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It is shown that in mesoscopic junctions with a large number of magnetic impurities (such that 
the spin scattering time T, is shorter than the diffusion time 7,- through the sample) the 
mesoscopic part of the resistance varies with time in a random manner, retracing the evolution of 
a localized spin system caused by spin-lattice relaxation and Korringa relaxation (over a time 
TK ). The fluctuations in magnetoresistance measured with a direct current become self-averaged 
in time, taking the value ( e 2 / h ) 2 ( ~ , / ~ f )  2-d/2, while the excess noise Sex (w ) arising in the system 
has a characteristic frequency dispersion w, - T,-/T, T, . 

The kinetic coefficients of conductors of small dimen- 
sions depend on the details of the actual distribution of scat- 
terers.' If some of the scatterers have a free spin, the resis- 
tance R also depends on their spin state. The relaxation of 
the spins of magnetic impurities therefore leads to a time 
variation in the mesoscopic part of the re~istance.~ 

The aim of the present work is the elucidation of the 
nature of the time dependence of the fluctuations in magne- 
toresistance and also the noise associated with them. 

1. We will assume that a diffusing electron probes a 
system of impurity spins, the relaxation of which takes place 
either by interaction with other electrons or by spin-lattice 
relaxation, but not related to the probing electron. At low 
temperatures the time for the inversion of an electron spin T~ 

is then appreciably shorter than the relaxation time of an 
impurity spin T, (T, 7, ) . We will also consider that in the 
diffusion time 7,- = L 2/D of an electron through the speci- 
men (L is the dimension of the conductor, D is the electron 
diffusion coefficient) it can reverse its spin many times. The 
scale of the fluctuations in conductance G =  1/R is 
SG-e2/h. During the time t the conductance changes due to 
relaxation of the spin system. In measuring the conductance 
over an extended time t > T, an averaging of its fluctuations 
will take place. Each spin will then manage to reverse, deter- 
mined by the characteristic dimension of the body with fluc- 
tuating resistance, L, = (DT, ) and the magnitude of the 
mean square of the fluctuations 
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where d is the effective dimensionality of the specimen, and 
Vd = LxLyLz. 

The fluctuations in the conductance can thus be repre- 
sented as 

whe~e f(t)  is a random function, I f  I - 1. The characteristic 
time scale t over which the conductance changes appreciably 
is determined by whether even one of the T,-/T~ spin scat- 
terers encountered by an electron in the diffusion time 7,-, 
manages to changes its state in the time t. The probability of 
such an elementary process for t < T, is equal to t /T,, and 

therefore T,, which in order of magnitude is equal to 
T~T,/T,-. Thus, the fluctuation SG changes little over a time 
t < T.. For T, > t > T. the ratio T, /t determines the fraction 
of the specimen volume in which spin reversal has not oc- 
curred and which gives a contribution to the fluctuations in 
resistance. The correlation function (f(0) f ( t )  ) can, as a re- 
sult, be expressed by the following interpolation function: 

The random time dependence of conductance leads to an 
additional contribution to the spectral density Sex (o) of the 
excess noise, we consider this dependence in 43. 

A relatively weak magnetic field H >  T/pi , ,  leads to 
polarization of the impurity spins. Under these conditions 
spin relaxation is suppressed, T,,, - T:,~ exp (p,,, H /T)  
The scale of the mesoscopic fluctuations averaged over long 
time intervals increases, which must be manifest in the 
growth in amplitude of random oscillations of magnetoresis- 
tance to the level e2/h in fields 

The chaiacteristic time T. is also extended 

.G,-.G*' exp ( 2 p i m p H / T ) ,  (4)  

which leads to the depression of the low-frequency maxi- 
mum of the spectral density of excess noise. 

2. In order to describe these properties of a mesoscopic 
conductor more rigorously, we calculate the correlation 
function of conductances at different times 

with the help of the impurity diagram technique.' The corre- 
sponding diagrams agree with those given by Al'tshuler et 

As a result, the correlation function K(t)  can be ex- 
pressed through two-particle Green's functions, a cooperon 
C(x1,x2,tl,t2) and a diffuson D, (xl,x2,tl - t,) in a time rep- 
resentation, with the help of a relation which is derived in a 
way analogous to that used by Fal'ko and Khmel'nitskiL5 

In a metal with magnetic impurities a cooperon and a 
diffuson are conveniently represented in the form of a sum of 
triplet and singlet parts? 

C ~ B T ~ = C ~ ~ ~ B ~ T ~ + C ~ ~ ' O ~ B ~ O T ~ ' ,  
( 6 )  

the characteristic correlation time of the fluctuations is DmaTe=D06ma6re+Dij'~aai~T~ 
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Without taking into account the relaxation of the impurity 
spins, D 'SO and C have the form6 

Co (q, o )  = 1-io+Dqz+2/z,1 -', 

c,,' (q, o )  =bu [-io+Dqz+2/3z, I-'. 

The characteristic momenta in Eq. (7) satisfy q- 1/L, so we 
have Dq2 - TT I, and the characteristic frequencies are of the 
order of the temperature T. In accord with the assumption 
that rS <rf and Trs/fi4 1, the main contribution to the fluc- 
tuation in conductance is described by an expression con- 
taining only D '. 

The relaxation of impurity spins is treated in deriving 
Eq. (7) by taking the correlation of impurity spins 
(S, (OWj ( t )  ) in the form 

<&(O) Sj (t) >=S(S+I) exp (- 1 t ) / ' ~ n ) .  ( 8 )  

Summing the ladder diagrams under these conditions leads 
to the expression 

where D ?( q,w 1 = d8D ?(O,q)exp ( - i d ) .  The correlator 
of conductances [Eq. ( 5 )  ] then has the form 

where q, = rn,/L,,L, is the linear dimension of the speci- 
men. At low temperatures satisfying the condition Trf/h 4 1 
the derivative satisfies J~(E) /~ 'E-  -a(&) ,  and Eq. (10) 
can be simplified: 

m 

-2h-2+nh-J1' cth(nh'") +n2h-' ch-2 (nh") , d=i 
,Vd  x ( n/  (l+h) , d=2, 
L" 

-2h-'+2nh-I" cth (nh'") , d=3 

(11) 

where 

time, where we have A )  1, the effective dimensionality can 
increase. For It I < rK 

and Eq. ( 11 ) agrees with the interpolation formula (3).  
Over large times t > T,, as can be seen from Eq. (9) ,  the 

contributions from all components D 'SO and C are of the 
same order of magnitude. Therefore Eq. ( 1 1 ) which correct- 
ly describes the time range t < T,, should be changed to take 
account of these contributions. 

We have, finally 

3. The random time dependence of the conductance 
leads to an extra contribution to the spectral density of cur- 
rent noise 

The noise can be separated into an equilibrium part, deter- 
mined by the Nyquist theorem, and excess noise, with inten- 
sity proportional to the square of the voltage. Under condi- 
tions when the resistance experiences time variations, the 
Nyquist theorem gives a noise intensity proportional to the 
time average of the value of the conductance. The spectral 
density of the excess noise Sex (w ) is determined by the corre- 
lation function K(w), i.e., Sex (w) = V2K(o) and is of the 
form 

for w > w.. V here signifies the constant driving voltage in 
the contact. In magnetic fields with pi,, H / T >  1, the times 
.r, and TK grow exponentially, i.e., 
T,,, - T:,, exp (pi,, H /T), as a result of which a narrowing 
of the low-frequency maximum in the density of the excess 
noise takes place. Time variations of resistance in mesosco- 
pic systems have recently7 been studied intensely. Here we 
want to draw attention to the contribution to the noise from 
relaxation of impurity spins with the characteristic depen- 
dence on magnetic field described above. It should be re- 
marked that in some sense the noise described here is a var- 
iant of the noise arising as a result of electron correlation 
throughout the medium.' 

4. For a low concentration of magnetic impurities 
T,)T,-, the spin for most electrons which have diffused 
through the specimen has not been reversed. In this case the 
diffusion and cooperon can be expanded in powers of 7; ', 
for example: 

The dimensionality d is determined by the relation between 
the lengths Li and the value of the parameter A ( t )  . Over long 
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(6G(O) 6G (t) > Vd '51 
lim = 1-G(7--d)cd-- 
t ([6G12) Ld '5, ' 

cl=3,9, c2=2,3, c,=l,6. (16) 

The intensity of the excess noise associated with relaxation 
of impurity spins is, under these conditions, equal to 

where B, = 2, B, = r / 6 ,  B, = 5r/16. Equations (15)- 
(17) were obtained on the assumption that the number of 
magnetic impurities in the specimen is large. If, however, the 
specimen contains a few or even a single magnetic impurity, 
then Eqs. ( 15 ) - (  17) describe correctly only the order of 
magnitude of the fluctuations in conductance and of the ex- 
cess noise. The values of these quantities in actual structure 
depend on the distribution of magnetic impurities in the 
specimen. 

5. In conclusion we consider the conditions for the ap- 
plicability of the theory presented. 

We assume that the temperature T is higher than the 
Kondo temperature TK for an isolated impurity. At lower 
temperatures the theory is applicable in principle if r ,  and T, 

are replaced by quantities found by taking the Kondo effect 
into account. The condition that Tis greater than the transi- 
tion temperature to a spin glass state TsG is more limiting. 
Since TsG -fi/4rrSS(S + 1 ) [Eqs. (9,lO) 1, the inequality 

is only satisfied over a narrow temperature range. 
We confined ourselves in this note to the evaluation of 

the square of the fluctuations of conductance G. In principle 
this is sufficient if the fluctuations are Gaussian. It is well 
known that the distribution function of the fluctuations de- 
parts from Gaussian for large G  - (G ) (Ref. 1 1  ). The time 
dependences G ( t )  in a metal with magnetic impurities and 
non-Gaussian static fluctuations require special investiga- 
tions. 
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