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The effect of spin-orbit coupling on the Landau level spectra of a two-dimensional electron gas in 
a tilted magnetic field is studied. The spin-orbital coupling is described by a Hamiltonian of the 
form a [u -k]  v, where u are the Pauli spin matrices, k is the quasimomentum, and v is a normal 
vector to the 2D layer. The characteristic spin-orbit interaction energy A is related to the constant 
a by A = ma2/2fi2, where m is the effective mass. For y = 2 ( A/fio, ) '12 4 1 (a ,  is the cyclotron 
frequency) there are two levels E,,, (H,,H) in each energy interval of w id thh ,  . The position of 
these levels depends on the normal component of the magnetic field Hz and on the value of the 
total field strength H. Therefore, the whole spectrum consists of two branches (ladders) inserted 
into each other. In the quasiclassical limit, the sum of energies E, + E2 is a multiple of h, . The 
relative positions of the ladders as a function of Hz and H are studied. The case where the levels of 
one ladder approach the levels of the other ladder and the case where all energy levels of one 
ladder lie halfway between levels ofthe other ladder are treated with special attention. The latter 
case is studied in more detail in connection with the beats of Shubnikov-de Haas oscillations. A 
mechanism responsible for beat suppression is proposed. Experimental results are discussed. 

1. INTRODUCTION 

The absence of a symmetry center lifts the twofold de- 
generacy of two-dimensional (2D) electron gases in inver- 
sion layers and in heterostructures. The mechanism leading 
to this lowering ofsymmetry has been discussed in Ref. 1 and 
2 and in the following series of papers. A short review of the 
first experimental results is given in Ref. 3. Afterward, a 
series of experiments on Shubnikov-de Haas (SdH) oscilla- 
tions has been carried out in 2D-layers. The results obtained 
show clearly the existence of splitting in spectra; they also 
allow one to measure the magnitude of the splitting. That 
applies to Si inversion layers4 as well as to quantum wells in 
InAs and Inx Ga, , A s  (Refs. 5,6). Up to now, the mea- 
surements of SdH oscillations is the most effective experi- 
mental method of studying the spin-orbit (SO) spectrum 
splitting. In principle, this splitting can also be determined 
from the magnetic field dependence of the spin-resonance 
frequency. However, nonparabolic effects2 become domi- 
nant in relatively strong fields, as shown by Dobers et al.7.8 
In addition, the beats in the SdH oscillations found by Luo et 
aL5 and by Das et provide direct evidence for the exis- 
tence of two closely spaced Fermi surfaces. Similar oscilla- 
tions have been extensively studied in 3D systems; a list of 
examples is given in the review by Seiler.9 

In magnetospectroscopy of spin levels, the Fang-Stiles 
technique,'' which is based on the use of tilted magnetic 
fields, is very effective. This technique has already been used 
in studies of the SO interaction. A series ofinteresting results 
has been obtained; for example, suppression of beats in a 
tilted field has been ~bserved. '~ A theoretical interpretation 
of the SdH spectra tackles two questions. The first is purely 
kinetic and concerns the mechanism of electron transport 
when 2D localization occurs. We assume below that SdH 
oscillations can be interpreted within the framework of ele- 
mentary transport theory provided that the oscillation am- 
plitude~, is small compared with the monotonic part of 
pxx . 

The second question concerns the electron spectrum in 
a tilted field. The present paper is devoted to this problem. 
The SO interaction is described by the simple Hamiltonian, 

Hs0=a [ok] v, (1) 

where k is the quasimomentum, u are the Pauli spin matri- 
ces, and v js  a unit vector normal to the 2D layer. For this 
choice of H,, , exact solutions exist only for H parallel to v.' 
The electron energy spectrum in a tilted magnetic field has 
been studied before by Bychkov." General properties of the 
spectrum were established there. In particular, it has been 
shown that levels do not cross in a tilted field. The energy 
spectrum is studied in more detail below, and results ob- 
tained from numerical calculations for currently accepted 
parameter values are given. Our results show that drastic 
changes in the spectrum occur when the tilt angle (between 
H and Y )  is large. In particular, the SO interaction effect on 
the spectrum decreases when the tangent component of H 
increases: the two energy ladders become nearly equally 
spaced, their step sizes approach each other and converge to 
the value of the cyclotron frequency w, for a = 0. Conver- 
gence of ladder step sizes should lead to a significant increase 
of the beat period; this, in turn, can cause the actual disap- 
pearance of beats in the magnetoresistance spectra. Such 
phenomena have been experimentally observed by Luo et 
~ 1 . ~ ~  

2. GENERAL RELATIONS: NORMAL FIELD 

In the simplest model with a nondegenerate isotropic 
spectrum, the Hamiltonian for electrons in magnetic field is 
given by 

where m, g and p, are the effective mass, g-factor and the 

401 Sov. Phys. JETP 71 (2), August 1990 0038-5646/90/080401-05$03.00 @ 1990 American Institute of Physics 401 



Bohr magneton, respectively. The constant a in Eq. (1) 
takes values in an interval a= (1 - 10). 10-'OeV.cm for 
different systems. 

A 
We seek the solution of the Schrodinger equation 

H\V = N, in the Landau gauge, in spinor form, 

where p, ( x )  are harmonic oscillator functions, u = x/l, 
+ k, I,, and I, = (cfi/eH, ) 'I2 is the magnetic length. Co- 
efficients a, and b, are given by the system of equations 

(~-n-'/~-p)a,=$b,, tg 0+y(n+l)'"b,+,, (4) 

where 6 is the angle between v and H, 

M, is the free electron mass, and the energy E = E /hc 
(0, = eH, /mc is the cyclotron frequency ) . 

Equatkn (3) can be written in the vectgr  for^: 
h 

a = Mb = Na, with the help of Jacobian matrices M and N. 
Vectors a and b are given by 

The spectrum of the system is then determined from the fol- 
lowing equation: 

The properties of the energy spectrum, which will be given 
below, follow from this simple equation. 

Explicately, Eqs. (6)  are three-term recurrence rela- 
tions: 

~nbn-t-pnbn+an+tbn+t=O, (gal 

where 

and, correspondingly, 

It follows from Eqs. (9) and ( 10) that, for y6 = 0, two 
terms remain in Eq. (8)  which can therefore be solved exact- 
ly. For y = 0, 

whereas for 6 = 0, 

where S = 1/2 - P. Both spectra consist of two ladders. For 
some parameter values, levels of different ladders can meet. 
For y6 #O, this degeneracy is lifted." When one of the pa- 
rameters, y2 or 6 ', is small, the spectrum can be found from 
the equation (linearizing with respect to the small param- 
eter) :" 

The small parameter in f l  2' should be set equal to zero. 
Configurations close to some energy (in fact, close to 

the Fermi level p)  where one ladder is displaced by half a 
step size with respect to the other one are also interesting. If 
the contribution of each ladder to the SdH oscillations is 
approximately described by the quasiclassical cosine law, 
then the contributions from the two ladders cancel each oth- 
er in this configuration. Consequently, a node appear in the 
beats. How beats arise for a three-dimensional analogue of 
the Hamiltonian (2) has been studied previously in de 
Haas-van Alphen  oscillation^.'^^^^ The condition for the 
displacement of the ladder by a half a step size is given, for H 
parallel to v, by, 

~ ~ , , + = E ~ ; ~ + E , , L + ~ ,  saO (total ), (14) 

which, taking into account Eq. ( 12), becomes 

when n) 1 and ~ / n ' / ~  4 1. The values of s serve to number 
the nodes. Equation ( 15) should be used together with the 
condition E, + z p ,  or equivalently, 

where N is the concentration of 2D electrons. For high node 
number values, s% 1 (but, of course with s&n) ,  the S2 term 
in Eq. ( 15), can be neglected. Using Eq. (5)  and taking into 
account n -,p/fio, and the fact that SO band splitting at the 
Fermi level is A, = 2ak,, the following equality holds, 

From Eq. ( 15) it is easy to obtain 

which is the criterion used by Das et The question of the 
beat pattern in a tilted magnetic field is considered in Sec. 4. 

Perturbation theory [Eq. ( 13) 1 can be applied in rela- 
tively narrow range, and a numerical study of Eq. (8),  which 
has three parameters, is extremely involved. In addition, the 
solutions for each ladder depend on their eigenvalues in a 
complicated way. For this reason we consider, in the next 
section, a limiting case in which the number of independent 
parameters is smaller. 

3. TILTED FIELD-QUASICLASSICAL LIMIT 

For the usual parameter values for semiconductors we 
have, y& 1. This, however, does not mean that standard per- 
turbation theory in y can be applied since the product yn'", 
entering into Eq. (4), is not small. It follows from Eq. ( 15) 
that we have yn'I2 -s/2> 1 when there are beats. Under 

402 Sov. Phys. JETP 71 (2), August 1990 Bychkov eta/. 402 



these conditions, the application of the quasiclassical theory 
allows one to put n = no + m -- no on the right hand side of 
Eq. (4)  when seeking solutions for a state with energy 
E = no + &I(&'-  1). Such a transformation is equivalent to 
the quasiclassical action-angle method.I4 In this approxima- 
tion, only two eigenvalues of E' which lie in the range 
0 9 ~ '  & 1 need be considered, since the spectrum is periodic in 
E, with period 1. Moreover, no and y enter into the equations 
as one parameter, ~n:'~. 

It is convenient to use Eq. (8a) and to redefine the a, 
andj?, coefficients [Eq. (9)  1 : 

In the new definition, the nonzero coefficients of the Jacobi- 
an matrix of this system of equations are given by 

It follows from Eq. (9)  that the off-diagonal terms decrease 
as m - for m % 1. Thus, our assumption above, I m 1 g no, is 
correct for all relevant values of m since the series converge 
rapidly (as m - 4  ). 

In the approximation used here, there is an E'+ - E' 

symmetry in the energy spectrum. It is possible to see it by 
introducing the a,' and P,' coefficients [by analogy with 
the procedure used in Eq. ( 19) ] and expressing the determi- 
nant for the system of equations (8b) in terms of these coeffi- 
cients. After a series of purely algebraic operations (shift of 
m by 1 and an m- - m transformation) and the replace- 
ment E' -+ - E', the transformed determinant becomes equal 
to the determinant for Eq. (8a), using Eqs. (9) and (10). 
Taking into account Eq. (7) ,  the above statement of 
E'-+ - E' symmetry then follows. The periodicity of the 
spectrum and the E'-+ - E' symmetry imply the E'+ 1 - E' 

symmetry. 
It follows from Eq. (20) that the determinant of the J 

matrix has simple poles at the zeros of B,,, (E'). This fact 
allows one, by analogy with the transformation of Hill's de- 
terminant in the theory of the Mathieu equation,'' to con- 
struct the following representation of this determinant: 

where the function f, ( E )  is given by 

fm(~)=[(~-m-1/2)2-p21 (E-m+'I2-p) --pZ tg20(c-m+ ' I 2  
-p )  -y2n,(~-rn-i12-p). (22) 

The last two terms in Eq. (21) have the same poles as det J. 
In the complex plane, they both converge to zero as ( E ' I  -. .XI, 

whereas det J+ 1 in this limit. Therefore, the magnitude of 
the first term in the right hand side of Eq. (21) is deter- 
mined. Coefficients C, and C, are functions of /3,0 and fn,. 
Once these functions have been calculated numerically, the 
condition det J = 0 may be used to determine the eigenval- 
ues of E'. The cubic equation f, (E) = 0 must then be solved. 
That is an additional difficulty of the equation obtained com- 
pared with the one for Hill's determinant; this characterizes 
the level of difficulties of the problem considered. 

FIG. 1. Dependence of three successive quasiclassical energy levels on 
y,n,( u Hz -'). All curves are calculated for the following the InAs pa- 
rameters, and for the following values of tan(8):a-tan(@) = 2;b- 
tan(@) = 4;c-tan(& = 6; d-tan(8) = 8; and e-tan(8) = 10. 

Numerical results for the E' spectrum as a function of 
?no a H ;  are shown in Figs. 1 and 2. Different traces in 
Fig. 1 correspond to different values of the angle 0. The fol- 
lowing relationships follow by inspection: 

1 ) there is no level crossing in a tilted field; 
2) as the difference between numbers of the approach- 

ing levels becomes greater the level splitting for small values 
of ye becomes smaller; 

3) the region where two levels are close to each other is 
displaced to higher Hz values as H increases. 

Different plots in Fig. 2 correspond to different values 
of the total field strength H. All curves exhibit the same 
feature: the energy level dependence on Hz becomes weaker 
as the total field strength increases. 
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FIG. 2. Variation of the energy levels shown in Fig. 1 with ?n,, cc (Hz  ' )  
for different values of the total magnetic field H (given in units of 
H,, = mA,+J4rn&,): a-(H/H,)2 = 40; C-(H/H,)~  = 60; 
d-(H/H, )2 = 100; and e-(H/H, ) 2  = 150. The same parameter val- 
ues as in Fig. 1 are used. 

4. TILTED FIELD: TUNING OF LADDERS 

In Sec. 3., the properties of the energy spectrum related 
to the disappearance of level crossing were studied. In this 
section, we study the spectral properties that can lead to the 
appearance of beats in oscillatory phenomena. In particular, 
we study the case in which the energy levels of one ladder lie 
halfway between the levels of other ladder (tuning of lad- 
ders). All quantitative results are obtained from numerical 
calculations with the following parameter values: 
P = - 0.1; y = 0. 17Hz - "' (Hz is given in Teslas) and 
N = lo1* cm - '. These are typical values for InAs layers. 

The general pattern of the spectrum, for 9 4 1, is as 

FIG. 3. Variation of the tuning field Hz with total field H a t  the Fermi 
energy. Numbers above arrows give the number of quantum levels below 
the Fermi level. 

follows: in each interval of one unit of width of the spectrum 
there are two eigenvalues of E. Therefore, the spectrum can 
be considered as made up of two ladders. For strong magnet- 
ic fields, when IB IH/H, > 1 holds, i.e., when the Zeeman 
splitting is large, the first levels of both ladders are strongly 
displaced with respect to each other. Consequently, there is 
one level in each unit interval at the low end of the spectrum. 

The maximum normal field value (Hz = 1.72 T) for 
which there is tuning of ladders near the Fermi level follows 
from Eqs. ( 15 ) and ( 16) for s = 1. In a tilted magnetic field, 
the value of the field Hz, which corresponds to tuning near 
the Fermi energy and satisfies Eq. ( 14), is determined as a 
function o fH  from numerical calculations. Figure 3 exhibits 
how Hz varies with the total field strength. The curve shown 
is smooth. The tuning field Hz increases monotically as the 
field H increases. 

Figure 4 shows the distance D between the nearest lev- 
els. The levels in the spectrum are numbered consecutively 
by an index 1; for large numbers Iz2n .  The two curves in 
Fig. 4 correspond to nearest neighbor level distances mea- 
sured from the right and the left (D  + and D -  ), respective- 
ly. The tuning of ladders corresponds to D = 0.5. Only the 
region of strong fields Hz is shown in Fig. 4; for weak mag- 

FIG. 4. Variation of distance the D between nearest neighbor levels with 
level number I. For each odd value of I, the differences D, + = E ,  + - E,  

and D ,- = E,  - - E ,  , are shown; I = 0 holds for the lowest level. The 
same parameter values as in Fig. 1 were used: a-H = 8 T; b-H = 3 T; 
c-H = Hz = 1.72 T. All plots are for values of the tuning field Hz ob- 
tained from Fig. 3. 
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netic fields, tuning takes place for much higher values of I. It 
follows from Fig. 4 that the level number at which tuning 
occurs drops as the total field H increases. The fast decrease 
of (D + - D- ) as the total field increases is quite signifi- 
cant. For H =  18 T tuning occurs at 1 = 5, whereas 
D = 0.525 for I = 30; this value can hardly be distinguished 
from the value of 0.5 in the scale of Fig. 4. The decrease of 
(D  + - D -  ) for large H reflects the following properties: 
1 ) all step sizes become nearly equal within each ladder; 2) 
step sizes of both ladders approach each other. These prop- 
erties should lead to deep effects in beat patterns of various 
oscillatory phenomena. For H = 8 T, tuning of ladders is 
observed in the whole range of I shown in Fig. 4; as I becomes 
larger, a phase shift develops and ladders get closer for 
I=: 13; they separate again further on. 

5. DISCUSSION OF EXPERIMENTAL RESULTS 

A particular arrangement of levels can give rise to a 
series of anomalies in the magnetoresistance of 2D systems. 
For example, anomalies due to energy level crossings are 

They should particularly be observed for a 
range of strong fields, when 1) w ,  T S  1, i.e., when the levels 
are well resolved, and 2) the essential levels are the ones with 
small numbers, i.e., they are strongly displaced with respect 
to each other. A different arrangement corresponds to SdH 
oscillations in the quasiclassical region where cosine-type 
oscillations, which exhibit a regular beat pattern with a large 
period, are They are easy to understand if one 
assumes that they are generated in the region w, T< 1 where 
the transport properties are similar, in many regards, to 
those of the 3 0  electron gas properties and are described by 
elementary theory. In this interpretation, beats appear be- 
cause two ladders have similar step sizes, whereas a configu- 
ration in which the ladders are tuned near the Fermi energy 
gives rise to beat nodes. We use such a picture below. 

Studies of this type of beats in oscillatory phenomena 
have been proposed'2,'3 to measure small SO band splitting. 
This method has been extensively used in the study of energy 
spectra of 3 0  ~ ~ s t e m s . ~ . ' ~  Judging from results already ob- 
tained, this method plays no lesser role in the study of spec- 
tra of 2 0  systems. It is quite likely that specific transport 
properties of 2 0  systems turn out to be essential also, as has 
already been shown by Luo et in the interpretation of 
their own results. We do not pretend to interpret in detail 
any experimental results. Our aim is to point out those fea- 
tures of oscillatory phenomena which are expected to follow 
from the peculiarities of energy spectra established above, 
and to discuss experimental data briefly from that point of 
view. 

As we noted at the beginning of this section, the nodes 
of oscillations should correspond to the points of ladder tun- 
ing in the framework of the quasiclassical model of SdH co- 
sine oscillations. According to the results shown in Fig. 3, 
the tuning field Hz increases as the total field H increases. 
This result agrees with data of Das et al. (see Fig. 6 in Ref. 6) 
which shows that the values of the field Hz where oscillation 
nodes occur increase noticeably as e-+n-/2. 

Well-resolved beat patterns can be observed only if par- 
ticular conditions on the number of oscillations in one beat 
period are fulfilled. Clearly, this number should be much 
greater than unity. Therefore, beat patterns should become 
blurred as the tuning point moves into the region of small 

numbers. A very large beat period can also make the obser- 
vation of beats difficult when, for example, there is strong 
damping within a period of oscillation. The sharp drop in the 
value of the angle between the two straight lines correspond- 
ing to D + and D-  in Fig. 4 as H increases should similarly 
lead to a sharp rise of their period; furthermore, the tuning 
point moves rapidly to the region of small numbers. This 
should give rise to damping of beats as the magnitude of the 
total field H increases. Similar behavior has been, in fact, 
observed by Luo et al.5b for H = 6 T and it is to be expected 
that the scheme described above contribute significantly to 
this behavior. 

It is also interesting to discuss the expected behavior of 
the SdH oscillations as Hz varies in the region of high mag- 
netic fields H. At large values of Hz, when the level width r 
satisfies r <&a,, the levels are well resolved and the number 
of oscillations should be equal to the total number of levels 
crossing the Fermi level. However, as the magnitude of H 
decreases, level resolution becomes poorer (T<&a, ), and 
the system goes into the cosine-type oscillation regime. Al- 
though, for high H, the oscillation periods of both ladders 
are nearly equal, beats will not be observed (since their per- 
iods are large) and the total amplitude of oscillations will be 
determined by the difference in the phase of oscillations of 
two ladders. In this case, the period of oscillations in Hz - 
will change by a factor of two. A similar behavior has been 
observed by Luo et for H >  11 T. In a normal field, a 
change of the oscillation period has been observed previous- 
ly for GaAs by SFormer et a1.I9 and by Eisenstein et ~ 1 . ~ '  

One of us (E. I. R.) is grateful to Prof. P. J. Stiles and 
Prof. F. F. Fang for providing the preprint of Ref. 5b and for 
discussing it. 
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