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Photoelastic interaction (PEI) associated with antiferromagnetism in such "easy-plane" trigonal 
antiferromagnetic crystals as a-Fe,O, and FeBO, is investigated. It is demonstrated that due to 
exchange enhancement this antiferromagnetic magnetoelastic contribution to PEI may be 
comparable to or even exceed the values for the ordinary nonmagnetic PEI mechanism in crystals 
employed in acoustooptic devices. Light diffraction by sound under Bragg conditions is 
calculated for such PEI and it is shown that a magnetic field can control both the Bragg angle and 
the diffracted light intensity. Specific quantitative estimates of the effects are produced for a- 
Fe,O, and FeBO, in their corresponding transparency regions. 

1. INTRODUCTION 

Photoelastic interaction'z2 PEI can be defined as an 
elastic stress-induced change in the permittivity, Or- 
dinarily for magnetically disordered crystals we have 

where 

ea ,= ( d ~ ~ / d x ~ + d u p / d ~ ~ )  12, O ~ B =  ( ~ u ~ I ~ x B - ~ u P I ~ x ~ )  12 

are the strain and local rotation sensors, respectively; Pag,,, 
is the PEI tensor; and the tensor is symmetrical in the indices 
in parentheses in ( 1 ) , and is antisymmetrical in the indices 
in brackets. 

Antiferromagnetics have an additional PEI associated 
with the antiferromagnetism vector 

and, to a lesser degree, the magnetization vector 

(M,  and M, are the sublattice magnetizations). This anti- 
ferromagnetic PEI is most easily obtained directly from the 
antiferromagnetic part of the tensor E ~ ~ ~ . ~  

(where H = 2M0h is the magnetic field), if we find the 
sound-induced variations Sl(ea,, , w,,, ) . 

Sound will induce rotations of the vectors L and M in 
this plane (Fig. 1 ) by some angle Sg,(eag, w,, ) in "easy 
plane" antiferromagnetics (EPA). In view of the small ani- 
sotropy in the easy plane the entire system of L and M will in 
fact be constrained from rotation in this plane by the field H 
due to the low magnetization M = M&/HE ( H E  is the ef- 
fective homogeneous exchange field), which is facilitated by 
the energy M&(H /HE ). At the same time the stresses eag 
(and wag), due to the magnetoelastic bonding energy 
Bl,lge,, =Be,, (B is the magnetostriction constant) act 
through the vector L whose modulus L =.2Mos M. As a re- 
sult the angle of rotation 

contains an additional large multiplier HE/H  here com- 

pared to the corresponding expression for the ferromagnet. 
This also is the cause of so-called exchange enhancement of 
magnetoelastic effects in EPA. 

We note that the angle Sg, given by Eq. (5) may become 
of order 1 rad under stresses as low as e,, z This 
means that the antiferromagnetic PEI (cap, wag) will 
in this case approach the maximum possible value 
A&$ =&ig, which, as we shall see below, is not only compar- 
able to but will even exceed the ordinary crystalloelectric 
PEI in nonmagnetic crystals used in acoustooptic devices. 
Here one particular fact of special interest for acoustooptics 
is that antiferromagnet PEI may be heavily dependent on the 
magnetic field H [which is already evident from (5)] .  

We note that since &to, defined by Eq. (4), contains 
terms linear in L that are responsible for the antiferromag- 
netic Faraday e f f e ~ t , ~  the contribution to PEI resulting from 

will contain, along with terms of the type in Eq. ( 1 ), 
additional terms of the form 

The PEI exchange enhancement effect in EPA was first 
predicted in Ref. 5, which also identified by experiment the 
associated acoustic light modulation. 

The present paper is designed to carry out a detailed 
examination of the PEI antiferromagnetic tensor for tri- 
gonal EPAs (with the i + 3 + 2  structure14 and to use this 
as the basis for calculating light diffraction by sound. Here 

FIG. 1. The various coordinate axes selected in the basal plane: The Xo 
axis runs along axis of symmetry 2: ( Y,,IXo): The axis runs along the field 
H a t  angle H to Xo (LI( Y); 6 is the direction of the polarization vector u of 
asoft transverse acoustic mode with q(/Z ( ( 3  + [its velocity is given by Eqs. 
(30)l .  
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the discussion will concern so-called Bragg diffraction con- 
ditions, i.e., under the condition 

where d is the optical path length of the acoustic beam, while 
A and/Zo/n is the wavelength of sound and light, respectively 
(n is the refractive index). This condition derives from the 
requirement that the light beam intersect a sufficiently large 
number of acoustic wavefronts. It is Bragg light diffraction 
by sound that is widely and effectively used in acoustooptic 
electronic devices. 

In order to stimulate interest on the part of experimen- 
tal researchers in acoutooptic phenomena in antiferromag- 
netics we consider a number of different geometrical situa- 
tions with respect to the relative configuration of the wave 
vectors and light and sound polarizations as well as magnetic 
field directions and crystal axes of symmetry. This will per- 
mit selection of an optimum experimental geometry. In ad- 
dition to describing qualitative behavior the present study 
will also derive quantitative estimates of these effects in all 
cases where possible. 

2. PHOTOELASTIC INTERACTION TENSOR 

Following the outline described above for obtaining an- 
tiferromagnetic PEI we write the explicit form of the compo- 
nents of the complete permittivity vector Eao accounting for 
the antiferromagnetic terms of Eq. (4)  for an i+3+2-  
structureEPA, usingZ 113 + , X IIM'O' IIH, and Y IIL'O' as the 
coordinate axes (Fig. 1 ), where M'O' and L'O' are the equi- 
librium magnetization and antiferromagnetism vectors, re- 
spectively. A system with an X01/2  axis will also be used as 
an alternative system, the first system is rotated by pH about 
the 3 + axis relative to the second system. In the X, Y, Z 
coordinate system we have 

1 
E ( , ~ ) = E ~ ~ ) =  ( b l - b z )  1,1, - 7(c,+c2)h,~, ,  

'2 
" , z , = ~ ~ , , = b 3  [ (1X2-luZ) sin 3cpH+21,1, cos 3qH] 

+c,h,(l, sin 3 ~ n - l ~  cos 3%) 7 ) 
+c,h,(l ,  cos 3 q H f  1, sin 3 ~ ~ 1 ,  (11) 

Here 1, = 0 and h, = H /2M0 are used. 
It is now necessary to account for sound-induced oscil- 

lations of 1 in Eqs. (8)-(13): 61 = Sl(eao, wao ). We consid- 
er the acoustic frequencies 

where w,,,, is the antiferromagnetic resonance frequency 
(AFRF) for its low frequency (quasiferromagnetic) mode.6 
Here 61 can be found by minimizing the sum of the magnetic 
and magnetoelastic energies. The result, which sharpens Eq. 
( 5 ) ,  is as fo l lo~s :~ , '  

HE 
f j ~ s ~ ~ s ~ - f j q = -  - [ 2Bs6exy 

MoHeiZ 

+ 4BIk  (e,, cos 3qH-e,,  sin 3rpR) I, 

12,= I ,  l z=0,  
(15) 

where B O O B , ,  - B,, and B,, are the magnetostriction con- 
stants, while 

is the quantity determining the AFRF frequency figuring in 
Eq. ( 14). In Eq. ( 16) HD is the Dzyaloshinskii field respon- 
sible for weak ferromagnetism, while H 2, accounts for the 
contributions of magnetic anisotropy in the XYplane as well 
as magnetoelastic and hyperfine interaction to w,,,, . We 
note that there are no terms with SIX in map as given by ( 15). 
In this case they may be discarded, given the smallness of 
trigonal magnetic anisotropy which would produce such 
terms. 

Substitution of 1 =*l(O' + 61 into Eao of Eqs. (8)-( 13) 
decomposes the tensor E into its equilibrium part 2 and pho- 
toelastic interaction AC: ,. 

- A -  

E = E + A E .  

The components of the tensor C in the geometry shown in 
Fig. 1 are as follows. The diagonal components are 

and the nondiagonal components are 

E ~ ~ = E , ~ = O ,  

E ~ , = E , , =  (-bllU2+cjhlly) sin 3qR,  

e,,= (-b31,2+c,h,l,) cos 3q,,+ial, 

(here I, = 1 is retained solely to denote the antiferromagnet- 
ic origin of the individual terms). The components of the 
photoelastic part At can be represented as expressions simi- 
lar to Eq. (1)  subject to Eq. (6)  in which the coefficients 
Paoys-the PEI tensor components-can be given in the fol- 
lowing specific form: 

p ( w ~ P u , = ~ l ~ i ,  

P(,](,)/cos % H = - P ( ~ ) ( , , )  sin 3 q,==U2111, 
(19) 

P ( x l , ( x u , / ~ ~ ~  3cp~=--P,, ,~,,~,lsin 3rpH=UlIIz, (20) 

P(,,,(,,,/2 cos2 sin2 3qH=-P(s,)(yz)lsin 6rpB 
=P(yz,(,,,lsin 69a=-Uznz, (21) 

Przzl(xu,=Ul ( i d , )  = I J l ~ I z u I ,  (22) 

P ~ ~ z ~ ( , , , I ~ ~ ~  3 r p ~ = - P [ ~ ~ ~ ( ~ ~ , l s i n  3 q ~ = N ,  (ial,) =Uze[,, , ,  (23 

where 
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The components of the tensor ? in Eqs. ( 19)-(23) are 
expressed as products of two factors. The first factors ( U, or 
U,) are purely of magnetoelastic origin and their values are 
well known from magnetoacoustics for the antiferromagnets 
of interest to us. The second factors (II, or n2) are deter- 
mined through antiferromagnetic permittivity terms ( 17), 
(18). Unfortunately the experimental data for these terms 
from magnetooptic experiments are quite sparse. Nonethe- 
less we will use these data in Section 4 when we will apply 
general formulae to specific antiferromagnets. In the interim 
we note that 

The expression for U,,, in (25) can be treated as anti- 
ferromagnetic PEI enhancement factors. Indeed ordinarily 
the PEI tensor components are roughly of the same order as 
the anisotropy of the tensor E , ~ .  In any case this will gefini- 
tely occur for the rotation components of the tensors P [the 
second term in Eqs. ( 1 ) and (6)  ] due to the local rotations 
w, of the crystal volume elements (with their crystallo- 
graphic axes). This also applies to antiferromagnetic PEI in 
the part related to acoustical rotations of the volume ele- 
ments. The latter is clear from kq. (24), which provides 
sample components of the tensor P attributable specifically 
to such rotations: No enhancement occurs in thiszase. The 
exchange-enhanced components of the tensor P in Eqs. 
( 19)-(23) have an entirely different origin. They are caused 
by rotations of the vector L and although the anisotropy of 
the tensor Sq, associated with L is small compared to the 
crystallographic anisotropy of this tensor, the angle of rota- 
tion E , ~  in Eq. ( 15) is enormous. This is in fact responsible 
for the enhancement of U,,, in Eqs. ( 19)-(23). 

The table provides the theoretical values of the coeffi- 
cients U, and U, for a-Fe203 and FeBO, calculated using 
the parameters given in the Appendix (for near-room tem- 
peratures). Values sufficient to eliminate the domain struc- 
ture were selected for the fields H; these fields are different 
for a-Fe,O, and FeZO,. The table also provides the compo- 
nents of the tensor P that could be calculated using existing 
experimental data from magnetooptic experiments for anti- 
ferromagnetics: For a-Fe203 accounting for Eq. (27), 

n ,  = 12.10-4 (Ref. 3), while for FeBO, H ,  =6.6.10-4 
(Ref. 8) while in Eq. (23) &fzYI/i  = a = 14.1OP4 (Ref. 9 ) .  
Unfortunately experiments to determine E:,~;,, which are re- 
quired to estimate H, in E%; (28) and consequently the other 
components of the tensor P, are not available. For compari- 
son purpos? the table provides the values of the same com- 
ponents of P for materials used in acoustooptics, sapphire 
(A1203) and lithium niobate (LiNbO,). The last row pro- 
vide the wavelength of light A,, (in a vacuum) in the trans- 
parency range of these crystals. 

It is necessary to explain the index f in P,,,,,s, and 
PI,,, ,zsl  . The 6 and vlf axes in the XY plane (rotated by 
- 3pH relative to the X and Y axes: See Fig. 1 ) determine 

the directions of the polarization vectors u,(lf and u211v for 
normal acoustic waves with wave vector qllz (Ref. 10). 
These correspond to the shear strains 

ez;=EIz cog 3 q H - e ~ ~  sin 3cpH=e,,, co? 2 ~ H - e ~ ~  sin 2 q H ,  
(29) 

ez,=eZu cos 3(p,,ie,, s in  3rp,,=e ;,, cos 2rpH+e,, sin 2qH. 

The corresponding components of the tensor pare related in 
the second pair of indices by these same relations. Here 
P,xy,(zc)  and P ,,,,,, g, are maximized while 
P,,, ,,,, = P(,,, (,,, = 0. (The latter also applies to LiNbO, 
for which q ~ y , . )  It is important that due to magnetoelastic 
interaction the velocities of these two transverse modes are 
different: 

Modes with qllX, ull Y for cos 397, = 0 and with qll Y, 
ul(X for sin 3q,, = 0 are also pure normal modes. These have 
velocity 

The transverse waves with u l Z  and u J J Z  mix with other di- 
rections of q and H in the XYplane and may also include the 
longitudinal wave with ullq. 

We note the clear dependence of velocities (30) and 
(3 1 ) on H (Ref. 1 1 ). With the values of H shown in the table 
the second term in braces in Eq. (30) has a relative value of 
25% and 6% for a-Fe,O, and FeBO,, respectively. However 
an even stronger relation of antiferromagnetic light diffrac- 
tion by sound is directly manifested through the PEI tensor, 
in which, as we see from Eqs. (19)-(26), both factors are 

TABLE I. 

* &=xp. 
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Parameter 

H.  3 
[ J ~  IO-~  
u2 

p (xv ) (w)  
P(XY)(ZE) 

p[x21(xv) 

P~xzl(2t) 

Lo, nm 

FeBOl 

10L 
3 2 
h fi 
2.1 
5 l 
4.5 
6.5 

5145 

a - F ~ Z O .  

20' 
2.4 
b 0 
2.8 
9.6 

? 
> 

115Li 

~1.0- 

- 
- 
- 

4 ,o 
0 0 
0 
0 

, 644 

L I N ~ O J  

- 
- 
- 

0.82 
1.8 * 
0 
0 

633 



functions of H. This reveals that it is possible to some degree 
to control the diffracted light by altering the magnitude and 
direction of H and also to modulate it by modulating H. 

3. GENERAL EQUATIONS FOR THE AMPLITUDES AND 
BRAGG ANGLES OF INCIDENT AND DIFFRACTED LIGHT 

The problem of light diffraction by an elastic acoustic 
wave field is reduced to solving the equation' 

where 2 is the permittivity tensor with components ( 17), 
( 18), while A2 is its sound-induced perturbation with the 
components defined by Eq. (1) subject to Eq. (6) together 
with Eqs. ( 19)-(23) (w% account for only the exchange- 
enhanced components of P). Using the coupled mode meth- 
od' we search the solution of Eq. (32) as a superposition of 
two natural optical modes corresponding to A& = 0: 

One of these modes is an incident wave (of frequency w,, 
wave vector k, and a unitary polarization vector p,) ,  while 
the second mode is a diffracted wave (w,, k,, p,); here the 
desired amplitudes of these waves A, ( r )  can be treated as 
slowly varying functions of the coordinates (due to small- 
ness of A2) . 

As is ordinarily the case we consider only the cases of 
small (Fig. 2, a )  and large (Fig. 2, b) Bragg angles (SBA 
and LBA), i.e., the angles formed by the vectors k, and k, 
with the wavefront of the acoustic wave. In Figs. 2, a and b, 
this will correspond to angles 6 ,,, (SBA) and 7 ~ / 2  - 6 ,,, 
(LBA), respectively. In both cases we use the condition 

which allows us to treat Aj ( r )  as a function of only a single 
variable. 

We focus primarily on two choices of the coordinate 
axes (A and B) attached to the sample (the Z axis is parallel 
to axis 3; the X axis is parallel to the field H and forms an 
angle pH with axis 2, which is parallel to the X, axis while 
the Y axis is parallel to the vector L: See Fig. 1) and fixed 
with respect to the direction of the wave vectors of light (k,  
and k, and sound (q). This is reflected in the corresponding 
configuration of the coordinate axes: A (B)in Fig. 2, a and b. 

Version A. When condition (34) holds the amplitudes 

FIG. 2. Relative configuration of the wave vectors of the light (k ,  and k,) 
and acoustic (q) waves and the X, Y, Z coordinate axes (see Fig. 1 ) for the 
case of small Bragg angles ( a )  and large Bragg angles ( b ) .  Two versions 
are shown : A  (without braces) and B (in braces); B is obtained from A by 
the cyclic substitution: x-z -y -x .  The text also considers version C 
obtained from B by the substitution: z - x ,  x- - z. 

A, = A, (z) are slowly varying functions of z, and if we as- 
sume that 

.(q=qx, 0, q, ), then for the Bragg diffraction conditions (7 )  
Eq. (32) together with Eq. (33) yields the following system 
neglecting the second derivatives of Aj (z) with respect to z: 

d A *-i=-Xi2- 1 - k" I 'la (sign k i z )A , ,  
az 0 2  klZ 

which is supplemented by the corresponding Bragg coher- 
ence conditions: 

In Eqs. (35) 

where 

while e$) and a$' are the amplitudes of the strain and local 
rotation tensors. 

We note that k,  and k,, which satisfy condition (36), 
are simultaneously eigennumbers of Eq. (32) for A& = 0. 
For given values of 6 ,  and 6, we find approximately 

For the polarizations we therefore have 

The solution of system (35) will be different depending 
on the sign of the product k ,, k ,, - cos 8,  cos 6,. 

1)  cos6,>0,  cos6,>0. 
In this case we naturally use the boundary conditions 

and accounting for these boundary conditions system (35) 
yields 

'1, 
A2(z) = * d o 3 ( g )  sin x z ,  

X 

where 

Here we account for Eqs. (34) and (37) as well as (39) and 
(40) a s w e l l a s w , ~ w , w  [sincef14wlinEq. (36)];A&,,, 
is taken from Eq. ( 3 8 )  subject to ( 18) and ( 19) (the terms 
with map are discarded as small quantities). 

It is possible to find the relative power contributed to 
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the diffracted wave (the diffraction efficiency) as the light 
propagates a distance d in the acoustic beam: 

Equations (36)-(44) are applicable to both SBA as 
well as LBA with the only difference lying in the specific 
Bragg coherence conditions obtained from (36) : 

(SBA) 
ki2-kz2 (45 

2k2 sin €12=y( 1 - 7), 

(LBA) 
ki2-kzs (46) ] 2k2 cos €I2-q (1 - -) . 

q 

For SBA from (45) subject to (39) we have 

Lo A ' sin ei = - -[I - (-) (am2-nut)] , 
(SBA) ' 

2n"uA ho 
l o  A (47) 

sin 0 = - 1  2n,A + ( )  (n6-n , , ' ) ]  . 

Depending on the sign of the difference n L  - n;,, one of the 
Bragg angles 8 ,,,, may be equal to zero; then for the second 
angle 

ho 
sin 02(, ,  = - 

n A 

For LBA the simplest solution in Eq. (46) is 
cos 8, = cos 8, = 1, which corresponds to the minimum 
values of the wave vector and the acoustic frequency: 

As we shall see below (Section 4) by virtue of the smallness 
of In,, - n, 1 ( 5 10- ) Eq. (49) yields too small a fre- 
quency a (too large a wavelength A )  to satisfy condition 
(7) with reasonable sample dimensions. It does no good to 
change the direction of the incident beam by the small angle 
8, for which 

q=qrr in lco~ a,. 

We recall that here we are considering the case 
cos 8, cos 8,>0. The situation changes for the case 
cos 8, COS ez < 0. 

2) cos 8, >o, cos e,<o. 
In accordance with Fig. 2 such backscattering may oc- 

cur only for LBA. The corresponding boundary conditions 
take the form 

for which Eqs. (35) yield 

The fraction of reflected light (for z = 0)  is equal to 

ch x (d -z )  

In this situation we can consider the case cos 8, 
= - cos 8, = 1 corresponding to the maximum acoustic 

frequency 

(LBA) , 

However this yields such high hypersonic frequencies 
( =: 10'' s - ' ) that, generally speaking, condition ( 14) is vio- 
lated. The frequency a,,, may be decreased to some degree 
(by a few tenths) as a result of multiplication with U, in 
(51). 

Version B. In considering version B for which the coor- 
dinate axes in Fig. 2 are indicated in braces we easily observe 
that the corresponding equations can be obtained from the 
equations of version A by the cyclic substitution 

At ( z )  =Ao. 
ch xd 

x1202 kt ,  ' sh x (d -z )  
(50) 

Specifically in place Eqs. (42), (43 ) , (44), (47) and (49) of 
version A we have 

2 z 0  1 

In place of (49) for sin 3p, = 0 for the normal mode with 
ullX we find 

4. DISCUSSION OF RESULTS WITH APPLICATION TO a- 
FezOJ AND FeB03 

Ordinarily in characterizing the acoustooptic proper- 
ties of a material the acoustooptic Q t e n ~ o r ' ~ ~  

is used. If we define the acoustic intensity (the acoustic pow- 
er density) corresponding to the component e,, as 

the acoustoopticAcoupling constant x, Eqs. (37), (43) is 
written through M and I, as 

We evaluate x for I, = 1 W/cmZ as an example in all cases 
below (the conversion to the other power level is tgvial). 
Using the known values of the components of tensor P from 
the table we carry out quantitative estimates of the param- 
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eters fi and x which determine the diffraction efficiencies 
(44), (44') for specific cases of Fe203 and FeBO,. We focus 
solely on normal acoustical modes with velocities (30) and 
(3 1 ) for the sound. Without going into details, it is necessary 
to specify in each case the limits on their frequencies im- 
posed by conditions (7)  and (34). Without going into detail 
we note that for SBA condition (7) is stronger for version A 
and yields R / 2 ~ > d - " ~  - lo2 MHz (where d is a number 
equal to the wafer thickness in cm), while condition (34) is 
stronger for version B and yields the very high frequencies of 
R/277> 10, MHz. In the LBA case the frequencies R,, are 
evaluated from Eqs. (49) and (49'). 

Given below are results from the quantitative estimates 
off i ( inunitsof  1 0 - ' ~ k ~ - ' . s ~ )  andx (cm-' ) foranum- 
ber of specific cases. 

1) SBA, version A: k,, k211Z (approximate), p, 1 1  Y, 
p211X (approximate). 

a )  cos 3pH = 0, qllX, 1111 Y. Here we are dealing with 
diffraction by a normal acoustical mode with a phase veloc- 
ity s,,, (31 ). Here 

b) sin 3pH = 0, qllX, ulX. Here oscillations with 1111 Y 
and ullZ are mixed into two transverse modes. The mode in 
which the u J J Z  displacement predominates is preferred, 
since the acoustic Q-factor corresponding to it 
M ,,,, xz, > M,,,(xy, (54) Indeed 

52; x=0,44 (a-Fe,O,), 
13; x=0,49 (FeBO,). (55) 

Without providing the explicit forms of the equations for the 
velocities and polarizations (u, /uz ) for these modes we 
simply note that like the effective elasticity moduli 
C & (H),  C &  (H) and C y, ( H )  that define these quantities 
they become dependent on H due to magnetoelastic interac- 
tion. For hematite this is particularly true of the quantity C,, 
which grows by a factor of 1.5 (for H = 1 kOe). The mode 
mixing noted here is related specifically to this quantity. 
(The quantity C , , ( H )  drops by 25-50% for FeBO,.) 

The situation 8, = 0 in accordance with (47) may also 
occur for both these cases [since n:, - n:, > 01, for which 
we find the approximately identical quantity of 8,=;0.7" 
from (48) for both antiferromagnets. The acoustic frequen- 
cies required for this case 

depend on the mode type. In the case u=;IIZ we have 
R / ~ T  = 100 MHz for a-Fe203 and R / ~ T  = 250 MHz for 
FeBO,, while for ullX we have R/2r  = 180 MHz for a- 
Fe203 and R / ~ T  = 417 MHz for FeBO,. 

The smallness of the Bragg angle 8, in these cases will 
not hinder the experiment since the diffracted and incident 
beams are depolarized by ~ / 2 .  

2) SBA version B: k,, k211 Y (approximate), p,llX, p211Z 
(approximate). 

Since we have q(lZ, the optimum diffraction efficiency 
will be provided by sound with ullf: a normal acoustic mode 
of velocity s , , ~ ,  , given by (30). In this case the data provided 
in the table permit estimates only for FeBO,: 

Yet this still does not provide the total diffraction efficiency 
since we have Pxz,zc, = P,xz,,z5, + P[xzl(zb) , while the first 
term ( - n 2 )  is still unknown. 

Returning to Eqs. (47') we see that since 
nxx =;no > n, z n ,  holds for FeBO,, the situation sin 8, = 0 
is possible for 

This yields 8, =. + 13" and R/2a = 4.36 GHz. 
This version can be altered by transposing the X and Z 

axes (more precisely, by carrying out the substitution z-.x 
and x -. - z in all equations of version B) . Here in order to 
assure that the sound remains a normal mode [with qllX, 
1111 Y and velocity s,,, (z ) ] we can set cos 3pH = 0. The 
corresponding values of M and x are equal to 

Since n,, and n, have been transposed in Eqs. (47'), we 
now have 8, = 0, while 8, = + 13". However the acoustic 
mode velocity has changed and this now corresponds to a 
different frequency: R/277z 8 GHz. 

3) LBA, version A: k,llk2(lqllZ, p,ll Y, p211X. 
We again kave the highest diffraction efficiency for ullr. 

The values of M and x coincide with those from (55). The 
acoustic frequency given by Eqs. (49) is Omin = 0.6 and 1.3 
MHz for a = Fe,O, and FeBO,, respectively. Unfortunately 
at these frequencies condition (7)  requires entirely unrealis- 
tic sample dimensions ( d  > 10, cm ) . 

4) LBA, version B (sin 3pH = 0):  klllk211qllY, plllX, 
p2llZ. 

Using a normal acoustic mode with ullX we obtain M 
and x that coincide with (57); in this case the acoustic fre- 
quency in accordance with (49') is a,,, = 680 MHz (for 
FeBO,). The required dimensions of the sample to satisfy 
Bragg conditions (7)  are d > cm. 

Quantitative estimates of the parameter x which defines 
diffraction efficiency (44), (44') have been given only for 
individual geometrical situations, since this is permitted by 
the available experimental data. Moreover in order to avoid 
cumbersome calculations we have largely limited the analy- 
sis to the simplest normal acoustical modes (for which the 
polarization vectors lie along the coordinate axes) although 
when necessary it is easy to carry out calculations for modes 
with other polarizations. 

It is clear from these examples that if we wish to limit 
light diffraction to sound of the lowest possible frequency 
(hundreds of megahertz) the SBA case, version A should be 
selected. Here it is possible to achieve a diffraction efficiency 
of tens of percent for samples of dimensions d z  1 cm at 
acoustic power levels of the order of 1 W/cm2. However 
millimeter-sized samples (which are available in a number 
of laboratories around the country) and lower acoustic pow- 
er levels are sufficient for detecting the effect. 

Version B (both the SBA and LBA cases) requires 
somewhat higher acoustic frequencies R/277> lo3 MHz, al- 
though the diffraction efficiency (at an identical acoustic 
power level) may be noticeably larger for this case. 

It is important to point out that there are more favor- 
able geometrical situations for experimental purposes. How- 
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ever in order to estimate the magnitude of the effect for these 
situations it is necessary to know the other components of 
the tensor &f;p in addition to those given in the Appendix. It 
is therefore extremely important to carry out magnetooptic 
measurements prior to implementing experiments on anti- 
ferromagnetic light diffraction by sound. Ideally it would be 
desirable to measure all components in ( 17) and ( 18 ). This 
is particularly true of iron borate which is transparent in the 
visible range. 

We note in conclusion that in antiferromagnets (as in 
ferromagnets) l 2  the acoustical waves whose diffraction was 
examined above are in fact coupled magnetoelastic waves 
and under certain conditions can be excited by an isolated 
uniform magnetic field of the same frequency. 

The values of constants used in the paper for quantita- 
tive estimates. Room temperature range (the experimental 
spread of value is not accounted for). The data are from 
Refs. 6-9, 11, 13-18. 

Hemitite (a-Fe,03). p = 5.29 g/cm3, 
2C6, = C, ,  - C,, = 18.7.10" erg/cm3, C, = 8.5-10" 
erg/cm3, Mo = 870 G, HE = 9.2. lo6 Oe, HD = 22. lo3 Oe, 
H i  = 13.106 Oe2, B6, = B , ,  -B12 =8.106 erg/cm3, 
2B ,, = 27. lo6 erg/cm3, n, z n , , z z n ,  = 2.84; 
n, z n ,  = 2.64, n:, - n:,, = 12.10-4, C,, = - 1.3.10" 
erg/cm3. 

Iron borate (FeBO,). p = 4.28 g/cm3, 
2C6, = C, ,  - C12 = 30.10" erg/cm3, C, = 9.5.10" 
erg/cm3, M, = 560 G, HE = 2.6. 10, Oe, HD = 66. lo3 Oe, 
H i  = 1-lo6 Oe2, B,, = B l l  -B12  =5.2-lo6 erg/cm3, 
2B = 12.7. lo6 erg/cm3, nxx z n ,  =no = 2.241, 
n, z n ,  = 2.184, &tYz,/i = a = 14.10-4, n:x - n:, 
= 6.6- l op4 ,  C,, = 2.10'' erg/cm3. 
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