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The Lagrangian for the interaction between gravitation and a single matter multiplet is set up in 
the case of an arbitrary non-Abelian internal symmetry group G by means of a special procedure 
of reduction from a space with D = 10 dimensions. The resultant theory corresponds to the 
"minimal" version ofN = 4 supergravity interacting with matter. In the conventional 
(nonminimal) version there appear beside the non-Abelian multiplet six auxiliary neutral vector 
N = 4 supermultiplets of matter, strongly (nonlinearly) mixed with the gravity supermultiplet. 
A gauge version of the N = 4 supersymmetry is also presented (in the framework of the minimal 
scheme), in which the global SO(4) group acting in the space of the four supersymmetry 
generators is replaced by a local SO(4) group. This local scheme corresponds to spontaneously 
broken N = 4 supersymmetry. 

1. INTRODUCTION 

The present work constitutes the completion of a cycle 
of papers (see Refs. 1 and 2)  devoted to the construction of 
the interaction of gravity with matter in the framework of 
extended N = 4 supersymmetry. Such supersymmetry is the 
largest possible from among those which admit the inclusion 
of matter. The Lagrangian for the theory that describes mat- 
ter with such a symmetry contains no free parameters (be- 
side the one gauge coupling constant). Its second important 
property is its finiteness (the theory has no ultraviolet diver- 
gences). The theory has a significant flaw in that (in the 
absence of gravity) no mechanism exists for spontaneous 
breaking of the N = 4 supersymmetry, such breaking being 
required to describe the phenomenology. The hopes for the 
possible employment of such a theory in physics can be justi- 
fied only in the event that the interaction with gravity would 
somehow guarantee a mechanism for spontaneous or explic- 
it soft breaking of the N = 4 supersymmetry down to N = 1 
(or to N = 0, i.e., to complete absence of supersymmetry). 
The study of this question naturally presumes the construc- 
tion and analysis of the interaction of matter with gravity. 
This is the motivation for the present work. 

In the conventional description of N = 4 supergravity, 
interacting with matter, which naturally arises in the reduc- 
tion from a space of D = 10 dimensions (see Ref. 3) ,  one 
encounters the problem of a large number of superfluous 
degrees of freedom-auxiliary neutral (under the internal 
symmetry group G) fields, which are strongly mixed with 
the components of the gravitational supermultiplet and 
make the analysis of the dynamics difficult. We emphasize 
that from the point of view of string theory, where the space 
with D = 10 dimensions has fundamental physical meaning, 
these neutral fields are not superfluous. But from the point of 
view in which the Minkowski space M, (D  = 4)  is consid- 
ered fundamental there is, generally speaking, no basis for 
the introduction of such fields. Therefore in Minkowski 
space it is natural to start from a study of the simplest "mini- 
mal" scheme, where all superfluous degrees of freedom are 
absent. The construction of such a scheme is the aim of the 
present work. 

The solution of this problem requires the application of 
artificial approaches, since it is not clear how to directly 

"disentangle" the strongly mixed gravity and matter degrees 
of freedom. In this work we make use of a special reduction 
scheme from the space M, with ten dimensions (D = 10) to 
M4, in which it is possible while conserving supersymmetry 
to consistently turn the superfluous degrees of freedom into 
zero. The method was worked out in previous articles of the 
author on the example of pure supergravity and gravity in 
interaction with an Abelian matter multiplet. (We empha- 
size that in the approach under discussion utilization of 10- 
dimensional supergravity is simply a matter of convenience. 
The fields in MI, carry no independent physical significance 
and therefore we are free to impose on them the restrictions 
needed for the solution of the posed problem. ) 

The same problem, but using different methods, was 
solved in Refs. 4-6. In Ref. 4 use was made of the supersym- 
metric generalization of the o model for scalar fields on the 
manifold O(n.6)/0(n) e 0 ( 6 ) ,  where n is the number of 
matter multiplets, with subsequent localization of certain 
subgroups of the O(n.6) symmetry group. The beautiful ap- 
proach used in Ref. 4 does not permit, however, the discus- 
sion of arbitrary internal symmetry groups G, but only ad- 
mits special subgroups of O(n.6). 

The general case was considered in Refs. 5 and 6. Their 
starting point is the superconformal theory of interaction of 
matter and Weyl gravity in M4 with assumed SU( 1.1) sym- 
metry in the boson sector.' The passage to the interesting 
case of PoincarC gravity includes the imposition of a number 
of additional (nonlinear) conditions on the fields, which are 
explicitly solved only in special cases (for simplest groups 
G). To summarize, the establishment of a direct connection 
between Refs. 5 and 6 and our approach seems a difficult 
problem, since in our approach the Lagrangian is formulat- 
ed explicitly in terms of independent fields. We shall show 
that certain examples of spontaneous breaking of N = 4 su- 
persymmetry, in particular down to N = 1 (see Ref. 9),  were 
discovered in Ref. 6, and in Refs. 8 and 9 based on the same 
approach. 

The reduction procedure used in this paper is readily 
generalized, using methods developed in Ref. 10, to the case 
when the internal space Q, = MI, /M, is the group manifold 
of the O(4) group. From the point of view of method our 
approach differs from that of Ref. 10 (and also from that of 
Refs. 1 1 and 12, which make use of a procedure close to that 
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of Ref. 10) by a different interpretation of the third rank 
antisymmetric tensor that figures in the theory. As a result 
we obtain in M4 a theory, in which a group O(4) is localized, 
which acts in the space of four generators of the N = 4 super- 
symmetry. In its results this theory corresponds to the inclu- 
sion of matter into the gauge version of N = 4 supergravity, 
constructed by entirely different means in Ref. 13. The theo- 
ry corresponds, generally speaking, to spontaneously broken 
N = 4 supersymmetry. (The character of breaking depends 
on the choice of the symmetry group Gin the matter sector.) 

In Sec. 2 we fix the notation and their relation to the 
previous papers describing N = 1 supergravity in interac- 
tion with matter in the space MI, (the Lagrangian for this 
system was obtained in Ref. 14). In Sec. 3 we describe the 
reduction procedure from MI, to M,, in Sec. 4 we describe 
the bosonic part of the Lagrangian in M4. In Sec. 5 the super- 
symmetry transformations are given, and in Sec. 6 we con- 
struct a gauge spontaneously broken version of N = 4 super- 
symmetry. In Sec. 7 we state certain assertions relating to the 
spontaneous breaking of supersymmetry in the theory. 

2. SUPERGRAVITY IN D= 10 DIMENSIONS 

The notation in this paper corresponds in the main to 
that used in previous papers,'** but there are some changes 
which we now d e s y i b ~  y o r l d  indices in MI, are denoted by 
letters with h a t s i x ,  z, P, ... The same notation is used for 
tangent indices: A, B, C, ... The matter multiplet contains the 
fields Ak (gluon field) and A (gluino field); A h  and A lie 
in thealgebra G: Ak = (Ah)"T, and A = A "Ta,  where T, 
are Hermitian generators of the group Gin the fundamental 
representation, normalized by the condition 
Tr( Ta TD ) = SaD . The gravity multiplet includes the gravi- 
ton V $ ,  the Majorana-Weyl left spinor-vector gravitino 
Yfi, the Majorana-Weyl right spinor X, the antisymmetric 
gauge tensor field Ahg, and the scalar p. 

The gluon field tensor has the form 

FGR =. 28 - A -  + ig [AG, A$].  
IM Nl (2.1) 

The covariant field tensor, corresponding to the potentials 
Afig, has the form (see Ref. 14) 

FG3$ = 3dIn2 AGFl - 3k T r  (A[$FGg1 - 2/3 igA[aA3t lS l ) .  

(2.2) 

The Lagrangian for the theory, describing the interac- 
tion of supergravity with one matter supermultiplet in MI, 
in the framework of N = 1 supersymmetry, has the form14 

L=L,+L,, (2.3) 

where L, coincides in the absence ofmatter with the Lagran- 
gian of N = 1 supergravity, while L, goes over in the ab- 
sence of gravity into the N = 1 supersymmetric matter La- 
grangian. We shall present L, and L, accurate up to terms 
of fourth order in the fermion fields: 

V-lL, = - ( l /4k2)  R - ( ~ / ~ ) T ~ I " ~ D ~  (m) ya 

The term L,, has the form 

Here V = det ( V &  ), R is the curvature scalar, and 

where wgip is the spin connection. Up to the agreed upon 
accuracy we have 

where vAB = ( + , - , -, ... , - ) is the flat metric in tan- 
ge$t spage. In these equations k is the gravitational constant, 
I'{ _= rMv&- ar_e 3 2 F  32 Dirac matrices in MI,, and 
r M N . . . Q  = r [ M r N l . . . r Q l .  

We present also the infinitesimal transformations, cor- 
responding to the symmetries of the Lagrangian (2.1 ). The 
general-coordinate transformations have the form 

and so forth. Here 6 are the parameters of the general-coor- 
dinate transformations. 

The transformations from the gauge group G have the 
form 

= ad;,Q + ig [AI; , ,  Q ] ,  

6,A=ig [A ,  Q ]  , (2.10) 
6nAGW = 2k TI (AI2a3 ,Q) ,  

where il are the parameters of the transformations. There is 
also present invariance under Abelian gauge transforma- 
tions that affect only the tensor field Afig: 

where 7 are the parameters of the transformation. Lastly 
there is present Lorentz-type invariance with respect to the 
group 0(1.9) ,  acting on the vector indices in the tangent 
space and the spinor indices: 

.. 2 B ~LV&*= L VhB, 
(2.12) 

sLX = - ( i /2 )  L ~ ~ z ~ ~ x ,  analogously for $k and A , 
where Lpg ar_e_ parameters of the transformations, and 
ZAB = (i/2) rAB are the generators of the O(1.9) group in 
the spinor representation. 

As in Refs. 1 and 2, we make use of the Majorana rep; 
resentation for the r matrices in which all the matrices T A  
are pure imaginary, while rll (the analog of y, in M4 ) is 
real ( y, , in contrast, is pure imaginary), and the Majorana 
spinors Wfi, A and X are real and subject to the additional 
Weyl condition: 

Lastly we present the transformations of the fields un- 
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der N = 1 supersymmetry in M,,: 

2 ,.A 

6,Vp = - ik ( E ~ ? ' Y ~ )  + .LABvfil, 

6 ,  log cp = - (21e 1/2/33) ex, 
GeAGEiR = ( ~ ' 1 4  ( i E r [ G Y f 3 1  + ( 1 / 2  1/2) ErliiRX) 

,. 
6,X = ( 3  1/25/8k) (I?&) 3% log 'p 

A,.,. + ( i / I 2 l / Z )  cp-'/4 ( r P Q n ~ )  F ~ 4 2  

We note that the supersymmetry transformations in 
(2.14) are augmented by Lorentz rotations, to ensure that 
after reduction the supersymmetry transformations in M, 
have their standard form. The transformations (2.14) are 
written accurate to lowest order in the fermion fields. Since 
(see below) the Lorentz rotation parameters Lip will turn 
out to be quadratic in the fermion fields, they-are relevant to 
the assumed accuracy in the variation 8, V $  only. (There 
are no obstacles of principle to the taking into account of 
terms of all orders in the fermion fields as they are contai~ed 
in Ref. 14, however the resultant equations become consid- 
erably more complicated.) 

3. REDUCTION FROM D= 10 DIMENSIONSTOTHE 
MINKOWSKI SPACE 

A 

A 
We assume that MI, = M4 @ Q,, with M = ( p ,  M )  and 

A = (a ,  A). The Greek indices a, p, ... , p ,  v, ... take on the 
values 0, 1, 2, 3 and refer to the Minkowski space M4. The 
Latin indices take on the values 4, 5, ... , 9 (or 1, 2, ... , 6 
depending on the context) and refer to the internal space Q, . 
As before, indices from the middle of the alphabet are world 
indices, while those from the beginning of the alphabet refer 
to the (flat) tangent space. In the following xi' are coordi- 
nates in M4, while yM are coordinates from Q, . 

We suppose first that all fields and parameters of sym- 
metry transformations are independent of yM. An exception 
is needed for { = ( { ' I ,  6 M, only. The conditions 

are consistent (see Ref. 15 ) provided that 

where a: is a numerical 6 x 6  matrix from the group 
SL(6.R). With respect to the world indices of Q, there re- 
mains, generally speaking, a global symmetry SL(6.R), but 
in what follows we confine ourselves to the O ( 6 )  subgroup. 
In what follows we often use the notation 

Let (for a t  = 0 )  

E' = ( E v  (4, xwM (x)) ,  Q = Q ( 4 ,  q~ = (qp ( x ) ,  q~ ( x ) ) .  

The functions ci '(x) become parameters of general-coordi- 
nate transformations in M4, while wM(x) become param- 
eters of the Abelian U( 1 ) gauge group.' We set Jd 'y = 1 
and use the same symbol for the gravitational constant in 
M,, and M4 . This makes it possible to omit writing out expli- 
citly trivial dimensional factors in the relations between 
fields in M,, and M4 . 

It is convenient to make the frame components V $  
vanish: V G  = 0, V :  = 0. This can be always accomplished 
with the help of an 0( 1.9) rotation. Afterwards the selfcon- 
sistency conditions 8, V G  = S, V :  = 0 fix the components 
La, = - L,, of therotation matrices in (2.14). And so we 
choose the frame V$ in the form 

(vp 
v/ ( x ) )  - - - ( ( p  E ) - : ~ ~  x p l l e ~ p N ~ / '  

p'l"EnR 
) 7 (3.3) 

vi,F ( 4  vhi4 (4,  

where e: is the frame in M,, E $ is the frame in Q,, 

are the metric tensors in M4 and Q,, vno = - Sa,, and 
E = det E $. We note that 

A 

V = det vICid = e (pE) - l ,  (3.5) 

where e = det e," . 
It is convenient to take the scalar factorp in (3.3) in the 

form 

P = c p - 9 / 4 = ~ - 3 / 4  e x p  ( - 3 / 2 k A ) .  (3.6) 

Equation (3.6) is the definition of the new scalar field A. 
Such a definition ensures the correct normalization of the 
kinetic term of the A field and eliminates mixing terms of the 
type dpEdlLA. (We emphasize that in M, the A field is a 
component of the gravity supermultiplet, while the scalar 
field E depends only on the matter scalar fields. ) 

In the following we describe in succession the reduction 
scheme for all the fields from MI, to M4. Let 

We consider first the A ~ f i  field. To reduce the number of 
independent fields in M4 we impose the condition 

Afterwards the selfconsistency condition SCAM, = 0, where 
the variation S, should be calculated according to (2.14), 
leads to the new condition: 

A 

where Y, = VfTk,  and 4, is defined in (3.7). The new 
selfconsistency condition: 

leads to the new condition: 

We note that the condition (3.10) is invariant under all sym- 
metries (2.9)-(2.11), where the gauge transformations of 
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the B ,N fields should be compensated by transformations of 
the A,, fields according to (2.1 1 ). 

Now the calculation of the variation S,g,, using the 
conditions (3.8)-(3.10) gives 

whence 

We note that the choice of the integration constant in (3.12) 
is dictated by the requirement that we have in the absence of 
gravity an O(6)-invariant, [or, what is equivalent, SU(4)- 
invariant] standard N = 4 supersymmetric theory of mat- 
ter. For this reason we have chosen for the indicated con- 
stant an O(6)-invariant tensor. (The overall numerical 
factor multiplying this tensor is fixed by the normalization of 
the kinetic terms in the Lagrangian.) As a result the initial 
global symmetry group SL(6.R)  is reduced to O(6).  (Other 
possibilities, however, exist also, see below.) 

At this point one can be convinced of the important 
fact: when the Eqs. (3.8)-(3.11) are satisfied the selfconsis- 
tency condition 6, (2) = 0, which we must impose to con- 
serve supersymmetry, leads to no new constraints and is au- 
tomatically satisfied. Thus the process of eliminating 
superfluous degrees of freedom ends at the third step starting 
from Eq. ( 3.8 ) . [We emphasize that for any other choice of 
the starting condition instead of (3.8), the subsequent con- 
sistent application of the variations 6, will, generally speak- 
ing, result in the "extermination" of all interesting degrees of 
freedom for either matter or gravity.] 

It is convenient to introduce in M4 in place of A, a new 
gluon field, which transforms correctly under general-coor- 
dinate transformations. The standard procedure (see, in 
particular, Ref. 3) consists of starting from the flat compo- 
nents in MI,. We introduce 

as the gluon field. We note that a,, = e,"a,, where 

,. 
with A, = V f A & .  In terms of the new field the relation 
(3.10) is rewritten in the form 

We now go on to a discussion of the components A,,, in 
(3.7). They describe in M4 one degree of freedom-the 
pseudoscalar field B(x).  The contribution to the Lagrangian 
from that field is calculated with the help of the duality 
transformation (see, for example, Ref. 15; the calculational 
scheme, completely analogous to the case considered here, is 
presented in detail in Refs. 1 and 2, accurate up to some 
changes in the normalization of the fields). The result re- 
duces to the following. We define the tensor field f*, invar- 
iant under general-coordinate transformations in M4: 

where li,gy are the "flat" components of the initial tensor 
(2.2) : 

The scale factor ( p E )  3'2 is extracted to ensure that the tensor 
with world indices of interest A,,., contains no superfluous 
scale factors. In the end we obtain 

where 

A I,. A,-2kTr( 4NB,,Na,l), 
B~N=2a~,BvlN, 

a,=2a,,avl+ig [a,, a,]. 

As follows from (2.3), the tensor A,,,, enters into the 
Lagrangian in M4 in the form 

(ell2) exp ( - 4 k A )  f,vcfc'"+ef,voXw", (3.20) 

where Mpv" are fermionic terms. Adding to (3.20) the term 
with coupling: 

where the field B plays the role of a Lagrange multiplier, one 
may view f,, as an independent variable. Here L V " P  is the 
completely antisymmetric tensor = 1 ) . Eliminating 
f,, with the help of the equations of motion we obtain 

Upon substitution of this expression into the original La- 
grangian with coupling we reproduce all terms containing 
the field B. 

As a result we are left with the following independent 
boson fields in M4 : ez , B r, A, B (the boson part of the N = 4 
gravitational supermultiplet) and a,,  4, (the boson part of 
the N = 4 matter supermultiplet). 

We consider now the reduction of the fermion fields. 
That aspect of the discussion is identical to that of Refs. 1 
and 2 (and differs slightly from Ref. 3). We present only the 
final results. The spinor part of the N = 4 gravitational su- 
permultiplet in M4 contains the Majorana spinor-vector gra- 
vitino $, and the Majorana spinor X. The spinor part of the 
matter supermultiplet contains the Majorana spinor A. All 
these spinors have in addition to the usual Dirac index in M4 
(which will not be written out explicitly) an internal index 
J =  1, ... , 8, with respect to which they transform like the 
spinor representation of the O(6) group, that enters as a 
factor in 0 (  1.3) e O(6). Since the initial 32-component 
spinors in M,, are subject to the 0( 1.9)-invariant condition 
(2.13), then the spinors that are in fact independent in M4 
turn out to be those which transform under the O(4) group, 
and the corresponding internal index is j = 1, 2, 3, 4 (see 
below). 

Upon neglecting the y dependence of the spinors, re- 
ferred to MI,, we obtain the following relations: 

Here Y p  = V ~ Y ~  are the "flat" components of the gravi- 
tino in M,,, and = e$$@ are the flat components of the 
gravitino in M4. We emphasize that (3.23) agrees with the 
standard supertransformation of the frame in M,: 
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where&' is the parameter of the supertransformations in M,: 

The relation (3.24) follows from (3.23) upon use of (2.14) 
if the components of the Lorentz rotation matrix are taken in 
the form 

LaB=ikeruR [- ( ~ ~ / ~ ~ / ~ ) X - ' / Z R E , " @ N ] ,  
LaB=ik~F"Y B .  (3.26) 

The value of L aB in (3.26) agrees with the choice of the 
frame in the form (3.3 ) . We note that so far the form of the 
elements L AB has not been fixed. They are calculated from 
(2.14) for a concrete choice of the matrix E $. One of the 
possible forms for E A, will be indicated below (in Sec. 4) 
after the introduction of appropriate notation. 

In what follows we will no longer encounter the super- 
symmetry parameter E from M,, . We shall only use the pa- 
rameter &' from M4 and will drop the prime from its symbol. 

We present for completeness the expressions for the 
spinors in M,, using the O(4) notation: 

Herej= 1 ,..., 4 ; J =  1 ,..., 8. 
Everything is now ready to obtain from (2.3) and 

(2.14) the desired Lagrangian and the N = 4 supersym- 
metry transformations in M, . For simplicity we confine our- 
selves here to the boson part of the Lagrangian only. 

4.THE BOSON LAGRANGIAN IN MINKOWSKI SPACE 

For the calculation of the Lagrangian in M, it is con- 
venient to use the Einstein term in (2.3) in the form 

where the a2,, are defined in (2.8). This familiar relation is 
accurate apart from a total derivative. In the parametriza- 
tion used by us the nonzero components of the tensor C l , ,  are 
equal to 

~,B,=-&B,,=-e,p (pE)  '" (EBN3,Excf qBcd, log p"') , 
QcrBc=-x (pE)p"hB~,.E,,tCe;, (4.2) 

where R' is the analogous to (2.8) tensor in M4: 

By an equation similar to (4.1 ) a' defines the curvature sca- 
lar R ' in M, . (Since the R from M,, will not be encountered 
any more in the following, we shall use the standard notation 
R for the curvature scalar in M,.)  Now, following some al- 
gebraic transformations, we may write the desired boson La- 
grangian in M, : 

where L, is the standard Einstein term: L, = - (e/4k 2)R, 

and L ,:g' contains the scalars from the gravitational multi- 
plet: 

e - ' ~ ( B )  =I  
1 2  (84) '+'/z exp (4kA) {a$) 2. (4.4) 

The L ,:"' term contains the matter scalars: 

The scalar potential equals 

In these equations (as well as everywhere in what follows) 
the squares of all tensor quantities should be calculated with 
the appropriate metric tensor, for example 42, = 4,gMN4, 
etc., where gMN = (g- ' )MN,  the tensor gMN is defined in 
(3.4), (3.12). The derivatives in (4.5) are defined by the 
relation 

VM@N=&@~-t.ig [a,, @N]. (4.7) 

We remind the reader that 4, and a, lie in the algebra G. 
It is convenient to introduce a new notation in order to 

write in a compact way the term L,, which contains the con- 
tribution of the vector fields. We shall view 4, as a matrix 
4,, , where a is the index of the selfconjugate representation 
of the group G. Then c j T  will be the matrix with elements 
daM ( = #Ma ). The quantity B is to be viewed now as an 
element of the column matrix B,,, and the quantity (a,,), 
as an element of the row matrix a,,. With the help of this 
notation the matrices gMN and gMN are written in the form 

g=-l+@CT, 

In this notation the term L ,!'"' has the form 

The term L, has the form 
. . 

I + @ = @  a," 
e-'La=-'/, ery ( -2kA)  (B,J?"v+a,- I-@=@ 

In this equation 

B p v = ' / z e ~ p v p ~ P r ,  a"pv='/Ze~pvp&Po. (4.11) 

We present also another useful representation of L,, 
employing to this end the complex variables 

S=exp ( - 2 k A )  -2ikB, 

a,,v+=i12 (a,+ Ili,,) , (4.12) 

B,+='/z (B,v+zB,v). 

In terms of these variables L, takes the form 

413 Sov. Phys. JETP 71 (3), September 1990 M. V. Terent'ev 413 



where 

In this way L,, in (4.13) is represented in the standard 
formi6 with very broad dynamical symmetry in the equa- 
tions of motion. 

Lastly, to conclude this section, we present in the cho- 
sen notation one of the possible forms for the frame E A,: 

EMA=6AN WNM, EMA=GNAWNM, (4.14) 

where W MN = ( W - I ) MN and the matrix Wmay be chosen 
in the form 

where H = 1 - 4"4. 

5. SUPERSYMMETRY TRANSFORMATIONS 

To construct the supersymmetry transformations in 
M4 use should be made of the relations (2.14), having taken 
into account the connection between the fields in M I ,  and 
M4 established in Sec. 3. The result looks rather unwieldy. 
To simplify it as much as possible it is convenient to intro- 
duce new variables. For the components of the antisymme- 
tric second rank tensor- 

For the components of the antisymmetric third rank ten- 
sor- 

The here introduced tensors f ,, are related as follows to 
the flat (with respect to the M4 indices) components of the 
original tensors F ~ G  and F ~ G G :  

Fa,= (pE)e'aev6f,,v, FaN=(pE)'"eV,fV. FM.v=fxN. (5.3) 

Similarly for the third rank tensor [compare also Eq. 
(3.1511: 

Fa6N=(pE) ePae"efw, 
FnMN = ( pE)  "Ze'afpnrN, F N M Q G ~ M N Q .  (5.4) 

We are now in a position to write down the supersym- 
metry transformations in application to the components of 
the gravitational and matter N = 4 supermultiplets in M4.  
For the gravitational supermultiplet 

1 
6 . ~  = -T 1 2  exp (-2k;)  el,[  ix - 

1 2  

i i 
= - -= exp ( k ~ )  ~ ~ ~ { r ~ l p ,  - _ y , r~X 

12 12 

1 i I 
6,$, = - D,'E - - exp ( 2 k A )  y,ea,B + - rABef,MNEMAEN, 

k 2 4 
1 -- exp( -kA)  yvayMI'B~EMB[gMNBv," - T r ( f v , @ M )  I 

4172 
1 + - exp ( k A )  y,rABCefMNpEMAENBEPc, 

24 
i 1 

6 , ~  = - -=- y , ~ d + , A  + =- exp ( 2 k A )  ypy5ed,B 
112 112 

For the matter supermultiplet 

ti,@,=-ikarBAEMB, 

Here we introduced the following notation: 

E x  6 = @ a B ,  
D,'E=D,E+'/~ ( E N a d p E ~ s )  rAB&. (5.7) 

The supersymmetry algebra is closed in the following 
sense: 

[6,,, 6.J =iGt+6n+6,+6~, (5.8) 

where S< is a general-coordinate transformation, S,, is a 
gauge transformation from the group G (where a,, are the 
corresponding gauge fields), S,, is a gauge transformation 
from the group U( l  )6  ( B :  are the corresponding gauge 
fields), and S, are Lorentz rotations from the group 0( 1.3 ) 
(see Secs. 2 and 3).  The parameters of these transformations 
are as follows: 

i 
E ~ = E ~ , ~ ,  Q=-E z,%a, - - exp ( k A )  @ B E z i B 7  

x 
i 

oN=- i f z lwBpN -I- - x exp (kA)ENBEZ,', 

ix L"B=--  
4 exp ( - k A )  EMBez 
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where g:', = E2 V.c1, g 5 = F2 rB.cl. We note that it is diffi- 
cult to obtain the variation 8, directly from (2.14). Its form 
is reconstructed from the supersymmetry algebra. 

This concludes the construction of theN = 4 supersym- 
metric theory describing the interaction of gravity with a 
matter multiplet. (There are precisely four supersymmetry 
transformations, to which correspond as parameters the 
four Majorana spinors E', j = 1, ... , 4.) In addition to the 
usual symmetry of gravity and matter in M4 [general covari- 
ance with respect to world indices, local 0( 1.3) group with 
respect to tangent and spinor indices in M4, non-Abelian 
gauge internal symmetry GI, the theory has a global O(6) 
[or SU(4) ] symmetry. Its origin is as follows. 

The O(6) symmetry in the indices M, N, ... arose as a 
remnant of the original SL (6.R ) (see above). In addition, 
the O(6) symmetry in the indices A, B, ... and the spinor 
indices of the internal space Q, is contained as a factor in the 
original 0 (  1.3) e O(6). The choice of the frame EMA in the 
form ensuring the correct limit 8; as k -r 0 preserves as sym- 
metry only the diagonal (global) subgroup O(6) in the di- 
rect product of the two indicated O(6) groups. Upon vanish- 
ing of all matter fields the theory goes over into the 
SU(4) -invariant version of N = 4 supergravity constructed 
in Ref. 17. Upon vanishing of gravity (i.e, for k-0) the 
theory goes over into the standard SU(4)-invariant theory 
of matter with N = 4 supersymmetry (see, for example, 
Refs. 15 and 18). 

Next we discuss the possibility of localizing the O(4) 
subgroup of the O(6) symmetry group, which leads to a 
theory where in the limiting case of absence of matter we 
have the localized [under the O(4)  group] version of the 
N = 4 supergravity constructed (from other consider- 
ations) in Ref. 13. 

6. A (SPONTANEOUSLY BROKEN) GAUGE VERSION OF THE 
N=4SUPERGRAVlTY INTERACTING WITH MATTER 

The construction of such a version is carried out by 
making use of a procedure (within the framework of a gener- 
alization of the reduction scheme discussed in Sec. 3) dis- 
cussed in Ref. 10 and corresponding to taking into account 
of zero modes only in compactification to the manifold Q,, 
which is in the case under discussion the manifold of the 
O(4) group. (We differ from Ref. 10 only in the interpreta- 
tion of the components F,,, of the antisymmetric tensor.) 

The construction of Ref. 10 as applied to our problem 
reduces to the following. In the reduction process all tensor 
fields (with respect to the indices M, N, ... from Q, ) depend 
on y. But in all cases (with the exception of the A,, field, see 
below) this dependence is determined by the D-functions of 
some symmetry group S, acting on the world indices of the 
Q, space, i.e. 

etc. Moreover, the significant part of this y-dependence will 
cancel out in the Lagrangian in M4 due to the pairing up of 
indices. But a special treatment is needed for terms with de- 
rivatives in the original Lagrangian in MI,. Since the origi- 
nai Lagrangian contains only antisymmetric structures of 
the type a h X k  - a k X h ,  where X is some field, the y-depen- 
dence may appear only in the form of the combination 

Equation (6.2) is the definition of the tensor C FQ. It is im- 
portant that the combination (6.2) may be viewed as y-inde- 
pendent. Here the operators 

are the generators of the algebra: 

and, correspondingly, the C $, are the structure constants 
of a certain subgroup S ' of the group S. 

We confine ourselves here to the consideration of com- 
pact semisimple groups and therefore assume that the Kill- 
ing tensor C $,,c iQ is proportional to vMN = - S M N  and, 
what is particularly important for the following, the tensor 

is totally antisymmetric. We emphasize that the following 
discussion is, generally speaking, valid also for all noncom- 
pact groups resulting from a restriction to a real form of the 
complex O(4) algebra. This is because the tensor C,,,, de- 
fined according to a relation of the type (6.4) but with a new 
Killing tensor q,,, is antisymmetric as before. We have, in 
particular, for the Lorentz group O(1.3) that 
q,, = diag( - 1, - 1, - l , l , l , l ) .  

However in the case of noncompact groups there is no 
O(6)-symmetric limit corresponding to the absence of mat- 
ter. In particular, it is precisely this desire that such a limit 
should exist that has kept us so far from considering the 
more general O(4) = SU(2) e SU(2)-invariant tensor 
, d i g  A ,  A A ,  A ,  A ,  A .  The 
choice of the tensor vMN. in place of T,, in (3.12) is al- 
lowed, but it leads to different versions of supergravity in 
M4. Due to space limitations we do not study this possibility 
in this article. 

Now with (6.1 ) and (6.2) taken into account the condi- 
tion ( 3.8) is no longer selfconsistent. In particular it contra- 
dicts the equation of motion 

since now in the absence of all other fields we have 
R,, = ( 1/4?t2). UL U $vPQ #O. But in our arrangement in 
M4 there are no additional degrees of freedom connected 
with A,,. The only possibility for resolving this contradic- 
tion is to set the field A,, to depend on y only, and in such a 
way that the contribution from A,, to the field tensor be a 
constant (accurate up to U f factors). The only invariant 
constant third rank tensor is C,,,. We therefore set 

where a is some constant [the terms in F,, containing mat- 
ter fields enter as before and are not shown explicitly in 
(6.5)]. The constant a is found in a selfconsistent manner 
from a variety of considerations. We briefly illustrate one of 
them. 

The tensors f ,, , introduced by us in (5.1 ) and (5.2), are 
now proportional to Uf factors. It is therefore convenient to 
introduce new quantities: 

f ' p N = ( U - ' ) R N f h R ,  f ' M N =  ( U - ' ) O M  ( U - ' ) R N f p R  etc. (6.6) 
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(similar relations hold for other tensors f and f '  with 
world indices in the Q, space). Namely the tensors f '  enter 
now the Lagrangian and the supersymmetry transforma- 
tions. Their calculation gives 

and analogously 

In these equations 

The requirement of gauge invariance off LNP leads to 
the coupling 

Comparison with (3.10) gives 

We emphasize that in the case under consideration, under 
the condition SEAMN = 0, Eqs. (3.9) and (3.10) exist as be- 
fore and are consistent with supersymmetry. 

Thus we find that the entire distinction from the pre- 
vious case consists in the appearance of structures, covariant 
under the action of the non-Abelian gauge group S'  on the 
indices M, N, ... [see (6.9)], and also in the appearance of 
certain additional terms, containing the tensor CMNQ [see 
(6.8) 1. In particular, in Eq. (4.2) in place of ordinary de- 
rivatives there appear now covariant derivatives 

V w  (B) ENA=d,ENA+ EQACQI\.rNB;w, 

V, (B) EN,=d,ENA-CNpQB,'EQA. (6.12) 

But, further, there appear additional different from zero 
components: 

which will give rise to the appearance of new components of 
the spin connection. 

The final result for the Lagrangian and the supersym- 
metry transformations consists of the following. In essence 
all the old equations are preserved but with ordinary deriva- 
tives of tensorial quantities (with respect to the indices M, 
N, ...) replaced by covariant derivatives [see (6.12) and 
(6.9)], with the Abelian tensor B L  replaced by the non- 
Abelian tensor from (6.9), and with all tensors f ,, replaced 
by the corresponding tensors f,,: from (6.7) and (6.8). 
Further, in the variation S,IC;, in (5.5) one should make the 
replacement f,,, + f A,, - (3/flx2)gQ,, C g, ,. More- 
over, due to the appearance of the new components (6.13) 
there will arise from the curvature scalar in M , ,  additional, 
as compared to (4.6), terms in the scalar potential in M, 
(see Ref. 10). As a result U, takes the form 

where f h, and f dNp are defined in (6.7) and (6.8) with 
(6.1 1) taken into account. Also, as before, all squares of 
tensorial quantities should be evaluated with the help of the 
tensor gMN:& = #N$MgMN etc. 

We note that only the compact group O(4)  (or its sub- 
groups) may be chosen for the non-Abelian group S' acting 
on the indices M, N, ... (in the approach under considera- 
tion). The choice of a group of order six is conditioned by the 
presence of the six gauge fields B :. The requirement of com- 
pactness arises from the condition of positive-definiteness 
for the kinetic energy form of the B fields. Thus we have in 
(4.10) in the case of the O(4) group 

For the noncompact extensions of O(4)  [i.e. for the 0( 1.3), 
O(2.2) and 0 ( 4 ) *  groups] the replacement 1 7 ~ ~ - + ? j ~ ~  is 
needed, where ?jMN is the corresponding sign-indefinite Kill- 
ing tensor. This results in an inadmissible form for the kinet- 
ic energy. One could close one's eyes on this difficulty by 
admitting an indefinite metric in the gravitational sector, 
where the dynamics cannot be studied in any case. However 
the simplest ansatzes, corresponding to spontaneous break- 
ing of supersymmetry (see below), result in this indefinite 
metric "penetrating" into the matter sector, which is inad- 
missible. 

The detailed study of the Us in (4.6) and (6.14) is a 
separate problem, which we have not yet considered in suffi- 
cient detail. However certain facts can be readily estab- 
lished. These are discussed in the next section. 

7. THE POSSIBILITY OF SPONTANEOUS SUPERSYMMETRY 
BREAKING FOR A VANISHING COSMOLOGICAL CONSTANT 

We consider first the version to which corresponds the 
scalar potential (4.6). It has "valleys" in the space of scalar 
fields in the directions where [#,,#,I = 0. {We note that 
2Tr(#,, #,#, ,) = Tr(#, [#N,#p ] 1.1 We have no idea 
how the theory is stabilized in the direction of these valleys 
(this is a common problem for theories with extended super- 
symmetry; it is interesting that gravity does not remove it in 
the version under consideration). 

The vacuum state for 4, = 0 corresponds to a vanish- 
ing cosmological term and N = 4 supersymmetry. The natu- 
ral ansatz for spontaneous breaking, corresponding to the 
embedding of the group Sf  in G, consists of the choice 
#", US",, where v is some constant and a is the index of the 
selfconjugate representation of the group G. Evaluating U, 
for this ansatz we obtain 

g US = --y erp (2kA) (fml")'[ - 
12% 

(7.1)  

where f l;, are the structure constants corresponding to the 
subgroup S ' in G, contraction over the indices in evaluating 
the square of the tensor f z, is achieved with the help of the 
corresponding Killing tensor. For compact groups 
( f  zp ) 2  # O  always. It is obvious that (for the simplest an- 
satz) spontaneous breaking of supersymmetry is impossible 
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for a vanishing cosmological term, if noncompact groups are 
not considered. Further, one may obtain directly from an 
analysis of the relations (6.5) and (6.6) that for the ansatz 
being considered for the compact group S' [i.e. for O(6) or 
its subgroups] it is not possible to achieve partial breaking of 
supersymmetry, in particular the case when N = 4 super- 
symmetry is broken down to N = 1 supersymmetry is not 
realized. 

We move now to the more complicated case corre- 
sponding to the scalar potential (6.14). According to Ref. 
19, the problems of spontaneous breaking of supersymmetry 
and of the existence of a cosmological term are solved simply 
on the basis of considerations of the variations 6, of the 
spinor fields (i.e. it is not necessary to turn to U ,  ). In partic- 
ular, if we have for some E~ of some vacuum configuration of 
scalar fields 

where the symbol ( (  ...)) denotes the vacuum expectation 
value, then the corresponding supersymmetry is not broken 
and in that same configuration there exists a stationary point 
for U, and a vanishing cosmological term (the converse is 
also true). One may verify, using the relations (5.5) and 
(5.6) (but with the replacement f+ f .:, according to the pre- 
scription of Sec. 6), that for the group S ' = O(4) in the state 
where ((4)) = 0 the conditions (7.2) are not realized for 
any E / .  In this way theN = 4 supersymmetry is spontaneous- 
ly broken down to N = 0 (i.e. broken totally). 

If one enters the state under consideration along the 
trajectory $", v6", then one can verify that v = 0 corre- 
sponds to an inflection point of the potential and a negative 
cosmological term (for an appropriate normalization of 
C g ,  it coincides with the cosmological term of Ref. 13). 

Unfortunately so far we have been unable to find for the 
group S' = O(4) other, more interesting, solutions. 

As was noted, the solutions corresponding to spontane- 
ous partial breaking of N = 4 supersymmetry in the formu- 
lation of Ref. 6 and found in Refs. 8 and 9 require noncom- 
pact internal symmetry groups. The question of the physical 
admissibility of such solutions requires in any case further 
study. 
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