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We investigate the photon statistics in two-quantum collective nutation of a concentrated system 
of atoms. We show that, in the course of the nutation, the fluctuations of the in-phase and 
quadrature components of the electric field (EMF) intensity with an external laser field oscillate 
in antiphase. The EMF fluctuations are then periodically compressed along the in-phase or 
quadrature component of the EMF. We investigate also theoretically the conditions under which 
two-photon collective nutation of the atom system sets in. We obtain the critical number of atoms 
for which collective light-scattering processes stop the nutation. 

1. INTRODUCTION 

Quantum fluctuations and generation of incoherent 
electromagnetic fields in two-photon and multiphoton pro- 
cesses have recently been the subject of a number of theoreti- 

and e~perimental'.~ studies. Two-photon absorption 
of initially coherent light leads to antibunching of the photon 
in a laser beam, whereas two-photon emission is accompa- 
nied by generation of bunched pairs of photons (biphotons) 
in the light beam. These processes make the quantum fluctu- 
ations of the number of photons larger when the light is ab- 
sorbed, and smaller when it is generated, compared with the 
analogous fluctuations in a coherent electromagnetic field 
(EMF). 

Interest attaches also to the conditions under which the 
system's excited atoms that enter into two-photon resonance 
with an external coherent EMF are capable of converting the 
generation of antibunched photons into that of bunched 
ones. It was shown in Ref. 2 that if the resonance levels of the 
atoms are in thermal balance, when the number of excited 
emitters is one-sixth of the total number of atoms participat- 
ing in the two-photon interaction with the external coherent 
field, the generation of antibunched photons turns into that 
of bunched ones. On the other hand, it has been shown in 
Refs. 3 and 4 that for two-photon processes in the weak sin- 
gle-mode field of a microcavity the inversion of a single atom 
alternately vanishes and is restored in time. This alternating 
process of absorption and reradiation of the photons is trans- 
ferred directly to the photon-number fluctuations. 

It must be emphasized that the cited studies neglected 
the collective behavior of the atoms upon absorption and 
reradiation of photon pairs. It was assumed that the distance 
between the system atoms exceeds the laser-field wave- 
length,2.5 or else the number of excited atoms was neglected 
compared with the number of ground-state atoms partici- 
pating in the two-photon absorption process.' 

In contrast to the cited references, the present paper 
deals with the conditions under which an ensemble of atoms 
goes over into a regime of collective two-photon nutation 
(CTN), and with the behavior of the quantum fluctuations 
of the EMF in the course of the nutation. To simplify this 
problem, we consider a concentrated system of A-type atoms 
that enters into two-photon resonance with an external co- 
herent EMF relative to the forbidden transition I 1 ) - 12), 
where I 1) and 12) are the ground and first excited states (see 
the figure). The excited state 13) does not enter into reso- 
nance with the external field. It is shown that the collective 

excitation of the ensemble of atoms is accompanied by a de- 
crease of the fluctuations of the EMF density, while a phased 
transition of atoms to the ground state is accompanied by an 
increase of these fluctuations. In other words, in one period 
of the CTN the replacement of the generation of bunched 
photon pairs by that of antibunched ones depends on the sign 
of the rate of change of the population difference and, just as 
in the case of thermal balance between the levels I 1) and 12) 
(see Ref. 2), it does not depend on the number of excited 
atoms. 

It is also shown in the present paper that coherent two- 
photon excitation of an ensemble of atoms increases the 
probability of collective two-photon spontaneous decay of 
the excited emitters. This stops the optical nutation of the 
population difference of the atoms when a definite critical 
number of atoms is reached (see Ref. 29). This collective 
effect depends on the atom density and cannot be described 
by the previously assumed two-photon models of optical no- 
tation of single atoms (see Refs. 3 and 4 and the citations 
therein). 

For a more detailed study of the properties of photon 
reradiation we investigate in the present paper also the quan- 
tum fluctuations of two noncommuting quadrature compo- 
nents 8, and 8, of the EMF vector ( Z?, is the amplitudes 
of the in-phase component of the EMF intensity vector with 
the external coherent field, and 8, is the amplitude of the 
quadrature component, lagging the in-phase component by 
r /2 ) .  In an in-phase transition of the emitters from the ex- 
cited state 12) to the ground state I I ) ,  the quantum fluctu- 
ations of the component 29, increase substantially, while the 
fluctuations of 29, become lower than the vacuum values. 
When a system of atoms is excited, on the contrary, the fluc- 
tuations of the in-phase component decrease while those of 
the quadrature component increase. 

FIG. 1. Possible processes of spontaneous transition of excited atoms to 
the ground state I I ) .  The straight lines denote photons of the external 
coherent EMF, and the wavy ones spontaneously created photons. 
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The mathematical method proposed in the present arti- 
cle permits the EMF operators and correlators to be ex- 
pressed in terms of the operators and correlators of an atom- 
ic subsystem. A similar method is used to investigate 
single-photon resonant processess but is not traditional for 
two-photon ones. 

The plan of the article is the following.-In the second 
section we represent the fluctuations of the EMF density and 
of the components %', and 8, in terms of correlators of an 
atomic subsystem. In Sec. 3 we derive a control equation for 
the density matrix of the atomic subsystem in two-photon 
interaction of the emitters with an external coherent EMF. 
This equation is used in Sec. 4 to investigate both the time 
dependences of the atomic-subsystem correlators and the be- 
havior of the density fluctuations of the EMF and of the 
components 8, and %', . The Conclusion deals with the pos- 
sibility of experimentally observing collective two-photon 
nutation. 

2. REPRESENTATION OF PHOTON-SUBSYSTEM 
CORRELATORS IN TERMS OF ATOMIC-SUBSYSTEM 
CORRELATORS 

The time dependence of the quantum fluctuations of the 
EMF density in two-photon interaction of an atomic subsys- 
tem with an external EMF can be investigated with the aid of 
the correlation functions [9, 101 

where 

R,(r, t, z )= (8+(r ,  t )8 - ( r ,  t-Z) ), 
( l a )  

Rz(r, t ,  .c)=<8+(r, t ) 8 +  (r, t-g)8-(r, t - ~ ) 8 - ( r ,  t) ), 

with R ,  (r,t,r = 0 )  the EMF density at the observation point 
r, and R, (r,t,r) the correlation between the EMF densities 
at the instants of time t  and t  - r ,  

8+ (r, t) = i  ~ g k e a h + e - i ( k ~ r ) ,  8 - ( r ,  t) = ( 8 +  (r, t))+,  (2)  
k 

a: and a, are the creation and annihilation operators for 
pho5ns with momentum iik, energy fiw, , and polarization 
A, ( 8 ( r , t ) , e )  = %'f (r , t )  + g - (r , t )  is the projection of 
the EMF intensity 8 ( r ,  r )  on the direction of the polariza- 
tion vector e of the external coherent field, 

e, is the photon polarization vector, A = 1 or 2, and Vis the 
EMF quantization volume. 

The operators in Eq. ( l a )  are written in the Heisenberg 
representation, and the averaging is over the states 
$( t  = 0 )  = IA ) e I@), of a system of noninteracting atoms 
with the EMF where IA ) is the wave function of the atomic 
subsystem and I@) the wave function of the free EMF. We 
note also that the external single-mode laser field is in the 
coherent state 

and the remaining EMF modes are in the vacuum state 

Therefore 

Interest attaches also to formation of a squeezed state of 
the EMF in two-photon interaction of a system of atoms 
with an external laser field. To this end, assuming that arg 
a = 7r/2, we consider the EMF quadrature  operator^".'^ 

8= (r, t)  =8+ (r, t) +8- (r, t )  , 
( 3  

8, (r ,  t)  =i[gf (r, t)-&(r, t)] , 

whose commutation relation is 

[8,(r, t ) ,  8 , (r ,  t ' ) ]  =iC(t-t'). 

Here 

8+ (r, t) =8+ (r, t) exp {i(kor) -ioot), C(t-t') 

The component of the EMF intensity along the polarization 
of the external laser field is expressed in terms of the opera- 
tors 8, and 8, as follows: 

8 (r, t) =sr ~ 0 s  [mot- (kor)] +8,,(r, t)sin [mot- (kg ) ]  . (3a)  

It follows from ( 3 )  and (3a)  that for a laser field that does 
not interact with the system atoms the mean value of the 
operator g ,  coincides with the mean value of the amplitude 
of the external coherent field, and the mean value of the 
operator %', is zero. Consequently, $, and g y  describe re- 
spectively the behaviors of the amplitudes of the in-phase 
and quadrature components of the EMF intensity. The fluc- 
tuations of the components 8, and %',, averaged over the 
coherent or vacuum state of the EMF, are equal: 

Here A g i  = - (8 i), and i = x ,  y. The criterion for the 
formation of a squeezed state of the EMF in an interaction of 
a coherent field with atoms is determined by the inequality 
((A%',)*)/C(O) < 1 or ( ( A 8 y ) 2 ) / C ( 0 )  < 1.  Here 

The deviation of the fluctuations of the components %', and 
8, from the fluctuations of the same components in a coher- 
ent or vacuum field can be taken into account with the aid of 
the correlation functions 

where f ( t )  : denotes normal ordering of the EMF operators. 
If M, < 0 or My < 0 the fluctuations of the EMF are 
squeezed along the component $, or $,, respectively. 

Upon substitution of ( 2 )  in ( 1 ) and ( 4 ) ,  the functions 
A(r ,  t ,  T), M, ( t , r )  and My ( t , r )  take the form 

A 
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Mx(t,  T )  = - m i  ( t ,  7 )  +@z( t ,  T ) ,  

Mv(t, ~ ) = @ i  ( t ,  T ) + @ z ( ~ ,  T ) ,  

where 

@ ,  ( t ,  r )  =z gA:g,:{erp[-2iwot+iwor-i( (k,+k,-Bko)r) ] 

-<ak,+ ( t )  )<ak,(t-r)  ) ] + H . c . ) .  (6b) 

We shall express below a: and a, in terms of the opera- 
tors of the atomic subsystem and the operators of the exter- 
nal laser field. To this end we consider the Hamiltonian N of 
A-type three-level atoms in an external coherent field that 
enters into two-photon resonance with the dipole-forbidden 
transition 1 1 ) - 12) : 

where 6, is the energy of the a level, d3@ is the dipole mo- 
ment of the transition between the second excited state 13) 
and the state Ifl ) (fl = 1, 2 ) ,  and UjDis the corresponding 
matrix of the transition between states 13) and 10 ) of the jth 
atom. The operators U; satisfy the commutation relations 

Taking the Hamiltonian (7)  into account, we can obtain the 
following expressions for the Heisenberg operators a: and 
a ,  0) : 

ah+ ( t )  =ak+'(t) +ah+"t), a k ( t )  =ahe ( t )  +ah"t), (8a) 

where 
L t 

is the part of the operator a: ( t )  which is connected with the 
emission and absorption processes of the atomic subsystem, 

G' ( a )  =exp ( i o A z ) ,  ahe ( t )  =ahe exp ( - i o k t ) ,  
ake ( t )  ((P>=6A, &a exp ( - h a t )  10). 

In the derivtion of (8b) it was assumed that the dimensions 
of the atomic subsystem are smaller than the laser-field 
wavelength A, = 2?r/k,. We consider therefore in ( 8b) and 
below the collective operators of the atomic subsystem 

N 

lJ@a ( t )  = uipa ( t )  a 

Following substitution of (8)  in (5)  we must exclude 
the fluctuating parts of the operators a; and a: ". We formu- 

late for this purpose a lemma similar to that proposed in Ref. 
13. 

If B(t,  ) is an atomic-subsystem operator correspond- 
ing to the instant of time t, , then the fluctuating part of the 
operator a: '(t) to the right of the operator B(t ,  ) under the 
mean-value sign is represented in terms of the atomic-sub- 
system operators as follows: 

< B ( t i )  (aA+,+" (t)+aA+" ( t )  ) . . . )=exp[ ioA(t  

- t , ) ]  < [ah+8( t i ) ,  B ( t i ) l .  . .>+<B(ti)ak+'(t) .  . .) 

(the proof of this relation is similar to the one proposed in 
Ref. 13). 

With allowance for (9) ,  the correlators in (6a) take the 
form 

<a,,+ (t)a,,+ ( t -T )  )-<a,,+ ( t )  )<ah,+ ( t - z )  ) 

The main contribution to (10) is made by the first term, 
obtained after commuting the operators. The second term 
makes a nonzeio contribution compared with the first term 
in the higher order of the expansion in the smallness param- 
eter H i / h 3 , .  Therefore, neglecting the retardation in the 
slow part of the operators in the integral with respect to T, 

we obtain the following expression for the correlators ( 10) : 

(ak,+ (t)ak,+ ( t - r )  )-<ak,+ ( t )  )<ah,+ ( t - z )  ) 
t t-r, 

where 

The contribution @, to the right-hand side of (5b) is much 
smaller than @, . This can be verified by substituting the 
solution (8)  in Eq. (6b). 

Thus, after substituting ( 11 ) in (6a) and integrating 
over k, , k,, T, , and T* we obtain the followjng expressions 
for M, and My : 

where we have for k , r )  1 
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z = (r.k, )/k, is the component of r along the wave vector 
of the external coherent EMF, m = r/r, and c is the speed of 
light. 

We obtain similarly, after sllbstituting (8)  in (5a) and 
using the lemma ( 9 ) ,  the following expression for A(r, t, T) : 

where 

The first two terms in (13) are expressed in terms of the 
transition operators between the levels I 1) and 12). It is more 
difficult to express the terms ( B  c,,, (t,r)a", ( t  - T))  and 
( B  c,,, (t,r)a;, ( t )  ) in terms of the two-photon transition 
operators U: and U: . To this end we express first the opera- 
tors a;, ( t - T) in terms of a;, ( t). This is possible if we repre- 
sent in the integral with respect to T in (8b) the solution of 
the Heisenberg equation for the operators U ( t  - T) and 
UT(t - r) in the form: 

U: ( t - t )  =U: (t)e-lo~sr 
2 r 

Next, following the procedure indicated above for excluding 
the Boson operators, we find that 

The expression for A(r, t, r) takes, upon integration 
over time and summation over the wave vectors of Eq. ( 13), 
the form 

where 

d13d3, (en) [ 1- (mn) I 
po=i 

4(o3,-oO) cSti 
L(r ) ,  

C 
L (r)  = - exp{ioo (r-z) I c )  , 

r-0 0 

is the mean amplitude of the external coherent EMF. 
It follows from ( 12) and ( 14) that when the EMF inter- 

acts with the atoms of the system the photons are created and 
annihilated in pairs. The time dependence of the EMF fluc- 
tuations depends strongly on the kinetics of the population 
difference of levels / 1) and 12). We shall therefore investi- 
gate below the behavior of the atomic subsystem in an exter- 
nal coherent field. 

3. CONTROL EQUATION FOR THE ATOMIC-SUBSYSTEM 
DENSITY MATRIX 

A chain of equations describing the possibility of a tran- 
sition of an atomic ensemble into a two-photon superra- 
diance regime was obtained directly in Ref. 13 for the atomic 
operators from the correlation functions by the method of 
excluding the EMF boson operators. The elimination of the 
boson operators from the chain of equations is, however, 
somewhat difficult, since this procedure must be employed 
in each new chain of equations for the atomic-subsystem 
correlators. It is therefore of interest to obtain a control 
equation for the density matrix of an atomic subsystem from 
which the EMF boson operators have already been ex- 
cluded. We derive below, by the method of projection opera- 
tors, a control equation for the density matrix of an atomic 
subsystem in an external coherent field in two-photon reso- 
nance with the 1 1 ) - 12) transition. 

The equations for the density matrix of the total "atoms 
+ field" system take in the interaction representation the 

form 

where 

Let 9 be the projection operator for the complete density 
matrix p ( t )  in the basis of a free EMF: 

where p, is the slow part of the density matrix p, p, is its 
rapidly-oscillating part, and = 1 - 9 The operator 9 
has the properties P 2  = 9 and 9 .F = 0. The equations 
for the matrices p, and p, are 

-- --ih9Li(p. ( t )  +pa ( t )  ), 
at 

(16a) 

where 

Following the knownI4 procedure for eliminating the rapid- 
ly oscillating part of a density matrix, we integrate Eq. ( 16b) 
with respect to p,, and substitute the resultant solution in 
( 16a), which takes then the form 

t 

-- --h2C I dr L, ( t )  U( t ,  t-r)Li ( t - ~ ) ~ , ( t - ~ ) ,  ( 17) 
at 0 
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where 
t 

~ ( t ,  t - r )  =T exp {-ihg 5 d r , ~ ,  ( r , ) ) .  
1-r 

Recognizing that for t = 0  an ensemble of atoms does not 
interact with an EMF, we define the operator 9 as 

Here I @) (@I is the density matrix of a free EMF. The aver- 
aging ((...)) is over the period of the dipole-system oscilla- 
tions, and the trace Sp,{ ... ) is taken over the EMF states. 
With allowance for the foregoing, it can be shown that 

where W ( t )  is the density matrix of the atomic subsystem. 
Confining ourselves to the second order of the expan- 

sion in the small parameter A ( p X ( t - r ) z p : ( t ) ,  
U( t , t  - T )  = 1  ), we obtain after averaging over the photon 
subsystem and over the period of the system-dipole oscilla- 
tions the following equation for pp ( t ) :  

dpaO ( t )  i ---- = - - 
d t fi 

[Hi"', pa0(t) I .  

Here 

where 

is the Rabi two-photon frequency. 
The quantum fluctuations of the system in two-photon 

processes can be taken into account in fourth order of the 
expansion in the small parameter R in the right-hand side of 
( 17 ) .  To this end we represent the evolution operator U ( t ,  
t - T )  and the density matrixp, ( t  - T )  in the form 

U ( t ,  1-1) mi-hi? J d r ,  L. (7,) + (0,)' 
1-z 

t 1 

j d r i  J d r z  5% (TA~%(T .~ ) ,  ( 20a 
2-r 2-r 

r 

pa ( t - r )  =pa ( t )  +h29 5 d l i L i  ( t - r l )  
0 

X ' j d r ,  L, ( t - r , - r2)  p. ( I -q-TZ).  ( 2 0 b )  
0 

Upon substitution of ( 2 0 )  in ( 1 7 )  the equation for p, ( t )  
takes the form 

We average next, taking to explicit form of the operator 9 
into account, Eq. (21  ) over the EMF states. Neglecting thus 

the retardation in the slow part p,  ( t )  of the density matrix 
and separating the basic diagrams of the transition we obtain 
the following control equation for the atomic-subsystem 
density matrix: 

where 

T, is the two-photon spontaneous-decay time of the level 12); 
T, is the spontaneous-decay time stimulated by the external 
coherent EF, with photon scattering at the frequencies 
o, = a,, f o, and 

ig=ip/x+n6 ( x )  . 
Herep and 6 denote, as usual, integration in the sense of the 
principal value and a delta function, respectively. 

The first term of ( 2 2 )  describes two-photon excitation 
of atoms and their transition into the ground state by the 
external laser field. The second term takes into account the 
polarization dissipation of atoms interacting with vacuum 
fluctuations of the EMF. The symmetry of Eq. ( 2 2 )  with 
respect to transitions between states / 1 )  and 12) does not 
differ from that of the similar equation obtained for dipole- 
allowed two-level  system^.^ In our situation, however, the 
polarization dissipation of the atom ensemble is influenced 
not only by two-photon spontaneous decays, but also by 
scattering of a coherent EMF with emission of photons at 
frequencies w, = w + ,, o,. In the absence of an external 
EMF, H :''and T ; ' - iA,  are equal to zero, and Eq. ( 2 2 )  
describes two-photon superradiance.13 

4. BEHAVIOR OF QUANTUM FLUCTUATIONS OF AN EMF IN 
THE COURSE OF NUTATION 

Taking ( 2 2 )  into account, we obtain the following set of 
equations for the atomic-subsystem correlation function: 

where v, = T ; ' ( U :  ( t )  U :  ( t ) )  is the rate of the collective 
spontaneous transitions between levels 1 1 )  and / 2 ) ,  
vi = ;in,( (D: ( t ) )  - ( D: ( t ) )  ) is the rate of the induced 
transitions, and 2R = ( U :  ( t ) )  - ( U i  ( t ) )  is the popula- 
tion difference of levels I 1 ) and 12). The system ( 2 4 )  was 
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derived using a semiclassical correlator-separation method: 

We have neglected in (25) the quantum fluctuations of the 
operators U and U i .  It can be shown in analogy with the 
procedure used for one-photon t ran~it ions '~. '~  that for N, 1 
the fluctuations of the operators U :  and U : are smaller than 
the mean values of the same operators. In one-photon collec- 
tive processes the approximation (25) is equivalent to neg- 
lecting the quantum fluctuations of the EMF density. In our 
problem, neglect of the quantum fluctuations of the above 
operators is equivalent to neglect of the fluctuations of the 
operator of the squared EMF density at the observation 
point r. In other words, the separated correlators (25) de- 
scribe with good accuracy the time behavior of the EMF- 
density fluctuations and of the quadratures 87, and $, . 

Let us consider the time dependence of a quasi-two- 
level system over times shorter the relaxation time T*. If 
r*/N and fl; ' are much shorter than re ,  the Bloch vector 

is conserved in the two-photon transition. 
In this case the system (24) takes the form 

where 

and rR = r*/N is the time of the collective spontaneous 
transitions in the system. 

The isolated singular points of the system (26) on the 
x,y plane are A (0, 1 ), B(v,P 2,  and C( - v,P 2),  where 
v = ( 1 - 8') I/'. The point A corresponds to a stable limit 
cycle, B is an unstable singular point, and Ccorresponds to a 
stable state. All the system trajectories emerge from B and 
enter into C. With allowance for the initial conditions 
x (0 )  = 1 and y(0)  = 0 we obtain the following equation 
for the atom-system population difference: 

As follows from (26) and (27), all three points exist on the 
phase planexy and the system trajectory is not closed. In this 
situation it is impossible to invert coherently a system of 
atoms by an external laser field, since the collective sponta- 
neous processes are too large. The evolution of a system of 
atoms from the ground state x(0)  = - 1 is described by the 
solution 

where 8,, = 2v - arccoth ( v  I ) .  For YO, 1 the Bloch vec- 
tor stops at the point C( - v,P2) for which the rate of the 
induced transitions is equal to the rate of the collective spon- 
taneous transitions. 

As the parameter p is increased, the points B and Con 
the phase plane xy tend to the point A, with which they 
merge at /3 = 1. This corresponds to the case when the tra- 
jectory of the phase plane is closed, and the system of emit- 
ters undergoes a transition from aperiodic to periodic two- 
photon absorption. In this situation the solution of (27) 
takes the form 

where 8,, = 26 ' arctg 6 - ' and 6 = (p - 1 ) I/'. For 
P, 1 the solution (28b) becomes harmonic: 
x (8 )  = - cos(p8). 

It follows from (22) and (24) that the probability of 
induced transition with increase of the EMF intensity the 
probabilities of induced and collective transitions increase 
with increase of the EMF strength. For 7, (T,, therefore, 
the parameter ceases to depend on the external laser-field 
intensity, with B =  N,/N, where 

3c3fi 
N ,  = 

d13d32 (03i+032)3003 

is the critical number of system atoms for which the solution 
(28a) goes over into (28b). For N <  N, optical nutation of 
the atom system sets in. When the number of atoms in- 
creases, N >  N,, the external coherent EF is incapable of in- 
verting the system of emitters. The reason is that the proba- 
bility of collective scattering of light at the frequencies 
w, = w,, + w, increases with increase of the intensity of the 
external laser field. 

Note that the spontaneous-decay time of the atoms is 
constant in single-photon collective processes. In this situa- 
tion the parameter B is directly proportional to the EMF 
intensity," so that the solution (28a) is preplaced by (28b) 
with increase of the external laser-field intensity for any 
number of atoms in the system. This difference between two- 
photon and single-photon collective processes is experimen- 
tally of great interest. 

Using ( 12), ( 14), and (28) we obtain the following 
time dependence of the densities of the EMF fluctuations 
and of the quadratures g, and g, at the frequency w,: 

2h2 [I- (em) 2] 2004N2 
~ . ( t ,  e=O) =- y (0.) c a s [ z ( z - r ) ] ,  1Zc4zmEo2 C 

9h[1- ( e ~ n ) ~ ] ~ N ~  
A (r, t ,  &=O) = 

43r3To 
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where 
m 

€I,= (t-r/c)/2rR, k ,  A(1,e) = 1 dr-4 (1, r)ef8', 
-- 

A=M,, M,, A. 

When the distance from the atom system along the laser 
beam ( r  = z)  increases, the EMF density fluctuations is de- 
termined mainly by the term E0Mx/4, since the ratio of the 
first term of (30b) to the second term decreases in inverse 
proportion to the square of the distance ( cc z - 2). The rea- 
son is that the spontaneously produced photon pairs lose the 
space-time correlation faster than the biphotons induced by 
the external field. Note that the contribution of the first term 
of (30b) becomes substantial when the external laser field 
intensity is decreased. 

Two-photon nutation alters the photon statistics as fol- 
lows. The collective excitation of the atoms is accompanied 
by vanishing of photon pairs from the laser beam. This effect 
leads to anti-bunching of the photon in the reradiated EMF 
(i.e., A(z, t, E = O )  <O), the components 8, become 
smaller than the vacuum fluctuations of the EMF 
(M, (t, E = 0) < O), whereas the fluctuations of %', in- 
crease substantially (My (t, E = 0) > 0). The in-phase tran- 
sition of the atoms from the excited to the ground state is 
accompanied by generation of a pair of photons in the radi- 
ation field. This increases the EMF density fluctuations 
(A(z, t, E = 0)  > 0).  The fluctuations of the component in- 
phase with the external field also increase 
(M, (t, E = 0)  > O), while the fluctuations of the compo- 
nent 8, become smaller than the vacuum fluctuations of the 
EMF (My (t, E = 0)  <0 ) .  

The vacuum fluctuations at the frequency of the exter- 
nal EMF are equal to 

where E(E) is the Fourier transform of the function 
C(t - t ') [see Eq. (3)  1 .  We can now estimate the degree of 
compression of the EMF in the course of nutation 

M, (t, e=O) 
ql=l+ , i=x, y. 

C(e=O) 

With allowance for (30a) we obtain 

Since the maximum and minimum values of the function 
y ( 8 )  are equal respectively to P and - P, the maximum 
compression of the EMF is reached after each half-period of 
the nutation, and is equal to 

For N >  N, the function y tends to P 2 .  Note also that the 
collective light-scattering processes play an important role 
at N -  N, .  If N >  N,  the collective scattering processes sup- 
press the coherent excitation of the atoms, and the EMF 
fluctuations remain compressed along the in-phase compo- 
nent %',. In the nutation process (i.e., at N <  N,  ) the time t,, 
of transition of the atoms from the ground to the excited 
state is longer than the transition time t,, of the atoms from 
the excited to the ground state. Using the solution (28b), 
these times can be easily obtained: 

tlZ=Pef-' (n+2arctg g-I), 

t2t=Q,f1 (n-2arctg E-I). 

If N < N , ,  the collective scattering processes are weak com- 
pared with the induced ones, and the functions M, execute 
harmonic oscillations. 

5. CONCLUSION 

The described behavior of a system of emitters can be 
experimentally implemented by passing laser pulses through 
a layer of a dense system of atoms (or an atom beam) of 
thickness smaller than the laser-field wavelength. It is well 
known that collisions of atoms with one another, as well as 
inhomogeneous broadening of energy levels, leads to loss of 
phase coherence of the oscillations of the dipoles of a system. 
Denoting by T2 the corresponding damping time of the po- 
larization of the medium ( T2 < T+ ), the conditions for ob- 
serving collective two-photon nutation become more strin- 
gent: a,/', r,/N9T2. The rectangular laser-pulse 
durations must then be shorter than or of the order of T2 . 

The atomic medium employed can consist of helium- 
like or hydrogen-like atoms undergoing two-photon reso- 
nance relative to a dipole-forbidden transition 2'S0 - 'So or 
2*SI,, -IS , , ,  . Interest attaches also to the case when the 
intermediate energy level (3)  is located between the resonant 
levels ( 1) and (2)  and does not enter into single-photon reso- 
nance with the external field (the ladder model). The lad- 
derlike arrangement of the energy levels in Rb atoms was 
used for experimental implementation of the two-photon 
micromaser transition 40S,,, -+39SI,, (Ref. 7).  The level 
39P,,, turn out to be virtual in this case. A similar model was 
used to observe in Na atoms a two-photon dynamic Stark 
effect for the transition 37Pl,, -+36Pl,, with intermediate 
state 37S,,, (Ref. 18). 

To investigate collective two-photon nutation in ladder 
three-level systems it is useful to place the atoms in a micro- 
cavity or a microcell. The tuning and parameters of the mi- 
crocavity are chosen such that the single-photon spontane- 
ous decay of the excited state 12) via the state 13) be small 
compared with the two-photon one (see Ref. 7 ) .  The theory 
presented above describes then qualitatively also the behav- 
ior of similar three-level concentrated systems in a coherent 
single-mode field of a microcavity. 

Collective interaction of three-level atoms located at a 
distance shorter than A, in extended media can become the 
primary agent for stimulated scattering of light at the fre- 
quencies w,, + w,. Naturally, an important role is played 
also in in such a situation by the spactiotemporal synchro- 
nism of the generated photons. 
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