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Equations of motion are constructed for a "rotator + particle" model describing the alignment of 
the angular momentum of the "odd nucleons" during the rotation of nuclei. A general solution of 
the equations ofmotion is found. The steady-state rotations pertinent to nuclear physics are 
studied in detail. The results are compared with experimental data. 

1. INTRODUCTION 

The experimental discovery' of "backbending" in the 
rotational bands of nuclei has attracted much interest to the 
interaction of nuclear rotation with the internal degrees of 
freedom of the nucleus, i.e., essentially to the interaction 
with the angular momenta of the individual  nucleon^.*^^ 
Since the individual angular momenta also interact with 
each other, the rotation of the nucleus leads to a complex 
restructuring of their coupling: Whereas at low angular ve- 
locities the angular momenta are oriented toward the sym- 
metry axis of the nucleus, n, so the projection of the total 
angular momentum onto its axis is conserved, at high angu- 
lar velocities these angular momenta are oriented toward the 
(vector) angular rotation velocity R. There is accordingly a 
transition from a ( jn)  coupling of the angular momenta j of 
the individual nucleons to a ( j R )  ~ o u p l i n g . ~  Since the angu- 
lar momenta j interact with each other, and since none of 
them plays any particularly special role, this restructuring of 
the coupling is of a collective nature. Thermodynamic meth- 
ods can accordingly be used to analyze it; they lead to a 
satisfactory phenomenological description5-' of backbend- 
ing. 

There is, however, another limiting case, which may 
occur (for example) for certain rotational bands of odd nu- 
clei when the coupling of the angular momentum of the odd 
nucleon with the angular momenta of the other particles is 
weak in comparison with the coupling of these other angular 
momenta with each other. If the interaction of this odd nu- 
cleon with the other angular momenta is slight, this fact will 
be manifested experimentally as so-called untied rotational 
bands (Ref. 8, for example), in which the distances between 
energy levels are nearly the same as in the corresponding 
neighboring even-even nucleus. However, one also runs into 
cases in which the coupling of the odd angular momentum is 
not particularly weak, and this angular momentum becomes 
aligned along the angular rotation velocity of the nucleus, R ,  
only if the rotation is sufficiently fast, i.e., only if R = /R1 is 
larger than a certain critical value R,. On the other hand, R, 
cannot be so large that the other particles of the core begin to 
align. The "rotator + particle" model,9-" in which all the 
core particles are collected in a single rotating rotator, is 
widely used to describe this situation. The angular momen- 
tum j of the odd nucleon interacts with both the angular 
rotation velocity of the rotator, R ,  and the rotator axis n. 
The angular momenta of the particles constituting the rota- 
tor, in contrast, are regarded as being coupled so closely that 
the rotation does not restructure them. 

The rotational bands of even-even nuclei constructed 

from excited states with a nonzero angular momentum may 
have some similar properties. In speaking of the built-in an- 
gular momentum of the "odd nucleons" below, we will mean 
any situation in which an additional angular momentum is 
aligned along the angular velocity vector. The built-in angu- 
lar momentum is usually quite large ( j- 5-10, in units offi), 
so the classical approach to the model can be taken as a first 
approximation. lo 

In the present paper we examine the version of the rota- 
tor + particle model in which the equations of motion are 
completely integrable." In this case, the motion of the sys- 
tem can be studied in some detail over the entire range of 
angular velocities R, including the alignment point R,. 
From the experimental standpoint, the most important con- 
clusion reached here is that a plot of the angular rotation 
velocity of the nucleus, R, versus the angular momentum of 
the nucleus, J, has a change of slope at the alignment point, 
and the corresponding effective moment of inertia decreases 
abruptly at this point. In the final section of this paper we 
discuss experimental data which have revealed "low-fre- 
quency anomalies" of this sort in the rotational spectra of 
atomic nuclei. 

2. EQUATIONS OF MOTION 

We write the Lagrangian of a system consisting of a 
rotator with a moment of inertia I, rotating at an angular 
velocity R ,  and an angular momentum j + Kn, which is 
"built into" the rotator, in the following form: 

Here ( a , ,  R,, R, ) are the projections of the angular veloc- 
ity vector onto the axes of the coordinate system moving 
with the rotator. As usual, axis 3 is directed along the rota- 
tor, and the corresponding moment of inertia is zero. This 
situation corresponds to an inability of the nucleus to rotate 
around its symmetry axis.14 We assume that the built-in an- 
gular momentum consists of two parts. The angular momen- 
tum j of the odd nucleons interacts with the rotator axis n 
through the potential U(X), wherex is the angle between the 
vectors j and n. The coefficient jw, of U is chosen from di- 
mensionality considerations. The angular momenta of the 
particles constituting the rotator are combined in the angu- 
lar momentum Kn, which is directed strictly along the rota- 
tor. As was pointed out in the Introduction, the rotation is 
assumed to be adiabatically slow for these particles. The sec- 
ond term on the right side of ( 1 ) describes the interaction of 
the built-in angular momentum j + Kn with the angular ve- 
locity R. If the angular momentum j is fixed with respect to 
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the coordinate system moving with the rotator, then Lagran- 
gian ( 1 ) (without the last term, which is constant in this 
case) leads to equations of motion which are equivalent to 
the Volterra equations which are used to describe this sys- 
tem.I5 This circumstance shows that choosing the interac- 
tion term in the Lagrangian in this particular form is valid at 
large as well as small angular velocities. When we go over to 
the Hamilton's variables, on the other hand, this simple form 
of the interaction is valid only at small angular velocities 0. 

We express the angular velocity vector in terms of Euler 
angles: l6  

Q,=+ sin 0 sin $ 

+(I cos $, Q2=ip sin 8 cos 4-0 sin $, Q,=@ cos 04-6. (2 )  

Making use of the inability of the nucleus to rotate around its 
symmetry axis, mentioned above, we fix the coordinate sys- 
tem moving with the rotator in such a way that its second 
axis runs perpendicular to the plane defined by the vectors j 
and n. We then have 

j=(j sinx, 0, j cos x),  n= (0, 0, I ) ,  ( 3 )  

and the Lagrange equations for the variables 6, p, $, x take 
the following form, after some simple manipulations: 

IQ, cos $--I& sin $-IQlQ3 sin $-IQ2Q3 cos $ 

-jQ, sin x sin $+& cos x cos $+ (K+j cos X) ip sin P=O, (4)  

Ih, sin $+1a2 cos $+IQ,Q, cos $-1Q2Q3 sin I) 

+jQ3 sin cos $+ji cos sin $-- ( ~ + j  cos x)0=0, (5 )  

x=-Qz (6 )  

and 

Q1 cos X-Qs sin X-ooU'=O, Uf=dU/dx. ( 7 )  

Taking the obvious linear combinations of Eqs. ( 4 )  and (5 ) ,  
we can put system (4)-(6) in the form 

By virtue of relation (7 ) ,  the number of independent vari- 
ables is three. 

Equations (7 )  and (8 )  are the equations of motion for 
our mechanical model. It is not difficult to see that they have 
two integrals of motion: the square of the total angular mo- 
mentum, 

J2=(1SZ,+j sin x) '+ (151,) '+ (K+j  sin x ) ~ ,  ( 9 )  

and the total energy, 

These two integrals are sufficient to reduce the integration of 
Eqs. (7 )  and ( 8 )  to quadrature form. However, to carry out 
a detailed study we would naturally like to specify the poten- 
tial U(X) in some way; we do this in the following section of 
this paper. 

3. ALIGNMENTOFTHE ANGULAR MOMENTUM OFTHE ODD 
NUCLEONS 

The discussion below is restricted to the case K = 0, 
which embodies all the characteristic features of the phe- 

nomenon of interest here. The potential U can be chosen on 
the basis of the following considerations. We consider the 
particular solution k = R, = 0, which corresponds to a 
steady-state rotation. In this case we have h, = 0, since we 
have f l ,  = const and 0, = jw, Ur/If l l  . Relation (7)  then 
gives us the following expression for 0, : 

Ql=[ooU'+(oo2U"+4jooU' sin x cos ~/1) '"]/2 cos X .  ( 11 ) 

It is not difficult to see that the problem simplifies dramati- 
cally if we choose 

where the minus sign corresponds to an attraction of j to n. 
Physical considerations also lead us to make this choice, 
since it satisfies the requirement of invariance under the sub- 
stitution n-  - n. Furthermore, potential ( 12) is quadratic 
in x at 1x1 4 1 and also in x - 77/2 at I X  - 77/21 4 1, SO the 
choice in ( 12) actually does not restrict the generality of the 
analysis in the regions of most importance: at the beginning 
of the rotational band and near the point at which j becomes 
aligned along R. 

For potential ( 12), expression ( 1 1 ) becomes 

Q,= [ao+  (oo2+2joolI)'"] sin X. (13) 

The anglex takes on the value x/2; i.e., the angular momen- 
tum j becomes completely aligned along R at 

This angular velocity corresponds [according to (9)  with 
K = 0,R,  = 0, a n d x  = a /2 ]  to a critical value of the angu- 
lar momentum, 

We thus have the useful relationship 

Specifying U(X) as in ( 12), and introducing J , ,  we can 
proceed to the integration of equations of motion ( 7 )  and 
( 8 )  (with K = 0) .  The integral in (9)  makes it possible to 
express R ,  in terms of R, andx .  When the resulting expres- 
sion is substituted into ( l o ) ,  we obtain an equation from 
which we can find R, as a function o fx .  As a result, the last 
equation of system (8 )  gives us a differential equation forx,  
which can be written in the form 

where 

We know that solutions of Eq. (17) can be expressed in 
terms of elliptic functions." If the parameter values are such 
that the relations Ogp; <,u: 9 1 hold, then cos x oscillates in 
the interval p, < cos x<p, in accordance with 
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where k, = (1 -p:/,~:)'/~ is the modulus of the elliptic 
function. With p, = p,,  so that we have k, = 0, we find 
cos ,y = p, ; i.e., we return to the case of a steady-state rota- 
tion. According to ( 18), the energy E takes on its minimum 
value E l  in this case, so the dependence of the energy on the 
angular momentum for a steady-state rotation is described 
by 

E.= (I2-jl,) /21a1 (21 

where the effective moment of inertia is 

These expressions hold in the region j < J < J,, which we call 
the "a phase," and in which we have 

The equation fl, = 0 leads to $ = ?r/2 here (since we have 
8 = 0, q, = const = flu ), and conservation laws (9)  and 
( 10) take the following form in this case: 

J2= (IQ, sin O f  j sin ~ ) ~ t - j ~  cos2 X, (24) 
E=IQ,2 sin2 012-joo cos2 x 

= [ (I2-j2 cos2 x)lh-j sin X ]  2/21-joo cos2 X. (25) 

At a fixed value of the anglex, expression (25) without its 
last term is the same as the equation which Kramers and 
PauliI8 derived by a different method in the theory of band 
spectra describing the interaction of the rotation of a mole- 
cule with the fixed angular momentum of electrons. 

Since with $ = 7~/2 we have f l ,  = @ sin 8, fl, = 0, 
fl, = @ cos 8, we find the following expression for the abso- 
lute value of the angular velocity: 

Using this expression and (24), we can find the angle 8: 

I cos 0=j cos x. (27) 

This equation has a clear physical meaning: The projection 
of the total angular momentum onto the axis of the rotator is 
equal to the projection of the "built-in angular momentum" 
onto this axis. 

It follows from (23) and (27) that at small values of 
J - j, i.e., at the beginning of the rotational band, the angles 
x and 8 increase with increasing J - j in a square-root fash- 
ion: 

The limiting expression for 8 which we have found might be 
compared with the corresponding expression for the well- 
known case of the theory of an adiabatically slow motion, in 
which the built-in angular momentum j is directly strictly 
along n: j = jn. We then have cos 8 = j/J, so at small values 
of 8 and J - j we have 

A comparison with the second expression in (28) shows that 
in the limit in which the angular momentum j is strongly 
coupled with the axis n, in which we have Iw, & j  and J, &j, 
this expression does indeed become expression (29) for adia- 
batically slow rotation. 

As the point of total alignment is approached, i.e., as 
J-+ J,, the angle x tends toward ?r/2 in accordance with 

It follows from solution (20) that the frequency of the 
small oscillations around this steady-state rotation is 

where K(k)  is a complete elliptic integral of the first kind. 
The frequency in (3  1 ) vanishes in a square-root fashion as 
J-Jc - 0, and it becomes imaginary at J >  J,. The latter 
result is evidence that this steady-state rotation becomes un- 
stable in the upper g phase, with J >  J,. 

At J >  J,, where j is completely aligned along R, and the 
rotator axis is perpendicular to the rotation axis, along 
which both J and R are directed, we obviously have 

Using (25), we find the energy and the angular momentum 
in the g phase: 

The frequency of the small oscillations around the steady- 
state rotation in the g phase can be found from the corre- 
sponding solution of Eq. ( 17). With E = Eg we have 

pi2=0, p2'=-4J, (1-1,) (],I-jz) /(3,2-j2)'11<0. 

The solution of the equations of motion, which degenerates 
in the case p, -0, E-+Eg into a steady-state rotation with 
J >  Jc ,  corresponds to parameter values such that we have 
p: > 0 and pi < 0. In this case, the solution of Eq. ( 17) is 

where kg = ( 1 + Ip: I/p: ) - This solution describes os- 
cillations of cos ,y in the interval - p, ( cos x<,u,, and the 
frequency of the small oscillations near the steady-state rota- 
tion in the g phase is 

.IS frequency becomes imaginary at J < J,, telling us that 
 his steady-state rotation, with a vector j completely aligned 
along a, is unstable at values of Jcorresponding to the lower 
( a )  phase. Figure 1 shows a plot of the angular velocity of 
the steady-state rotation versus J [see (26) and (34) 1. In the 
transformation from (jn) coupling to ( jR )  coupling, the 
slope of the angular velocity changes at the alignment point 
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FIG. 1 .  Schematic plot of the angular velocity versus the angular rnomen- 
turn in the "rotator + particle" model. 

J,, while the effective moment of inertia decreases abruptly. 
We can get an idea of the nature of the quantum-me- 

chanical corrections by adding zero-point vibrations k / 2 ,  
with frequencies (3 1 ) and (36), respectively, to the energies 
in (21) and (33): 

X[ (I-I ,)  ( / ,I-  j 2 )  IJ, 1 ", J>Ic. 

All the angular velocities are expressed in units of fi. We 
should mention that near the alignment point J, the oscilla- 
tions ofx cannot be regarded as smal1,and expressions (37) 
and (38) are not applicable there. Evaluating the amplitude 
of the oscillations with the energy -ha,, and requiring that 
this amplitude be much smaller than unity, we find an appli- 
cability condition: 

It follows that a necessary condition for the applicabili- 
ty of expressions (37) and (38) near J, is j<J,;  i.e., the 
coupling of the built-in angular momentum j with the n axis 
must be strong. 

In addition to these corrections of a dynamic nature, we 
should also consider the corrections which arise because the 
angular momentum operators do not commute. At a formal 
level, these operators correspond to "zero-point vibration 
modes" of a system with frequencies equal to the rotation 
frequency, so that there is the typical quantum-mechanical 
replacement of the type J2- J(J + 1) (Ref. 12). Marsha- 
lekI9 has carried out a more rigorous analysis of these cor- 
rections with the help of Holstein-Primakoff transforma- 
tions for the case of a built-in rotation in the model of Ref. 
10. The results of Refs. 19 and 12 show that these corrections 
are relatively small at large values of Jand are of a systematic 
nature at small values of J .  They thus could not influence 
such important qualitative aspects of the motion as the na- 
ture of the singularity in the physical quantities at the align- 
ment point J,. If, on the other hand, we are interested in not 

only the vicinity of the point J, but the entire a phase, then 
we should consider the deviations of potential U(X) from 
the model ( 12) which we have been discussing. We should 
point out that when the a phase fills a large number of levels 
in the rotational band it becomes possible in principle to 
determine the actual potential U(X) from experimental 
data. 

4. STEADY-STATE ROTATION FOR AN ARBITRARY 
POTENTIAL U(X) 

The basic characteristic measured in actual experi- 
ments is the dependence of the angular rotation velocity 
a, = dE,/dJ on the angular momentum J. In this section 
we show that the potential U can be expressed in terms of 
these two quantities 0, and J. In the steady state, there is no 
need to solve the equations of motion; it is sufficient to use 
simply the conservation laws. With 0 ,  = a, sin 19, 
a, = = 0 these laws are 

P=Z2QO2 sina 8+2j sin xZL?., sin B+j2 ,  (40) 
E,=182 sin2 0/2+jw,U(x). (41 

This becomes a closed system of equations when we make 
use of relationship (27), which is obvious for steady-state 
rotation. For convenience we replace U(X) by 

Equations (40) and (41) then become 

J2-j2=V+2j sin xVh, 
V=12Qa2 (1- jZ cos2 %IF),  

where sin 0 has been eliminated with the help of (27). Elimi- 
nating the angle x from these two equations, we find the 
expression which we need for V: 

If the Jdependence a, is known from experiments, we can 
find the dependence V(J) from (45), and we can then find 
cos2 x as a function of J from (44) : 

Combining V(J) and cos2x(J) ,  we find the functional de- 
pendence V(X); using (42), we then find the potential Uas a 
function of the angle X. 

5. DISCUSSION 

Examination of the experimental data presently avail- 
able reveals that ror . ~ t  lo:::il bands of the type which we have 
been discussing here are rather rare. In the overwhelming 
majority of cases, the coupling of the built-in angular mo- 
mentum j with the n axis is strong, on the same order of 
magnitude as the coupling of the angular momenta of the 
particles which constitute the rotator. Consequently, the 
restructuring of the coupling of the angular momenta is of a 
collective nature and is manifested as ordinary backbending. 
It follows that experimentally one should see primarily cases 
in which the coupling of the built-in angular momentum 
with the nuclear axis is weak, and the a phase consists of only 
a very small number of levels. It is important to note the 
following qualitative circumstance: In ordinary rotational 
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bands, a plot of the angular velocity fiR = dE  /dJversus J i n  
the g phase runs above the so-called solid-state line (I, is the 
solid-state value of the moment of inertia of the nucleus): 

This is true with the possible exception of the very beginning 
of the rotational band. At the backbending point Jlb' ,  the 
plot of fin descends below the solid-state line in (47) (Refs. 
6 and 7).  In contrast with backbending, the point at which 
the angular momentum of the odd nucleons becomes aligned 
is totally uncorrelated with the solid-state line. This qualita- 
tive circumstance makes it a simple matter to distinguish the 
alignment of the angular momentum j from a collective 
backbending. Furthermore, the moment of inertia of the or- 
dinary rotational bands at the very beginning is usually 
smaller than the solid-state value. For a rotational band of 
the type which we have been discussing here, in contrast, the 
effective moment of inertia at the beginning of the band, 
where we find the a phase, may be above the solid-state val- 
ue, as follows from (22), particularly in the case of weak 
coupling, with Jc - j(J,. Beyond the alignment point Jc 
the effective moment of inertia drops abruptly to a value 
I- I,, and as J i s  increased further we arrive at a comparati- 
vely well-studied ordinary backbending. 

Let us look at some examples of rotational bands in 
which all these qualitative features can be seen clearly. The 
first example is the band constructed on the 7 - ( 1964 keV) 
excited state of the nucleus ' 5 4 ~ y  (Ref. 20). Figure 2 shows a 
plot of the angular velocity fin = dE  /dJversus J. At angu- 
lar momenta J <  18 the angular velocities lie above solid- 
state line (47), which corresponds to the solid-state value of 
the moment of inertia fi2/Io = 19.4 keV. The levels with 
J = 7,9, and 11 belong to the a phase, with a very high effec- 
tive moment of inertia, fi2/Io =. 1. At J = J, = 11 there is a 
complete alignment of the angular momentum j, and the 
moment of inertia drops abruptly to a value close to the sol- 
id-state value. At J = JLb' = 18, there is a typical backbend- 
ing, and the curve of the angular velocity goes under the 
solid-state line. Shown for comparison in Fig. 3 is a plot of 
the angular velocity of the rotational band constructed on 
the ground state of the same nucleus. This band undergoes a 

FIG. 2. Angular velocity of the 7 band of the nucleus I5'Dy. 

FIG. 3. Angular velocity of the yrast line of the nucleus IS4Dy. 

backbending at J2b' = 15; the angular velocity in theg phase 
lies below the solid-state line at all times (the solid-state line 
here corresponds to the same value of I, as in Fig. 2), and it 
has no anomalies of any sort at the beginning of the band. 

Our second example is the 5/2 + band (99 keV) of the 
odd nucleus '63Yb (Ref. 21). Figure 4 shows a plot of the 
angular velocity of this band versus J .  Here again, the first 
three levels correspond to the a phase, which now lie entirely 
under the solid-state line. At J, = 13/2, the odd angular mo- 
mentum becomes aligned; this event is accompanied by a 
sharp decrease in the effective moment of inertia. This band 
has a fairly long g phase, and the backbending occurs at 
I Lb'z20. In each case (Figs. 2 and 4), there is an obvious 
qualitative similarity between the initial part of the curve of 
the rotational bands and Fig. 1. 

One might hope that further experimental research 
would result in the discovery of other rotational bands of this 
type, including some with a longer a phase, in which case the 
actual potential of the interaction of the odd angular mo- 
mentum with the nuclear core could be determined, accord- 
ing to the results of the preceding section of this paper. At 
the same time, other versions of an early alignment of a small 
number of odd angular momenta may be encountered. In the 

FIG. 4. Angular velocity of the 5/2 ' band of the nucleus '"'Yb. 
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bands of even-even nuclei, for example, there may be cases in 
which the angular momenta of one pair of nucleons are easi- 
ly aligned by the angular velocity, while the other nucleons 
are still combined in a common rotator. The yrast line of the 
nucleus '720s appears to be such a band; a low-frequency 
anomaly has been found there in the behavior of the effective 
moment of The rotational band of the nucleus 
" ' ~ e  exhibits a similar behavior.24 

I am sincerely indebted to V. G. Nosov for numerous 
discussions of problems of nuclear rotation and also A. A. 
Vedenov, E. B. Levchenko, A. N. Timashev, A. L. Chernya- 
kov, and V. R. Chechetkin for interesting discussions and 
useful comments. 
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