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A scaling theory of high elasticity ofpolymer networks synthesized both close to and far from the 
gel-formation threshold is developed. It is shown that disorder ofthe topological structure of the 
networks, which has not been taken into account previously, leads to an appreciable change of the 
scaling dependences in comparison with those in the case of a regular structure. The correlation 
functions of the network-density fluctuations are calculated, and it is shown that in structurally 
disordered networks the statistical density fluctuations considerably exceed the thermodynamic 
density fluctuations. 

I. INTRODUCTION 

Experimental data on the elastic characteristics of poly- 
mer networks (gels) are usually interpreted in terms of the 
classical theory of high ela~ticity.'.~ However, the success of 
this typical mean-field theory does not in itself imply that the 
chains of the networks obey Gaussian statistics, which lies at 
the basis of this theory. As is well known, Gaussian statistics 
is characteristic only for networks prepared by the coales- 
cence of a concentrated solution of chains when they are 
compressed or weakly stretched. Networks that have swol- 
len in a good solvent are essentially non-Gaussian, and their 
description is possible only in terms of scaling theory. 

The scaling theory developed by de Gennes3 for poly- 
mer networks in a good solvent is based on the assumption 
that different chains of the network are completely separated 
spatially as a result of strong mutual repulsion of their mon- 
omer links. This assumption is known as Flory's gel 
theorem, according to which the equilibrium density of the 
links of the network is found from the condition for the 
threshold of overlap between dilute and semidilute solutions 
of its chains. According to this theorem, the properties of 
polymer networks in a good solvent are universal and do not 
depend on how the networks are prepared.3 

The data from the experiments of Ref. 4 indicate the 
presence of a rather strong dependence 

of the equilibrium density i3 of the links of the network on 
their average density p'O' while the network is being synthe- 
sized in a concentrated solution. The interpretation of the 
experimental data (see, e.g., Refs. 4-6) is made difficult by 
the presence of a large number of factors that influence the 
properties of the networks-the entanglement of the chains 
and their chemical nature, topological  restriction^,^ the 
quality of the solvent, etc. For an explanation of these data a 
number of phenomenological hypotheses have been put for- 
ward: Different ways of choosing the initial state have been 
proposed,8s9 the concepts of physical knotsL0 and of the in- 
terpenetration of parts of the network have been intro- 
duced,".'* etc. 

In this situation a rigorous theoretical study of sharply 
defined "base" models is of fundamental significance. As 
examples of such models, we have considered polymer net- 
works obtained under conditions of chemical equilibrium, 

with neglect of the effects of topological restrictions. The 
analysis has been performed using the renormalization- 
group method on the basis of the field-theoretical formalism 
developed in Ref. 13. It has been found that the results ob- 
tained can be clearly reproduced by means of the concept of 
"blobs."3,'4 The corresponding scaling theory is given in 

this article. 
A preliminary rigorous analysis is necessary because 

polymer networks are a solid phase of matter (for a discus- 
sion and the corresponding order parameter, see the Conclu- 
sion in Ref. 14). Because of the presence of long-range order, 
the properties of a fragment of a network on scales large in 
comparison with the correlation length 6 differ substantially 
from the properties of a fragment of an isolated macromole- 
cule of the same topological structure. This fact is not taken 
into account in the framework of the de Gennes approach 
(Ref. 3, p. 171) or in Refs. 12 and 15, which are devoted to a 
scaling description of polymer networks obtained near the 
gel-formation threshold. 

The presence of long-range order in networks is also of 
fundamental significance for the description of the effects of 
topological restrictions. Here, we are concerned with the 
construction of the corresponding Ginzburg-Landau func- 
tional, dependent on an order parameter.I4 In Ref. 14 this 
was found for networks obtained under conditions of chemi- 
cal equilibrium, by means of the standard Leontovich ap- 
proach.16 The condition used here that the fluctuations of 
the order parameter be small is fulfilled only in sufficiently 
concentrated systems. The concept ofblobs has enabled us in 
this article to extend the results of Ref. 14 to the scaling 
region. 

Real networks have a substantially disordered topologi- 
cal structure (see Fig. 1 ), but their chains are entangled with 
each other. Here we construct a scaling theory of such net- 
works and show that Flory's gel theorem is correct only for 
regular networks, which are topologically equivalent to a 
regular lattice (see Fig. 2) and whose synthesis belongs more 
to the field of art. 

We shall discuss briefly the basic ideas of the proposed 
theory.17 AS is well known, the elasticity of polymer net- 
works has an entropic origin. The increase of entropy as a 
result of the presence of structural disorder in a network 
leads to a corresponding increase of the elastic stress of 
its stretched chains. Under the action of this compressive . 
force chains of the network strongly overlap with each other 

372 Sov. Phys. JETP 71 (2), August 1990 0038-5646/90/080372-08$03.00 @ 1990 American Institute of Physics 372 



2. POLYMER NETWORKS IN THE CONDITIONS OF 
SYNTHESIS 

FIG. 1. Characteristic form of a structurally disordered network with 
p z  1, obtained by joining of chains in a semidilute solution (pK",p*""). 
Blobs (fragments of chains with g < N  links) are indicated by circles. On 
scales large in comparison with the blob size the chains of the network 
are strongly entangled with each other. 

and a regime of semidilute solution of the chains is realized. 
The equilibrium parameters of the networks are determined 
from the condition that the osmotic pressure ribs, of such a 
solution be equal to the stress ?r,, associated with the entro- 
pic elasticity of the chains. The calculation of the topological 
disorder depends essentially on how the polymer networks 
are synthesized and this causes the equilibrium parameters 
of the network to depend on the conditions of synthesis. 

The way the networks are prepared and the characteris- 
tics of the topological disorder are considered in detail in the 
second section of the article. In the third section the scaling 
dependence of the equilibrium and elastic characteristics of 
the networks on their structure and on the environment in 
which they are placed is obtained. In the fourth section, on 
the basis of the theory developed in Ref. 14, the correlation 
functions of the density fluctuations of polymer networks 
are calculated. These functions determine the intensities of 
the scattering of light, x rays, and neutrons by the structure 
of the polymer networks. In the Conclusion the principal 
results of the high-elasticity theory developed in this article 
are discussed. 

FIG. 2. Characteristic form of a network with a regular structure, ob- 
tained strictly on the threshold of overlap of the chain (p""zp*'O'). The 
chains of this network, which is obtained far from the gel-formation 
thresholdpz 1, are spatially separated. The number ofmonomer links of a 
blob coincides with the number of links of one chain ( g z  N). 

The physical properties of polymer networks depend on 
their topological structure and on the environment in which 
they are placed. In this section we describe the topological 
structure of the most common networks, obtained by the 
joining of linear chains, consisting of N monomer links, by 
their ends. Such joining can be attained, e.g., by introducing 
polyfunctional monomers into a concentrated or semidilute 
solution of polymer chains. An important characteristic of 
the topological structure of a network obtained in this way is 
the conversion p >p,-the degree of completeness of the 
chemical reactions of the monomers being joined (p, is the 
critical value of the conversion). 

Near the gel-formation threshold (T-p/p, - 1 1 ), 
both critically branched networks and macromolecules of 
finite sizes (a  sol) are formed. These networks consist main- 
ly of fragments linked to them by only one end. Such frag- 
ments do not make a contribution to the entropic elasticity of 
the network, which thus owes its origin entirely to the elasti- 
city of the skeleton of the network. The latter is obtained by 
amputating the above-mentioned fragments from the 
network. In the case of networks obtained far from the gel- 
formation threshold (p = 1 ) the skeleton of the network co- 
incides with the network itself and sol macromolecules are 
absent. 

It is usual to assume that the parameters Nand r com- 
pletely characterize the scaling laws that are satisfied by 
polymer networks3 In the following section it is shown that 
knowledge of these quantities is insufficient for the descrip- 
tion of networks, because of the presence of topological dis- 
order. Below we shall determine the principal parameters 
characterizing such disorder. An important characteristic is 
the spatial scale g"' of the disorder in the conditions of syn- 
thesis of the network. Over short distances r < 6"' different 
fragments of chains of the network are spatially separated, 
and, starting from the scale {'O', their mutual overlap be- 
comes important. The quantity g"' is found from the condi- 
tion that the numbers of links within a sphere of radius 6"' 
that belong to neighboring and remote fragments of the 
chain [g"' andg"" = p'''(l 'O') 3, respectively, wherep"' is the 
average density of links] be equal. 

Topological disorder in networks obtained far from the gel- 
formation threshold 

In a sufficiently concentrated solution of chains 
(p"' 2p**'01) the density fluctuations are small and the scale 
6"' is related to the parameter g"' by 5"' = a (g"') 'I2 for a 
Gaussian chain, where a is the length of a monomer link. By 
means of this relation and the condition g'O' = g"" we find 

where BiO' is the second virial coefficients of the interaction 
of the monomer links. The lower bound p**"' in (1  ) is ob- 
tained from the condition that forp"' = p**"' the energy E "' 
of the interaction of the links on the scaleg "' should be of the 
order of the temperature: 

In a semidilute solution of chains (p**'o'2p'fl' kp*"') 
the quantities 6 "' and g"' are connected by the relation 
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which determines the size of an isolated chain withg"'1inks. ' 
With the aid of (2) ,  from the conditiong"'' = g"' we obtain 

where the quantity p*") = a 6/5 (B( ' ) )  - 3/5 N-4'5 is found 

from the condition g'O' = N for the threshold of overlap 
(pi'' = p*"') of the chains in the solution. 

Our calculated parameter g"' characterizes the extent 
of the topological disorder while the network is being syn- 
thesized. In the casegiO'< Nits chains are strongly entangled 
with each other (see Fig. I ) ,  while for g ' O ' ~ N  such a 
network is topologically equivalent to a regular lattice (see 
Fig. 2).  

As is well known,3 in a semidilute solution linear chains 
with N >  g"' links can be regarded as Gaussian chains, con- 
sisting of N/giO' noninteracting blobs of size {"', each of 
which has g'O' monomer links. Therefore, the size of these 
chains is equal to 

An important topological characteristic of the network 
is the number N, of links between two effective topological 
couplings of the chain. In a concentrated solution the chains 
are Gaussian and the parameter N, ~ 2 0 0  (Ref. 18). In a 
semidilute solution, using the representation of a Gaussian 
chain of blobs, we find 

Topological disorder in networks obtained near the gel- 
formation threshold 

We now consider critically branched networks with 
rG 5 T 5 1, where the Ginzburg number T, will be obtained 
below. On scales small in comparison with the size R "' of a 
ring such networks have a "tree" structure. The number L "' 
of links in a ring on this scale R and the average density of 
links in the gel network are given by the expressions 

pF) L(0'=N/T2. ( 6 )  

In accordance with the first of these, only a small fraction 
( - r) of the chains of the solution belong the structure of the 
network. The remaining chains take part in the formation of 
the tree macromolecules of the sol. Because of the absence of 
topological couplings with the polymer network such ma- 
cromolecules can be eluted from it, and the network ob- 
tained is placed in an experimental environment that differs 
from the conditions for synthesis of the network. 

The skeleton of the network under consideration con- 
sists of elastically active chains. The density of the links of 
the skeleton and the average number of links of its chains are 
given by the expressions 

The size of an elastically active chain is determined by an 
expression analogous to (4 )  : 

The characteristic scale { jp' = { 'O' / r2  of the entangling of 
such chains is determined from the conditions 

we note that it considerably exceeds the quantity {"', which 
determines the scale of the entangling of all the macromole- 
cules of the system, including the sol. Thus, as the gel-forma- 
tion threshold is approached the topological disorder of the 
skeleton of the polymer network decreases: 

The analysis given above is valid only in the case { F' 
< R lo', to which corresponds r > r, = (g"'/N) . In the 
Ease rzrG the skeleton of the network is close to a regular 
lattice: g?) ~ 1 ' " ' .  To elucidate the physical meaning of the 
parameter rG we estimate the density fluctuations of the 
links of the network on the scale R '"': 

According to (9 )  the quantity rG has the meaning of the 
Ginzburg number. l 9  

In the case r 5 rG the relative density fluctuations on 
the scale R "' are of order unity, i.e., Sp:' z p F ) ,  and this 
gives L " ' z ~ ~ ' ( R  '0')3. Such a network has a percolation 
s t r u ~ t u r e , ~ ~ ~ ' ~ n d  its parameters p:) and R "' are deter- 
mined by the expressions 

where f i  and v are the critical indices of percolation theory 
and the coefficients of proportionality are found from the 
condition for matching of ( 10) with the expressions (6)  and 
(8 )  at r = 7,. By means of the relations (10) we find 

where D lo' is the fractal dimension of the percolation cluster 
and d is the dimensionality of space. 

3. ELASTICITY OF STRUCTURALLY DISORDERED 
NETWORKS 

We now study the properties of networks in a good sol- 
vent with given virial coefficients B > 0 and C >  0 describing 
the interaction of the monomer links. Important character- 
istics of such networks are the swelling coefficient a  and 
expansion coefficient a, of its chains: 

where Vis the volume of the network, Vi"' is its volume in the 
conditions of synthesis, p is the density of the links of the 
network, and R is the length of its chains when they are in the 
unconnected state in the solvent under consideration. 

Networks obtained far from thegel-formation threshold. 
In the classical theory of Flory the free energy of such a 
network is equal to the sum of an entropy and an energy 
contribution: 

where T is the temperature, Y = p/n is the density of the 
chains, and it is assumed that the difference of a ,  from unity 
is due entirely to the thermal expansion of the chains. Hence- 
forth we shall neglect these effects, so that in the framework 
of the mean-field theory we have a ,  = 1. For a small link 
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density the virial expansion of the function E ( p )  has the 
form 

E ( p )  lV=TBpZ, p<B/C. ( 1 4 )  

The equilibrium value of the density of links of the network 
( p  = p )  is found by minimizing the free energy ( 13) ,  ( 14) .  

pxB-'l~(p("))' /sN-1/5,  -2 **=Bla6, P P ( 1 5 )  

The expressions ( 13)-( 15) are valid only in the region 
where mean-field theory is applicable, which is determined 
by the inequality ( 15 ) . 

As will be shown below, in the fluctuation region the 
semidilute regime for the fluctuations of the chains of the 
network is realized: 

The basic idea of the scaling description is to go over from 
the monomer links to new structural units-blobs, each of 
which has size f  and consists of g  monomer links [see also 
( 2 )  and ( 3 ) ] :  

In fact the blobs are close-packed ( g z p f  3 ,  and have the 
same effective virial coefficient (Bbl z 5  3 ,  as hard spheres of 
radius f .  Therefore, the interaction energy of blobs of den- 
sity pbl = p /g  is equal to 

The elasticity of Gaussian chains of blobs can be de- 
scribed by means of the classical theory ( 13 ), where the 
function E ( p )  is obtained in ( 18 ) . Because the character of 
the swelling of unconnected chains in the conditions of their 
synthesis differs from that in the conditions of their use, the 
parameter a, # 1 ( 12) ,  and the quantities appearing in it are 
determined by the expressions ( 4 )  and 

The condition for the minimum of the free energy ( 13) ,  
( 1 8 )  of the network with respect to the density p  can be 
found by equating the osmotic pressure of a semidilute solu- 
tion of chains to the stress associated with the entropic elasti- 
city (roTT,,, = rel ), with 

The difference of the quantities ( 2 0 )  is equal to the external 
pressure p = - .rr,,, . For a small deformation of the 
network its elastic modulus K is determined by the expres- 
sion 

P=K(a/a-I ) ,  a= (p(')/p)'". ( 2 1 )  

With the aid of the expressions ( 2 0 ) ,  ( 1 7 ) ,  and ( 4 ) ,  ( 1 9 )  we 
find the equilibrium density of the links of the network 

and its elastic modulus ( 2  1 ) 

The expression ( 2 2 )  makes it possible to convince oneself 
directly of the existence of the semidilute fluctuation regime 
( 1 6 ) .  

Owing to topological coupling the maximum value of 
the number g  of links of an untangled segment of a chain is 
bounded by the quantity Ne ( 5 ) .  In reality, it is somewhat 
smaller than Ne because of the finiteness of the osmotic pres- 
sure stretching the chains of the network. To find it we make 
use of the expression for the elastic stress of a network with 
strongly entangled chains, which is obtained by differenti- 
ation of the entropy S [the expressions ( 2 6 )  and ( 2 7 )  of Ref. 
141 : 

As a result, for networks with g"' k N  : / N 3 ,  in which 
the contribution of topological restrictions is important, we 
find the number of links of a blob: 

Neglecting the weak power dependence ( 2 4 )  we have 
g=:N,, and for the parametersp and K for such networks we 
obtain from ( 17) the expressions 

Networks obtained near thegel-formation threshold. We 
first consider critically branched networks in the framework 
of mean-field theory. In the case 1 ? r k r ,  a contribution to 
the entropic term is given only by the network skeleton, 
which consists of elastically active chains. The density v of 
these chains and the density p,  of their links are determined 
by formulas that follow from ( 7 ) :  

Minimization of the expression ( 1 3 )  with allowance for 
( 2 6 )  gives 

Thus, as r decreases the region of applicability of mean-field 
theory ( p  k p** ) decreases. 

We now consider the fluctuation region p  Sp**.  The 
decreases of the network density as r - -0  [see, e.g., ( 2 7 )  ] 
leads, according to ( 17) ,  to an increase of the blob size f and 
of the number g  of links in the blob. For r k 1 the quantity 
g  S N ( 2 3 ) .  Therefore, there is a region 1 k r 2 r* in which 
the blob has the structure of a linear chain. In this region, 
minimizing the network free energy ( l 3 ) ,  ( 18),and(26) 
with respect to p, with the aid of the expression 
R -- f  ( l"'/g) for the size of an elastically active chain, we 
find 

The parameter r* = (g'(''/N) is found from the condition 
g  = N  for r = T*. Thus, the intermediate scaling regime 
( 2 8 ) ,  ( 2 9 )  can be observed only in the case of sufficiently 
long chains of the network and of strong topological disor- 
der, when the parameter r* (< 1 .  

In the region r* k r k r ,  each blob is a macromolecule 
having the structure of a random tree.I3 We denote by 6 and 
g, respectively, the size of such a branched blob and the num- 
ber of its links, which are related to the average density of 
links of the network by the condition for close packing of the 
blobs: g  = p l  3 .  Regarding these blobs as the new structural 
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units, we can characterize the resulting network by the pa- 
rameter rb1, analogous to the parameter r that corresponds 
to choosing individual chains of the network as such struc- 
tural units. In the new units the second of the relations ( 6 )  
and ( 7 )  are rewritten in the form 

where I is the number of links of an elastically active chain 
dressed in a "coat" of T, blobs. 

The quantity I is greater than I"', since, in addition to 
the I"' links of the elastically active chain, lattice fragments 
of size 5 6, attached to the chain by only one end, also make 
a contribution to I.  Such fragments, contained in branched 
blobs, transmit elastic stress in the network because of the 
presence of correlations in the position of their links with 
links in the network skeleton. These correlations are due to 
the steric interaction of the links of the network. Thermal 
fluctuations destroy them on the scale 4. Therefore, network 
fragments with a size greater than 6 do not affect its entropic 
elasticity a,, but make a decisive contribution to the osmotic 
pressure a,,, . 

Eliminating the parameter T,,, from the relations ( 3 0 ) ,  
for the size of an elastically active chain we find the expres- 
sion 

Substituting the expressions ( 3  1 ) and ( 8 )  into ( 12) and into 
the equation T,, = aos, ( 2 0 ) ,  with the aid of ( 2 6 )  we find 
for the number of monomer links of a blob the expression 

We note that, according to ( 3 2 ) ,  for 
T = T, = (g(O)/N) we have g  = L 'O'. Thus, the equilibri- 
um density of the links of the network with T = T, is found 
from the condition for the threshold of overlap of its elasti- 
cally active chains. The presence of this analog of Flory's gel 
theorem'.' is not surprising,since, as shown in the preceding 
section, the skeleton of such a network has a regular struc- 
ture gAO' =: I 'O'. 

The condition for applicability of Eqs. ( 3 0 )  is the pres- 
ence of a large number ( - T; 2$  1 ) of blobs on the scale R 
( 3 1 ) .  With the aid of ( 3 0 )  and ( 3 2 )  it is not difficult to 
convince oneself of the validity of this inequality for 7% T,, 
with TbI =: 1 for TZT,. 

To find the equilibrium density of the links of the 
network we must calculate how the size 6 of a branched blob 
depends on the number g  ( 3 2 )  of its links. The correlations 
due to the presence of steric interactions of the links of the 
blob are taken into account most simply by means of Flory's 
approach. ' For this we represent the free energy of a blob of 
size R in the form of a sum of an elastic contribution and an 
energy contribution: 

where R ,  is the size of a branched macromolecule of g  mon- 
omer links in the absence of interaction between them. The 
equilibrium value R = is found by minimizing the free en- 
ergy of ( 3 3 )  with respect to R:  

With the aid of the condition for close packing of the 

blobs ( p  = g / c  3 ,  and ( 3 4 ) ,  ( 3 2 ) ,  for the equilibrium density 
of the links of the network we again find the expression ( 2 8 ) ,  
which is thus valid in the entire region 1 2 T 2 T, . However, 
the expression for the elastic modulus K z p T / g ,  whereg is 
determined in ( 3 2 ) ,  differs from ( 2 9 )  because of the differ- 
ence of the quantities g  in ( 2 9 )  and ( 3 2 ) .  

As is well known,3 the Flory approximation ( 3 3 )  for 
the calculation of the critical index Y gives the value Y = 3 /5  
for linear chains. However, in the case of branched macro- 
molecules its accuracy is considerably worse. The more ac- 
curate scaling dependence ( 3 4 )  has the form2' 

whence for the equilibrium density of the links we find the 
expression 

To conclude this section we consider the swelling of 
percolation networks (r<r, ). The equilibrium value of the 
density of their links is equal to 

where for an estimate of the quantity { we have made use of 
the Flory approximation ( 3 3 ) , ( 3 4 )  with the parameter 
g  = L 'O' determined in ( 1 1  ). The more accurate value 
0 ~ 2 . 2  for the fractal dimension of a percolation clusterz1 
differs insignificantly from the result D  = 2  ( 3 4 )  of the 
Flory approximation. The elastic modulus of the network is 
given'by the scaling expression 

We note that by virtue of the inequality 
r<rG = ( ~ ' O ' / N ) " ~  the percolation regime ( 3 7 ) ,  ( 3 8 )  can 
be observed, in fact, only in networks obtained in a solution 
of chains near the threshold of their overlap at p 'O'~p* 'O '  
( 3  ). Because of topological coupling of sufficiently large ma- 
cromolecules of the sol with the polymer network, the sol 
cannot be completely eluted and introduces an extra contri- 
bution to the density of the network in addition to ( 3 7 ) .  
Allowance for this effect requires a more detailed descrip- 
tion of the effects of the topological coupling and lies beyond 
the scope of this article. 

4. DENSITY FLUCTUATIONS IN POLYMER NETWORKS 

In disordered systems there are two types of averag- 
ing-Gibbsian and configurational. We determine the local 
average density ( p ( x ) )  of the links of the network with the 
aid of the usual Gibbsian thermodynamic averaging of its 
microscopic density p ( x ) .  The quantity ( ~ ( x ) )  is a random 
function of the coordinates. Such statistical density fluctu- 
ations are usually disregarded in the theory of polymer sys- 
tems. However, as will be shown below, in the scaling region 
statistical fluctuations d p ( x )  of the density of the links of the 
network are considerably greater than their thermodynamic 
fluctuations 6 p ( x )  : 

Important characteristics of the density fluctuations are 
their correlation functions 

g (x ,  x ' )  = < G p  (x )Spx1)  ), G(x-x ' )  =dp  ( x ) d p  ( x ' ) .  ( 4 0 )  
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The bar in (39) and (40) denotes averaging over the config- 
uration (the different topological structures of the 
network), the probability of each of which is determined by 
the conditions of synthesis. 

The replica makes it possible to perform 
the averaging over the configurations before the calculation 
of the thermodynamic averages. For this we consider a sys- 
tem incorporating the network under the conditions of syn- 
thesis and m identical replicas of the network under the con- 
ditions of use. We shall label these subsystems by the indices 
k = 0 and k = 1, ..., m, respectively. After the configuration- 
al averaging has been performed an effective interaction that 
has the character of attraction appears between these subsys- 
tems. 

Under the conditions of synthesis, by virtue of the 
translational symmetry ofthe system, the monomer links are 
delocalized. The effective attraction localizes the position of 
the links of the network near certain average positions of the 
links. This physical picture corresponds to the solid phase of 
the polymer. The restriction of the conformational set of the 
system under consideration, with specified average densities 
p(k'  (x)  by virtue of the localization of its links, is described 
by an entropy functional S, b'k' ). Henceforth, we shall 
consider only long-wavelength density fluctuations in each 
of the replicas k = 0, 1, ..., m, with scales large in comparison 
with the respective correlation lengths f k ' .  Such fluctu- 
ations can be described by means of the blob concept that 
was discussed above. Choosing these blobs as the new struc- 
tural units, to find the functional Sm b'k) ) we can make use 
of the mean-field approach developed in Ref. 14. 

We give a brief account of this approach as applied to 
the system under consideration. We denote by 

the pressure and temperature under the conditions of syn- 
thesis and when the network is in use, respectively. Then the 
thermodynamic potential of the system can be represented in 
the form 

m 

  ere E ( ~ )  ( p ( k )  ) is the energy of the steric interactions of the 
blobs in the k th replica [see ( 18 ) 1 : 

E(*) (p(*))=T(k' J dx(k)p(h) ( p ~ ) / ~ ( k )  ( x ( k ) )  g ( h ) = p ( k )  ( g ( k ) )  3. 

The integration in (43) is performed over the volume V' k' of 
this replica, andg'k) (x) is the number of monomer links of a 
blob and depends on the local average density p'k' ( x )  of the 
links. 

Under the conditions (41 ) the equilibrium values p") 
and p C k )  = j?(')/a3 (k  = 1, ..., m) of the densities are deter- 
mined from the condition for the minimum of the functional 

(42). Therefore, its expansion in powers of the density 
fluctuations AP'~'  starts from the quadratic terms: 

where the integration is over the volumes pk) of the unde- 
formed network and the matrix G - ' is the inverse of the 
matrix of the correlation functions of the density fluctu- 
ations of the replicas: 

As shown in Ref. 14, the elements of the matrix (45) in the 
limit m -0 determine the correlation functions (40) of in- 
terest to us: 

G" (x-x') =g(x-x')  +G (x-x') , 
Gi2 (x-x') =G (x-x ' )  , (46) 

where g is obtained by configurational averaging of the func- 
tion g (40). 

We also give the expressions for the thermodynamic 
potentials of the network under the condition of its synthesis 
and use: 

In Ref. 14 an explicit expression was obtained for the 
entropy S,,, of a network synthesized far from the gel-forma- 
tion threshold: 

rn rn 

where Q = 1 - 2/f, f is the functionality of the linking mon- 
omer, A'" = ( Vk' /T(O))  ' I3  is the coefficient of linear ex- 
pansion of the network in the k th replica, and the field u 
should be found from the condition for the maximum of the 
right-hand side of the first equality (48). Eliminating this 
field from (48), we find 

m 7" 

The quantities akk' and A 'k'  in the right-hand side of (49) 
must be expressed in terms of the density p'k' of the links 
with the aid of the relation (43) and 

The physical meaning of these relations was discussed in Sec. 
3. 

Substitution of (49), (43) into (42) reproduces the ex- 
pressions ( 13), ( 18) for the free energy of the network. We 
now expand @, (42) in powers of the density fluctuations 

As a result of the calculations given in the Appendix we 
obtain 

In 

Inverting the matrix of the quadratic form (52), for the 

377 Sov. Phys. JETP 71 (2) ,  August 1990 S. V. Panyukov 377 



Fourier components of the correlators ( 4 6 )  corresponding 
to wave vector q = 0  we find the expression 

Thus, in structurally disordered networks with g'O'4 N the 
statistical density fluctuations are considerably greater than 
the thermodynamic density fluctuations. 

5. CONCLUSION 

Thus, in the scaling region it is not possible to under- 
stand the elastic properties of polymer networks without 
taking the interaction of their chains into account. The mag- 
nitude of this interaction depends on the degree of entangle- 
ment of the chains under the conditions of synthesis, which 
is described by the parameter g'". The experimental data are 
often expressed in terms of the ratio 

Flory's gel theorem' holds only for networks that are synthe- 
sized strictly on the threshold of overlap (with p'O'zp*'O') 
and have an almost regular topological structure. The 
strongly disordered networks obtained in semidilute solu- 
tion (p**'O)>p(0)>p*'O)) swell considerably more weakly. 
The interaction of the chains of such networks leads to the 
formation of a semidilute fluctuation regime (p  >p* ) . 

It is interesting to note that in the scaling region 
( p  S f * * )  the equilibrium density of networks obtained in a 
concentrated solution of chains (p'" ?p**'O)) is determined 
by the same formulas as in the region (p>p** )  where the 
mean-field approximation is applicable [see, e.g., ( 2 2 ) ,  ( 1 ), 
and (15 )  in thecasep-1, and ( 2 8 ) ,  ( 3 ) ,  and (27 )  in the 
case T = p/p, - 1 4 1 1. This fact explains the success of the 
classical theory' in the description of the region of developed 
density fluctuations.This accidental agreement obtains only 
for the equilibrium densityjj of the links of the network when 
the Flory-approximation value is used for the critical index 
Y.  The elastic characteristics of polymer networks are sub- 
stantially different in these theories: The mean-field theory 
yields an overestimate of K. We note that the quantity K is 
more sensitive to the presence of topological disorder than 
the equilibrium density p of the network. 

We have shown that in the fluctuation region in poly- 
mer networks the thermodynamic fluctuations usually tak- 
en into account are small in comparison with its statistical 
(spatial) fluctuations. The latter are due to fluctuations of 
the topological structure of the networkI4 and give direct 
information about its degree of disorder. The correlation 
function of these fluctuations can be measured in experi- 
ments on scattering by small wave vectors q ( f -  . The op- 
posite case q > {  is not of interest, since on small scale 
-q - < f there is no contribution from fluctuations of the 
topological structure (G  = 0 )  and the correlator g (40 )  of 
the thermodynamic fluctuations has the same form as in a 
semidilute solution of unconnected chains. 

The theory we have proposed makes it possible to de- 
scribe all fluctuation regimes of networks obtained by join- 
ing linear chains by their ends and to find the regions of 
applicability of these regimes. With an appropriate choice of 
the parameters the theory also describes other types of net- 
works. For example, in the case of networks obtained by 

radiation-induced joining of chains or by polycondensation 
of bifunctional andf-functional monomers the quantity N is 
equal to the average number of links between two transverse 
couplings. The case N = 1 describes networks obtained by 
polycondensation of onlyf-functional monomers. 

APPENDIX 

We shall obtain the expression ( 5 2 )  for the thermody- 
namic potential. For this we expand the entropy ( 4 9 ) ,  ( 5 0 )  
in powers of the parameters (5  1 ) : 

where S = 1 / 2 ( 3 ~  - 1 ) .  In the mean-field theory Y = 1/2 
and S = 1. In this case the expression ( A .  1 ) for the entropy 
goes over into the expression obtained in Ref. 14. In the scal- 
ing region Y = 3/5 and 6 = 5/8. The expansion of the energy 
term ( 4 3 )  has the form 

We substitute ( A . l )  and ( A . 2 )  into ( 4 2 ) .  The terms 
linear in u ( k )  cancel by virtue of the equilibrium conditions 
.rr,, = .rr,,, ( 2 0 ) .  To obtain the functional ( 5 2 ) ,  which de- 
pends only on the deformation tensor u ' ~ '  (k  = 1 ,..., m ) un- 
der the conditions of use, we minimize the previously ob- 
tained quadratic formula ( 4 4 )  with respect to u"'. The 
functional written out in (52 )  corresponds to the limiting 
case of structurally disordered networks with 
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