdorff 
dimension D. We wish to stress that the dilution of the frac- 
tal does not alter its properties in the collective region. 

Dilute fractals are not merely a convenient theoretical 
model but in fact an idealization of a rather wide class of real 
clusters, formed by sparsely distributed impurities connect- 
ed with the monomers of the original fractal (e.g., dye mole- 
cules in a complex with a macromolecule, microscopic metal 
particles in pores in a glass, etc.). The description of dilute 
fractals is thus of interest in its own right. Working in the 
binary approximation, we have derived the polarizability of 
dilute fractals, (40), and we have compared it with the re- 
sults of numerical calculations (Figs. 4 and 5 ) .  

It has been shown (Fig. 6) that the threshold photomo- 
dification of fractals gives rise to comparatively narrow dips 
(with a width on the order of a few times 8) in their spectra. 
These dips have a well expressed dichroism; i.e., the photo- 
modification is spectrally selective and polarization-selec- 
tive. This result reproduces experimental data.13 It indicates 

X 

FIG. 7. The gain for the local field, G = ( (E, I')/1E"" /', as a function of X 
for fractals of three types ( D  = 1.8, 2.0, and 2.5) for 6 = 0.1 (actually 
plotted here is the produce GS, since this combination depends only slight- 
ly on 6 ) .  
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a fundamental feature of the spectra of fractals: The broad- 
ening mechanism is anisotropic and basically nonuniform. 

The selectivity of the photomodification makes fractal 
media extremely promising for use as carriers for dense opti- 
cal data storage. At values S = 0.1-0.3, which are realistic 
values for the media which have been studied experimental- 
ly, one could burn several easily distinguishable dips in the 
spectral profile in each of two polarizations (z and xy ) .  Con- 
sequently, it would be possible to store about 10 data bits at 
each point in the medium and thereby raise the storage den- 
sity by an order of magnitude. 

Finally, we would like to discuss an extremely impor- 
tant property of fractals: the presence of large fluctuations in 
the local fields-significantly larger than the mean field. 
Such fluctuations lead to a huge intensification of Raman 
scattering and of nonlinear parametric scattering (intrinsic 
or extrinsic) of light by fractals. This intensification was 
predicted previously on the basis of the binary approxima- 
tion.*-' ' 

From the optical theorem, (20), and from expressions 
(37) and (43) for the gain G (the factor by which the local 
field acting on a monomer is intensified), we find some esti- 
mates (which are asymptotically exact in terms of X depen- 
dence). In the collective region, (32), we find 

while for dilute fractals, in the binary region (X$ 1 ), we find 

The existence of a collective region which is nondegenerate 
(i.e., of finite width) is a property of nontrivial factors. It 
follows from estimates (5 1 ) and (52) that for nontrivial 
fractals, in both the collective and binary regions, the fluctu- 
ations of the local fields are large: The variance of the field is 
proportional to a large parameter, namely, the Q of an isolat- 
ed monomer [see ( 33 ) 1. 

Figure 7 shows the gain Gas a function ofX for fractals 
ofthree types which we have studied here. In agreement with 
the theory presented above, the central part of these curves, 
which corresponds to collective excitations, is symmetric 
with respect to X and is described by expression (5 1 ). To- 
ward the wings, the factor G increases, as follows from (5 1 ) 

and (52), reaching values on the order of 10 (for S = 0.1). 
There is no obvious dependence of G on the type of fractal 
(this result agrees with the approximate equality of the val- 
ues of do found above ) . 

In summary, this systematic theory shows that the large 
fluctuations of the local fields (and thus the huge intensifica- 
tion of Raman and parametric scattering of light) which 
were predicted in Refs. 8-1 1 are not an artifact of the binary 
approximation but instead a general property of nontrivial 
fractals whose monomers are high-Q optical resonators. 

We wish to thank A. V. Butenko, V. P. Safonov, and V. 
M. Shalaev for useful discussions. 

I '  The absorption cross section of the monomer differs from Im xj;,! only 
by a trivial factor of 4rk,  where k is the wave vector. By "absorption 
characteristic" we mean Im x:;,!. 

'' Shown in parentheses here is the estimated statistical error (which is at 
the level of one standard deviation), expressed in units of the last digit 
shown. This error was determined by linear regression. 
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