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We have developed a theory of the interaction of a monopole with a material medium, based upon 
a hydrodynamical quantum-mechanics formulation that makes the fundamental role played by 
one-dimensional vortex line solutions particularly clear. We have found linear response functions 
for the effect of a monopole on perfect and viscous charged fluids, classical and quantum plasmas, 
superconductors, systems of oscillators, among others, and we have determined monopole energy 
losses in such media. The limits of applicability of the linear theory of monopole slowing are 
discussed. 

1. INTRODUCTION 

Among the predictions of fundamental physical theory 
as it exists today, two that are of special significance are the 
existence of an extremely heavy magnetic monopole and the 
decay of the proton. These predictions may be traced back to 
the realm of superhigh energies (above 1014 GeV), which 
play a key role in the theory. The detection of proton insta- 
bility or a magnetic monopole would therefore present us 
with a unique source of information on such energies.'' 

Searches for magnetic monopoles have been conducted 
using both the methods traditionally employed in nuclear 
physics (looking for the products of their deceleration in 
matter) and those targeted specifically at monopoles (look- 
ing for a jump in the magnetic flux in a superconductor or 
the catalysis of rapid proton decay) .' These should be based 
on a theory that is capable of describing both single-particle 
and collective interactions of monopoles with a medium con- 
sisting of conventional particles. The appropriate general- 
ization of macroscopic electrodynamics is usilally achieved 
by introducing monopole sources into the Maxwell equa- 
tions while retaining the form of the equations for matter. 

It was recently realized,' however, that the information 
conveyed by the conventional matter equations may in prin- 
ciple not suffice for a description of the effects of a magnetic 
monopole on a medium. Additional information is required 
concerning the reaction of the medium to the distinct effects 
of the transverse electric and magnetic fields, which are ri- 
gorously coupled to one another by Faraday's law in conven- 
tional electrodynamics, but are independent in the presence 
of a magnetic monopole. 

The incompleteness of the available information is 
further complicated by the non-Hamiltonian nature of the 
motion of a charged particle in the field of a monopole. This 
is not a problem for classical media, but quantum media 
cannot be described in the usual way: the Schrodinger equa- 
tion contains not the field strengths but the potentials, which 
become meaningless when a monopole is present. The math- 
ematical machinery then becomes much more complex: the 
Dirac method introduces a singular string, space becomes 
stratified in the Wu-Yang method, and so on.' The complex- 
ity of these approaches, however, makes their practicality 
far from obvious. 

At the same time, as pointed out in Ref. 4, it is also 
possible to apply Madelung's simple and elegant formula- 
tion of quantum mechanics to the electrodynamics of mag- 
netic monopoles, wherein the Schrodinger equation is sup- 
planted by a set of hydrodynamic equations that include a 

special "quantum" force and the Lorentz force. Generaliz- 
ing the Madelung approach to the magnetic monopole case 
is not particularly difficult, with the charge quantization 
condition 

once again providing a unique solution. That solution, how- 
ever, pertains not to the wave function, as in Dirac's method, 
nor to the potential, as in the Wu-Yang method, but to the 
equations embodying the superposition principle. From 
here on, e is the electrical andg the magnetic charge, and N is 
an integer (which we take to be unity); we use Heaviside 
units, and the speed of light is also taken to be unity. 

The significant advantage of the hydrodynamic formu- 
lation is that it is capable of providing a physical picture of 
the passage of a magnetic monopole through a medium. 
Apenko5 has recently underscored the crucial role played in 
the electrodynamics of magnetic monopoles by the quasi- 
one-dimensional structure that they trail behind them, in- 
duced by the vortical electric field of the moving monopole, 
which produces a spiraling motion of the electrons in the 
medium. In hydrodynamic language, the counterpart of this 
structure is the generalized vorticity (which for brevity we 
simply call the vorticity) of a quantum fluid, 

which is localized along the monopole trajectory that has 
been cleared out by the current ( m  is the mass of particles 
making up the medium, v is the fluid velocity, and B is the 
magnetic field strength). 

In contrast to the nonphysical Dirac string (the price 
we pay for retaining the language of potentials), the vortex 
line solution is real. In particular, this is made manifest by 
the fact that a monopole expends part of its energy in pro- 
ducing it. Hence, magnetic monopoles will be slowed down 
by a medium even if there is no dissipation or emission of 
quasiparticles, and the energy lost by a monopole per unit 
length in this way will be independent its velocity. Curiously 
enough, this property was even mentioned by FermL6 who 
related it to the inductive nature of the electric field associat- 
ed with a moving magnetic monopole. 

According to ( 1.1 ), the charge on a magnetic monopole 
is 137/2 times the charge on the electron, which would seem 
to completely preclude applying linear electrodynamics- 
which yields the lowest-order (Born) approximation for in- 
teraction with the medium-to monopoles. It turns out, 
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however, that at least in the treatment of energy losses from 
magnetic monopoles, the linear approximation does have a 
rather wide range of applicability (with certain stipula- 
tions). This is ultimately related to the fact that the vorticity 
current is linear in the monopole charge. 

In the present paper we formulate a mechanism for 
dealing with the macroscopic electrodynamics of a magnetic 
monopole in applications concerned with monopole energy 
losses. We consider a homogeneous, isotropic, nongyrotro- 
pic medium made up of nonrelativistic, spinless particles 
that interact in a self-consistent fashion. It is assumed that 
the medium itself does not contain magnetic monopoles, 
which act solely as external sources. It can be shown that all 
of these constraints can be circumvented. 

2. BASIC EQUATIONS 

Maxwell's equations for a magnetic monopole in a ma- 
terial medium are 

rot B-E=j+ji, 
div E=pS pi, 

rot E+B--j, 
divB=p. 

(2. l a )  
(2. lb)  

( 2 . 1 ~ )  
(2. ld )  

Herep and j are the charge and current densities (the lack of 
an index denotes an external charge; a tilde denotes an exter- 
nal magnetic monopole; an index i indicates a quantity that 
has been induced within the medium by an external agent; 
there are no induced monopole quantities since there are no 
monopoles in the matter making up the medium). Mono- 
poles are clearly the source of a longitudinal (subscript I) 
magnetic field B, and the "annihilator" of the Faraday in- 
duction law: the transverse (subscript t )  electric field E, 
comes not just from a varying magnetic field but from the 
motion of magnetic monopoles as well. 

The material relations that supplement (2.1 ) in the 
weakly interacting case are linear, and take the form2 

pi= (1-8) div E, jti= (E-I)E~+ (1-l/p)rot B (2.2) 

( jj is related to through the continuity equation). The 
Fourier components of E, S, and ji, which are referred to 
below as the response functions (see Ref. 2 for further de- 
tails) depend on the frequency w and wave vector k of the 
external influence. In particular, we obtain from (2.1 ) and 
(2.2) the expression for the magnetic field, 

where 

o=kZ/p-02E. 

In the absence of magnetic monopoles, only the quantity 
(2.4), rather than S and ,ii individually, has any physical 
meaning, describing as it does the response of the medium to 
the unique [by virtue of (2. l c )  with 3 = 0] transverse field 
El,  B, . There is therefore a family of equivalent pairs of 2. and 
,G corresponding to a given value of (2.4). The two most 
commonly used possibilities are 

where E and E,  are the longitudinal and transverse dielectric 

constants, andp  is the magnetic permeability. 
A magnetic monopole changes the situation radically, 

rendering E, and B, independent (by a choice of external 
sources, either one can be forced to zero). Then 6 and ji 
become characteristics of the medium in their own right, 
describing its response to these fields. This is patently clear 
from (2.3): with no monopoles, the magnetic field depends 
only on u, while if any are present, it also depends on S and3  
individually. This also means that additional information 
about the medium is required-the value of either S orb-in 
monopole electrodynamics. In any event, the usual choice, 
(2.5a), is unjustified and is almost always wrong (see Sec- 
tion 7 below). 

One exception is the motion of a magnetic monopole in 
a hollow channel in some medium, where the channel is large 
in cross section compared with the medium's spatial disper- 
sion r a d i u ~ . ~  This can be shown to be the case by making use 
of (2.1 ) to write (2.2) in the form 

t 

The last term, which is responsible for the nonadherence to 
(2.5a), describes a ring current localized near the monopole 
trajectory. That current results from the solenoidal electric 
field of the moving magnetic monopole (see Introduction); 
it is obviously not present when a monopole moves through a 
channel. 

To summarize, then, the central issue in the linear elec- 
trodynamics of magnetic monopoles is the determination of 
the three linear response functions of the medium, E, S, and,ii 
(or E, u, and either S or ji), two of which are already known 
from conventional electrodynamics. If it does become neces- 
sary to transcend the linear theory, one must start with a 
nonlinear generalization of the equations (2.2). In the hy- 
drodynamic formulation adopted below, we carry out that 
generalization using the standard expressions for the charge 
density and (fluid) flux density in conjunction with the con- 
tinuity and nonlinear Euler equations. 

3. CLASSICAL MEDIA 

The field strengths E and B, respectively, are physically 
defined by the velocity-independent and velocity-indepen- 
dent terms of the Lorentz force in the equation of motion for 
a classical (heavy) test particle, 

& v = ~ ( E +  [VB] ). (3.1) 

This same equation describes the motion of a particle inside a 
classical medium in the self-consistent field approximation, 
wherein besides the fields due to external sources, E and B 
incorporate the mean fields produced by all other particles in 
the medium. 

If one of the external sources is a magnetic monopole, 
the canonical formalism no longer applies to (3.1) (see In- 
troduction). In fact, from Lagrange's equations, 

(L is the Lagrangian, p is the canonical momentum), we 
have 

The first and third of these equations, together with (3. I ) ,  
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yield 4. QUANTUM MEDIA 

The Schrodinger equation of quantum mechanics, d 
- div p=O, 
dt 

whereupon, given the initial condition p = mv as t-. - CO, 

the difference p - mv depends solely on the coordinates. 
The remaining conditions (3.2) then lead to Maxwell's 
equations (2. lc, d )  with vanishing right-hand sides. A mag- 
netic monopole thus destroys the Lagrangian (or Hamilto- 
nian) character of the equations of motion of a classical 
charged particle. 

This is a rather general conclusion, and it applies to 
quantum dynamics as well. Moreover, in no way does it inva- 
lidate the classical equations of motion incorporating field 
strengths (recall the example of non-Hamiltonian dissipa- 
tive dynamics), so a description of the effects of a magnetic 
monopole on a classical medium should encounter no diffi- 
culties. Furthermore, such a medium requires no further in- 
formation about the response functions, which are given by 
Eqs. (2.5b) (see Ref. 2) .  

To prepare the way for a consistent treatment of the 
quantum mechanical problem, let us rewrite Eq. (3.1) in 
hydrodynamic form (see Ref. 7) .  Going to Euler variables 
with a stationary observer, and introducing the density 
n(x,t) and velocity v(x,t) at a fixed point in space, we can 
easily derive the Euler equation and the equation of continu- 
ity: 

e  
; + ( v V ) v = - ( E + [ v B ] ) ,  

m  

li+div (nv )  =O.  

In general, when the correlation between particles (in 
other words, collisions) is important, a classical medium can 
be described by a kinetic equation, and the equations of hy- 
drodynamics follow, to some approximation. For a barotro- 
pic fluid, these equations differ from (3.3) only by the addi- 
tion of the quantity - V w  on the right-hand side of the Euler 
equation, where w (n ) is the enthalpy. To take viscosity into 
account, it is necessary to add to that equation the quantity 

vAv+ (<+1./3) \ '  div v ,  (3.4) 

where Y and f a r e  the viscosity coefficients. 
The hydrodynamic equations for the induced charge 

density and charged-fluid flux density (see Section 2)  take 
the form 

where we have assumed that values unperturbed by the ex- 
ternal field have been subtracted. Linearizing the hydrody- 
namic equations-i.e., working in the acoustic approxima- 
tion-we can then go on to find the linear response functions 
of the medium (see Section 7 below). 

If the hydrodynamic approximation is inapplicable, 
then the analogous linearization must be carried out for the 
kinetic equation that determines the monochromatic distri- 
bution function f ( x , t ) .  The equations for the induced charge 
and flux densities are then 

d [ ih - - (ih V + e ~ )  'Dm-erp] *=0 
at 

(4.1) 

includes potentials p and A defined by 

which leave out magnetic monopoles [see Eqs. (2. lc, d )  1. 
The Madelung formulation does not share this shortcoming; 
one makes the replacement 

$=n'" exp ( iS/h) , V S=mv+eA. (4.3) 

Substitution of (4.3) into (4.1 ) yields the equations of hy- 
drody namics, 

where the "quantum" potential 

plays the role of the enthalpy. The expressions for the charge 
and flux densities remain unchanged [ Eq. ( 3.5 ) 1. 

A quantum object can be completely described in the 
language of the probability density n and the velocity v asso- 
ciated with the probability flux density. In particular, the 
phase difference in the wave function that arises when a split 
current merges is given by 

6s = [ j  dl - j dl] (mv+eA) = m @ ,  

where L and L ' are the current paths, C is the surface that 
caps the paths, and 

is the flux of vorticity (1.2) through that surface. In a sim- 
ply-connected medium in the absence of magnetic mono- 
poles, r = 0, as can be seen directly from (4.3).2' 

When monopoles are present-when the fields cannot 
be represented as in (4.2) and the Schrodinger equation no 
longer makes immediate physical sense-the hydrodynamic 
equations (4.4), like the classical equations (3.3), continue 
to be useful. It is in fact Eqs. (4.4) that provide the basis for 
our subsequent developmenL4 Both later in this section and 
again in Section 6 we shall return to the problem ofjustifying 
those equations. 

The Euler equation (4.4) can be rewritten in the form 
(see Ref. 7)  

where the monopole source is clearly in evidence as the last 
term on the right-hand side. The longitudinal component of 
(4.7) yields the generalization of the Bernoulli equation, 

vz/2+ w+U=const, 

6n 
(4.8) 

U=A-' [-ez-- + d i v ( i - [ v r ] ) ]  , 
m  
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where Sn is the change in density induced by the external 
agent. 

We can preserve the form of the Lorentz force in the 
presence of a magnetic monopole by assuming that a particle 
in the medium feels only the fields themselves, regardless of 
whether they originated with a conventional charge or a 
monopole. The net result is that the Lorentz force contains 
no field terms specifically relegated to magnetic monopoles 
(a  longitudinal magnetic field, for instance). In fact, when 
monopoles are present, the analog of (4.2) becomes [see 
(1.21, (4.711 

where 

We see from (4.9), then, that the Lorentz force actually de- 
pends only on A and p. 

Everything that we have said thus far refers to the case 
in which interactions among the particles of the medium are 
described by the self-consistent field method. The machin- 
ery becomes more complicated (but still retains the advan- 
tage of using the language of fields rather than potentials) 
when correlations between particles-pairwise, ternary, 
etc.-must be taken into consideration. In that event, the 
hydrodynamic quantities will depend on the coordinates of 
the pairs and triples of particles involved ( a  subject dis- 
cussed in greater depth in Ref. 8) .  

The results to be derived in the present section apply 
both to quantum media and to an ideal classical fluid. Tak- 
ing the curl of Eq. (4.7) and making use of ( 1.2) and (2.1 ), 
we obtain the generalized Helmholtz equation7 with a mag- 
netic monopole as the source of vorticity: 

Furthermore, we shall assume that the monopole 
moves at constant velocity u with respect to the medium 
(deceleration of the monopole due to energy losses can be 
neglected by virtue of its large mass) : 

p=g6 (x-ut), J=up. (5.2) 

When the velocity v is constant, the solution of (5.1) takes 
the form 

This represents an infinitely thin string (the continuous 
straight line in Fig. 1) proceeding along the monopole tra- 
jectory (the magnitude is J '  , dt 'j, the dashed line in Fig. 
1) cleared out by the liquid flow. It can be shown that even in 
the general case of variable velocity, the solution has the 
same meaning, which is expressed in terms of the law of 
motion for a parcel of "fluid" in the given velocity field. This 
is the analog of Thomson's theorem: the vorticity is carried 
along by the moving fluid.' 

The foregoing may be verified by considering the vorti- 

monopole 

FIG. 1 

city flux (4.6) through a surface patch Z moving with the 
fluid. A standard formula from vector analysis, 

together with Eq. (5.1 ) gives the equation for the displaced 
flux along the monopole t r a j e ~ t o r y : ~  

Hence, by integrating over an infinitesimal time interval en- 
compassing the instant at which the monopole crosses the 
surface Z, we obtain the value of Q itself after the surface has 
been crossed (obviously, before the crossing, Q = 0 ) :  

It is noteworthy that this quantity-a topological invar- 
iant-is linear in the magnetic monopole charge g. 

The vorticity string is largely the same as the vortex line 
solutions found in superconductors, liquid helium, and the 
Higgs vacuum. If we set up a cylindrical coordinate coinci- 
dent with the axis of an element of the string, we can use 
( 1.1 ), ( 1.2), and (5.3) to find the leading azimuthal compo- 
nent of fluid velocity near the string (and far from its end) 
(see Introduction) : 

Inserting (4.5) and (5.4) into (4.8) and retaining the most 
singular terms near the string yields 

The vanishing of the density at the string itself, which leads 
to the relations 

is due to the expulsion of fluid by the centrifugal force attrib- 
utable to the velocity (5.4). 

We now give some further consideration to the limits of 
applicability of the asymptotic formulae (5.4) and (5.5). 
The first loses its pertinence at the "London depth" l/w, 
(c/w, in conventional units, where c is the speed of light), 
which determines the magnetic-field screening radius, 
where 

is the square of the plasma frequency and no is the unper- 
turbed density of the fluid. The applicability of (5.5) for the 
density is much more severely restricted to a length 
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which comes about in conjunction with the electrostatic 
term containing Sn in (4.8) .,' 

Here, without derivation, we also set down a modifica- 
tion of (5.4) and (5.5) that applies near the end of a string 
(the z coordinate is reckoned from the monopole along the 
string) 

where f may be expressed in terms of a hypergeometric func- 
tion, and 

x=zl [z2+pZ(1 -u2) ] %. 

It is then clear that (5.6) is valid over the entire length of the 
string, including its ends.4' 

Spinning the fluid up to the velocity (5.4), the mono- 
pole imparts a kinetic energy Q (per unit length of the 
string) and momentum M (per particle of the medium). An 
elementary calculation shows that within the limits of appli- 
cability of (5.4), 

where 04P is some logarithmic factor (see also Ref. 3) .  

6. THE SUPERPOSITION PRINCIPLE 

The extension of the Madelung formulation to magnet- 
ic monopoles requires that one verify the validity of the prin- 
ciple of superposition of states, upon which the physical in- 
terpretation of the machinery of quantum mechanics rests. 
When there are no magnetic monopoles present, this is guar- 
anteed by the equivalence of the equations of hydrodynamics 
and the linear Schrodinger equation (4.1 ); any pair of solu- 
tions $ [and pair of complex parameters 
C,, ,  = $,,, exp (ia,,, ) ] can be used to construct a third solu- 
tion 

$3=Ci$t+Cz$z (6.1) 

that satisfies the conditions imposed by the physical require- 
ments. 

In the language of hydrodynamics, we need to compare 
a pair of solutions of (4.4), n, ,v, and n, ,v, , with a third 
solution n, ,v, . Combining (6.1 ) with (4.3) and writing 

(the contour L follows the current point x ) ,  we obtain 

ns=yi2ni+yzzn2+2yly2(n,n,) '" cos 0, 
(6.3) 

n3v~=y12nlvI+yz2n,v2+yiyP~ [ (n,n2) '"(vi+v2) cos 0+a sin 01. 

The uniqueness of these relations is implied by their indepen- 
dence of the choice of L in (6.2). The phase difference 
between two contours L and L ', 

vanishes in the absence of magnetic monopoles by virtue of 
the fact that l? = 0. 

When monopoles are present, the condition for unique- 
ness in the preceding sense comes from ( 1.1 ). The phase 6 
actually enters into (6.3) only insofar as it affects the sign of 
the trigonometric functions, and when ( 1.1 ) is satisfied, the 
right-hand side of (6.4) is a multiple of 277 [see (5.3)].4 It 
remains to show that the equations (6.3) indeed satisfy 
(4.4) if the latter are satisfied individually by n, ,v, and 
n, ,v,. It is convenient here to use the Euler equation in the 
form (4.7), where the presence of a monopole is explicitly 
reflected by the r-dependent term, which can in fact give 
rise to quantities that are "dangerous" in the sense of interest 
to us here. First and foremost, these include the cross prod- 
ucts [v,,, x TI and [OX TI obtained from the expressions 
for v,,, and [v, x T, 1. These products are multiplied by d n  
and n, and by virtue of ( 5.6) they drop out of the final result. 

Hazardous quantities of another type, 

come about when the equations in (6.3) are differentiated 
with respect to time. Taking advantage of the demonstrated 
path-independence of (6.3), the contour can be deformed so 
that in general it has no points in common with the string if 
the point x lies outside the string, or, if it does not, so that the 
contour at a point of intersection is orthogonal to 7. Quanti- 
ties of this second type therefore do not contribute to the 
result either. 

7. LINEAR RESPONSE FUNCTIONS 

Following the prescription referred to at the end of Sec- 
tion 3, we can now find all of the linear response functions of 
the medium needed for the electrodynamics of magnetic 
monopoles. This we shall do for a number of simple media of 
practical importance. 

There exists a class of media for which E = E,  andp = 1 
[see Eq. (2.5b) 1. It includes the classical media (Section 3), 
and also quantum media at rest and in their unperturbed 
state (magnetic-field effects in such media are at worst sec- 
ond-order in the field, so ,ii = 1; see (4.4). Members of the 
class include the following,media: 

Classical media with no spatial dispersion are character- 
ized by E and p independent of k, and in accordance with 
(2.5b), 

e=e ( o ) ,  e=e (o)+[l-l/ l~(w)]k'lo~. (7.1) 

A classicalfluid (ideal, at rest, homogenous) has the 
response function [see (5.7) and Section 31 

wheres2 = ndw/dn is the square of the speed of sound. For a 
viscous fluid (see [3.4)], w 2  must be replaced by 
w [w + i(4v/3 + <) k '1 in the expression for E and by 
W ( W  + ivk ,) in the expression for E. 

A superconducting condensate is described by (4.4) 
when the correlation length is small (type I1 superconduc- 
tor, charged Bose fluid), and it has the response function 

A system of oscillators (immobile, randomly distributed 
in space) can serve as a model of a gas of diatomic molecules, 
lattice vibrations, and so forth under appropriate limiting 
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conditions. It is then necessary to subtract the quantity 
n 2 ( x  - x, ) (the restoring force) from the electric term of 
the Lorentz force in (4.4), where fl is the natural frequency 
of the oscillator, and to subsequently average over the posi- 
tion x, of the center of the oscillator. The velocity in an 
unperturbed medium is zero, while the density is given by 
the ground-state wave function of the oscillator. The solu- 
tion takes the form 

rn m 

where 

The response function of a quantum medium with non- 
zero velocity in its unperturbed state cannot be calculated 
via conventional electrodynamics, and must be treated as a 
special case. We shall take up an example of such a medium 
below. 

Aplasma is a system of weakly interacting charged par- 
ticles that can model a wide range of objects, from conven- 
tional hot plasma to the electron fluid in a metal or semicon- 
ductor. Introducing the polarizabilities a, G, and a,,  we can 
write the corresponding response functions in the form 

where angular brackets denote an average over an ensemble 
with a given distribution over speed w. The value of a, can be 
obtained from the relation 

As it turns out, this relation also holds for the general 
model of a medium each of whose particles is bound to a 
center of force, while the centers of force themselves are dis- 
tributed in some prescribed manner over velocity (for exam- 
ple, an oscillator or atomic gas). In that model, a and a, can 
be obtained from standard electrodynamics (they can be ex- 
pressed in terms of retarded commutators of the charge den- 
sity and current-ultimately, in terms of the Green's func- 
tion of a particle in the field of a force center), determining 
the quantity Z#a, using (7.6). 

8. ENERGY LOSSESOF A MAGNETIC MONOPOLE 

One of the most important applications of monopole 
electrodynamics is the calculation of the energy Q lost by a 
monopole per unit length of travel in some medium (u is the 
monopole velocity relative to the medium). Making use of 
(5.2) and the relation B(t,x) = B(x - ut), the energy 
losses of a magnetic monopole in a stationary medium take 
the form2 

Here we must eliminate terms that do not depend on the 
parameters of the medium, and that contribute not to mono- 
pole energy losses but to the energy of the monopole itself. 
This would include the quantity B,, which is completely de- 
termined by the external source [see (2. l d )  1. 

Substituting (2.3) into (8.1 ) yields 

g2 dk 
Q = a! ! do w (k2u2-02) Im (Yo), (8.2) 

where q0 is the lesser of the upper bound on the momentum 
transfer to the medium (for finite energy losses) and the 
limit obtained from recoil effeck9 The general structure of 
(8.2) resembles that of (5.10) [see (1.11, (5.7)], 

where the dimensionless quantity A depends on q,, u, and 
the parameters of the medium. 

Monopole energy losses contributing to the creation of 
a vortex string and independent of u (see Introduction) are 
related to the imaginary part of the function S in (8.2), 
which gives rise to a singularity of the form l/w2. They are 
either equal to the total monopole losses [as in an ideal fluid 
or superconductor; see (7.2), (7.3)], 

or some fraction of the latter [as in a system of oscillators; 
see (7.4)], 

Equation (8.4) represents the limiting total loss in a viscous 
fluid in which v-+0, in a plasma with u % ( w )  [see (7.5) 1, in 
a system of oscillators with u > ( 1 + @;/a2) - and in 
media with ji = 1 as u -. 1 (the latter may be deduced from 
the Leontovich relations; see Ref. 9) .  

Losses ascribable to string formation lead to a pro- 
nounced difference between monopole and charge decelera- 
tion processes. In an ideal fluid or a superconductor, a slow 
charge will not be decelerated (the D'Alembert-Euler para- 
dox), while a magnetic monopole will lose a fraction of its 
energy to string formation. 

As a string spreads, the quantity A will begin to depend 
on the monopole velocity. This results from the deflection of 
monopole trajectories in media consisting of an ensemble of 
subsystems distributed over velocity; thus, for a plasma, 

2 
A = - u<w-')ln (q,/o,), u<<w). 

3 
(8.6) 

Dissipation in the medium (which is also a direct source of 
energy loss) leads to string destruction as well. For a viscous 
fluid, 

where the Reynolds number R = u/vw, S R, = u/vq, [Eq. 
(8.4) yields R, 3 1 I.  

One special source of magnetic monopole slowing is 
Cherenkov radiation, which is described by the imaginary 
part of 1/u in (8.2). For a classical medium with no spatial 
dispersion, the result differs from the standard expression by 
an extra factor of , u ( ~ ) ~  in something that looks like the 
Tamm-Frank The Cherenkov loss in a system 
of oscillators is given by 
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where E is the larger of w, and n ( u  - 1 ) 'I2 [see (7.4) 1. 
In such a medium, the total monopole losses [taking (8.5) 
into account] are 

From everything that we have said, then, it is clear that 
magnetic monopole energy losses are essentially logarith- 
mic, with a large argument of the logarithm. In evaluating 
the contribution made by nonlinear effects, this permits one 
to work in the logarithmic approximation (see Section 9 be- 
low). 

9. NONLINEAR EFFECTS 

When higher-order effects in the monopole interaction 
with the medium are taken into consideration (the charge g 
is large; see Introduction), the results obtained in Section 8 
for the linear (Born) approximation may no longer hold. It 
turns out, however, that those results are in fact widely ap- 
plicable. 

One can get some idea of the role played by nonlinear 
effects from the dimensionless ratio 7 between the first- and 
second-order corrections to the velocity of the medium: 

[see ( 1.1 ), (2.1 ), (4.4) 1. Here d is a typical scale length of 
the medium, w, as before, is the velocity of the medium/en- 
semble subsystem, and u - w is the velocity of the monopole 
relative to the medium. Therefore, in a classical medium, 
where the denominator of (9.1 ) is basically the classical ac- 
tion, the Born approximation is valid. This is a direct conse- 
quence of the fact that g vanishes as f i  goes to zero (see 
(1.1)). 

The quantity V = Wmd in (9.1) is essentially the char- 
acteristic velocity of a quantum medium (in a nonrelativistic 
medium, V 4  1 ). Rewriting (9.1 ) in the form 

we see that the Born approximation holds in a quantum me- 
dium under two conditions: a )  the temperature of the medi- 
um is high enough, T >  m V 2  (such a medium still remains a 
quantum system when dnZ3 > I) ;  b)  the magnetic monopole 
moves rapidly enough, u > V (this is in accord with the result 
obtained by Apenko5 for a system of oscillators). 

It remains to examine the case of a slow magnetic mono- 
pole in a relatively cool quantum medium. We remarked in 
Section 4 that independent of the monopole's velocity, its 
longitudinal magnetic field has no effect on the medium. The 
validity of the Born approximation would then seem to fol- 
low directly for u - 0, as the transverse fields, which are in- 
ductive for a magnetic monopole, should at first glance van- 
ish in that limit. This, however, is not true, because of a 
peculiarity of the response function E at small w = k.u  [see 
(2.3), (5.2), and Section 71 .5' But as we noted in Section 8, 
this feature is responsible for the "string" part of the mono- 
pole energy losses, which are associated with the formation 
of a vortex string and are independent of the monopole ve- 
locity. The Born approximation is therefore only applicable 
to the remaining "non-string" part of the energy losses; for 
'that part, the convergence of the Born series is the same as 
for a conventional particle carrying a charge ( 137/2) ue. 

The issue of the applicability of the Born approximation 

to  the string part of the losses is particularly simple for a 
structureless (no bound entities) medium that is stationary 
in the absence of a magnetic monopole-a superconducting 
condensate, for example. In that event, the vorticity equals 
its Born-approximation value, proportional tog [see (5.3) ] 
and pointing in the same direction as the monopole velocity 
(the only direction physically distinguished by the system). 
This preordains the applicability of Born-type formulas to 
such media [see (8.3) and (8.4)]. 

Specifically, from (2.1 ) and (3.3), we obtain an expres- 
sion for the field B (x - ut): 

B (x) =U-l[e rot (nv) -g( V -u (uV ) ) 6 (x) 1, (9.3) 

where = ( u V ) ~  - A. In a cylindrical coordinate system 
with the axis directed along u, 

[see (8.1)]. Making use of (1.2), (9.3), and the azimuthal 
symmetry of the problem, v, reduces to the vorticity of the 
fluid 

which is in agreement with (5.4) far from the end of the 
string, and falls off exponentially for zq > w; '. The density, 
moreover, is equal to the constant value no far from the 
string, and it drops to zero for p < 6 [see (5.8) 1. With the 
foregoing in mind [along with the fact that the neighbor- 
hood of a magnetic monopole injects a nonlogarithmic con- 
tribution into (9.4); see (5.9) ], Eqs. (8.3) and (8.4) actual- 
ly follow from (9.4). The only reservation here-but an 
important one-is that I/{ must be included among the 
quantities competing in the determination of the upper limit 
q, (see Section 8).  The net result is a nonlogarithmic energy 
dependence of monopole losses in the ultrarelativistic re- 
gime characteristic of a charged particle. Then and only then 
do nonlinear effects become manifest-the primordial value 
of the exponent 2 in (5.5) was legl/di [see ( I. 1 ) I .  

All of the above is true for all of the subsystems com- 
prising a structureless medium/ensemble (a  plasma, for ex- 
ample) with one difference-the vorticity is now directed 
along u - w. This gives rise to the additional factor (see Fig. 
1) 

(COS e>=< (u~-uw)/u~u-w~ >, 
and we revert to the Born equations (8.3), (8.4), and (8.6). 

The presence of coupled entities within the medium 
(oscillators, atoms, and so forth) that have typical scale 
lengths d and velocities V (see above) may alter the situa- 
tion. For the Born approximation to be applicable, it is then 
necessary that 71 < 1 for those entities [see (9.2) 1. When that 
condition is not satisfied, nonlinear effects may come to the 
fore. 

We see, then, that the relatively broad applicability of 
the Born equations of Section 8 to magnetic monopole ener- 
gy losses is based on the quantum smallness of the monopole 
charge, its proportionality to a topological invariant of the 
string [Eq. (5.3) 1, and the logarithmic behavior of the 
losses when the argument of the logarithm is large (propor- 
tional to the speed of light). 

I thank S. M. Apenko, V. L. Ginzburg, and V. V. Losya- 
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kov for valuable discussions, and am especially grateful to 
Ivo Bialynicky-Birula for bringing Ref. 4 to my attention. 

I '  Direct experimental studies are unthinkable, even far in the future: the 
energy of accelerators currently in the planning stage is at most 10' 
GeV. It would also be well not to place too much hope in cosmology, 
since no measurement can ever be made without some independent un- 
derstandingof the design of the measuring instrument. In the meantime, 
our data on the "cosmological instrumentn-the structure of the uni- 
verse-must be dredged out of the same meager source from which we 
expect to obtain fundamental information. Furthermore, our picture of 
the universe these days changes just about as fast as our ideas about the 
microworld. 

2' In the Madelung formulation, which contains no potentials at all, the 
groundlessness of assertions appealing to the Bohm-Aharonov effect 
about the special role potentials play in quantum mechanics is especially 
clear. 

"Note that (5.8) has no bearing on the behavior of a single quantum 
particle, for which there is no electrostatic term (self-action). Equation 
(5.8) is also invalid in a superconductor, where apart from the conden- 
sate described by a coherent wave function, there is also a normal, 
charged fluid that fills in the density depression (the normal crust on a 
vortex filament). In that case, {is determined by the correlation length 
of the superconductor. 

4'  These equations imply the equivalence of current-induced and genuine 
magnetic dipoles; there is no medium within the latter (which consist of 
a monopole-antimonopole pair connected by a string, the product of a 

pair-creation event). 
5' This is exactly why the magnetic field of a magnetic monopole exhibits 

the Meissner effect in a superconductor: the longitudinal and transverse 
components of the field cancel, no matter what the monopole ~e loc i ty .~  
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