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A solvable model is proposed for two particles with attraction, placed in a one-dimensional ( ID) 
disordered system. Defects induce transitions between the Ninternal-quantization states whose 
levels are lower than the total energy of the pair. The mean free paths and the localization length 1, 
for N = 1 and for 1 < N< k,l are calculated. It is shown that the attraction can lead to a 
substantial increase of I , ,  up to complete delocalization at a certain value of the energy in the case 
of triplet pairing of electrons. 

1. INTRODUCTION 

The kinetic properties of a single particle (e.g., an elec- 
tron) in a 1D random medium have been studied quite well. 
For any, arbitrarily weak degree of disorder localization oc- 
curs on the scale of the mean free path 1. Of course, a 1D 
picture with neglect of the interaction of the particles with 
one another and with the thermostat is an oversimplified 
idealization, which, however, helps one to understand quali- 
tative features of the behavior of more realistic systems. As a 
source of references one may cite the review in Ref. 1. 

In the present paper we consider a very simple ID mod- 
el with harmonic attraction between two particles placed in 
weak random potential. The justification for such a system is 
its solvability in certain ranges of the pair energy. An exciton 
in a quasi-one-dimensional (Q ID) material can serve as an 
example of such an object. We note also that in an investiga- 
tion of the electron-electron interaction in a 1D conductor 
Berezinskii and Gor'kov2 identified the repulsion (attrac- 
tion) of two electrons jointly occupying the same localized 
state as the principal contribution. At the same time, the 
possibility of 1D delocalization due to many-particle inter- 
action is well k n ~ w n . ~ . ~  

It would appear that two-particle attraction, leading to 
the formation of a bound pair, could enhance the localiza- 
tion induced by the disorder. However, here, in an analysis 
of the exact two-particle formulation, we have obtained 
what is in some sense a contrary result. Since the internal 
energy of the pair is quantized and, moreover, should not 
exceed the total energy, the random potential induces transi- 
tions between the N lowest levels. The calculation of the 
localization length I ,  can be completed in two regions-for 
N = 1 and for 1 4 N g  k,l. It is found that both enhancement 
of the localization (near the ground-state threshold) and 
substantial weakening of the localization are possible. More- 
over, for triplet pairing a delocalized state appears at a cer- 
tain energy value in the region in which N = 1. 

2. DESCRIPTION OFTHE MODEL 

The equation for two identical particles in the 1D case 
has the form 

off. We shall assess the degree of localization from the expo- 
nential decay of the transmission coefficient T(L) for pas- 
sage through a disordered segment of length L -. ao . In these 
conditions the conductivity as determined by the formula of 
Landauer5 is proportional to T(L).  Let the random poten- 
tial U(x, ) be nonzero for Ix, I < L /2: 

Introduction of a lattice is not essential, since we let a - 0 and 
aU,-0 but in such a way that the mean free path remains 
finite: 

corresponding to the 1D model without interaction. 
We take the attraction between the particles in the very 

simple form 

In the absence of the random potential we can choose the 
following system of separating variables for Eq. ( 1 ) : 

The quantity 6 defined by the relation (5)  specifies the 
width of the classically allowed band 

l ~ l < E  (6)  

for all energy values. The exact solution of Eq. ( 1) for 
U(x, ) = 0 is 

Y =z on (y) [A. exp(iknx) +B. exp(-ik.x) Ilk,,"', (7)  
n 

where u, ( y )  are the normalized eigenfunctions of a linear 
oscillator. Traveling waves correspond to real longitudinal 
wave vectors 

kn= { 2 m [ 2 ~ - u  ('/,+ n) ] 1'". (8 )  

If we now include a random potential that is weak in com- 
parison with the interaction, such that the mean free path 
exceeds the width of the allowed band, 

The energy of the pair is denoted by 2~ to facilitate compari- 
ZBE, (9)  

son with the same system but with the interaction switched then the solution keeps the same form (7) ,  except that A,  
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and B, become functions of x that vary on the scale of I. The 
quasiclassical condition 

implies slow variation of A, and B, superposed on the rapid 
variation of the exponential factors. In addition, the quasi- 
classical condition ( 10) makes it possible to neglect the rap- 
idly damping terms with imaginary k, in the sum (7).  

It must be said that we are considering the region 

The opposite case 2.5 < w/2, when strong localization arises 
at improbable fluctuations of the random potential, is out- 
side the scope of this article. We note also that, according to 
the condition ( lo), we exclude from consideration the nar- 
row energy intervals 

in which quasiclassical behavior is violated because of the 
transformation of the regular propagating mode into a 
damped mode. 

3. SCATTERING BY A DISORDERED REGION 

The model we have formulated ( 1 )-( 11 ) permits us to 
apply our approach6-' to multichannel localization. It con- 
sists in relating the amplitudes to the left of the disordered 
region (A f;,B f;) and those to the right (A f , B  f )  by means of 
a t matrix that depends on the realization of the potential, 
and then writing and, if possible, solving the Fykker-Planck 
equation for its distribution function W(L,t). A similar 
method was applied in Refs. 9 and 10. Without dwelling on 
the details, we write down the t matrix7 

Here, u, r, and ii are a unitary, a diagonal real, and a unitary 
matrix, respectively. The relation ( 12) corresponds to the 
orthogonal ensemble that arises in the presence of time-re- 
versa1 symmetry. 

The derivation of the Fokker-Planck equation for the 
function W(L, u, r)  starts from the calculation of the ele- 
mentary t matrix that describes the scattering by one vanish- 
ingly weak defect 

generated in Eq. ( 1) by the jth term of the sum (2) .  The 
corresponding increments AA,, AB, have, to first order in 
the parameter a U, - 0, the form 

The forward-scattering amplitude D,,, and backward-scat- 
tering amplitude y,,, are determined by the Born approxi- 
mation: 

vnr (y) exp (ik,,x) 
x ~i (2, Y [' kn, c,, I ,  

Since the expressions ( 15) and ( 16) differ only in the sign in 
the combination k, k,. , henceforth we often give only one 
of the relations-for 0 , .  or for y,,. . 

The integral ( 16) is expressed in terms of a Laguerre 
polynomial: 

Thus, the function 4 ( z )  introduced here is a normalized ei- 
genfunction of the following Schrodinger equation: 

d" (n-n') z-i/L 

zZ 

Now, when we have determined the scattering by a de- 
fect, we must turn our attention to the symmetry of the wave 
function Y (x,,x2) for two identical particles. The relation 
( 17) forbids transitions between states of different parity. 
Therefore, the sum (7)  contains terms that are either only 
even or only odd in n. We shall discuss in more detail the first 
possibility-a symmetric Y (xl,x2), corresponding, e.g., to a 
singlet pair of electrons. The analogous treatment of triplet 
pairing, when Y(x,,x2) is antisymmetric, gives rise to no 
difficulties. 

The relations ( 14) permit us to determine the respec- 
tive mean free paths I, and lJ for backward scattering 

and for forward scattering 

just as was done by the author in Ref. 6. [For an antisymme- 
tric Y (xl,x2) in Eqs. (21 ) and (22) and below one must 
replace 2n by 2n + 1.1 The number of terms in the sums 
(21) and (22) 

coincides with the number of channels that are open for the 
given energy. 
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4. MEAN FREE PATHSI, ANDI, AND LOCALIZATION LENGTH 
I, FOR N= 1 

The single-channel situation corresponds to the range 
of energies 

for which the pair moves as a rigid whole. In other words, the 
conditions ( 10) and ( 2 4 )  imply that scattering by weak de- 
fects is not capable of exciting the second level of the oscilla- 
tor. The length I ,  for such a 1D system coincides with I,. 
Calculating the scattering amplitudes y,, and P,, we find, 
for N = 1 ,  that 

As can be seen from these expressions, on the left-hand edge 
of the region ( 2 4 ) ,  near the threshold of the ground state of 
the oscillator, the localization is enhanced. On the other 
hand, on the right-hand edge of the interval ( 2 4 )  the quanti- 
ty I ,  in a system with attraction is found to be numerically 
much greater than in the 1D model without interaction: 

Moreover, the forward scattering, which does not contain 
the exponential factor, is increased. The weakening of the 
localization and of the backward scattering arises because 
the Gaussian function of the ground state of the oscillating 
pair smooths the random potential. 

For comparison, we give the form of the relations ( 2 3 ) -  
( 2 6 )  that corresponds to an antisymmetric \I/ ( x , , ~ , ) :  

Now I ,  takes its maximum value not on the right edge of the 
interval (24a) ,  where the exponential factor is maximum, 
but at the point 2 ~  = 7 d 4 ,  where the Laguerre polynomial 
vanishes. Thus, for this value of the energy the pair is deloca- 
lized: 

because of the absence of backward scattering. At the same 
time, however, If remains finite. 

Since the mean free paths have turned out, generally 
speaking, to be of different scales, the question arises as to 
whether, instead of the condition ( 9 ) ,  we can confine our- 
selves to the Born approximation for just the backward scat- 
tering: 

since it is this scattering which plays the main role in the 
localization. In other words, is it not possible to regard only 
the nondiagonal elements ( 16) of the matrix ( 1 4 )  as small? 
Then the expression ( 1 5 )  loses its applicability and the 
Fokker-Planck equation for W(L,u, , .  , T ,  ) is transformed 
into an integral equation in the variables u,,, but remains a 
differential equation in r, . Although it seems to us that it is 
possible to carry out calculations of this kind, we shall re- 
main in the framework of the restriction ( 9 ) .  

5. MEAN FREE PATHSI, ANDI, FOR N& 1 

As was shown above, the single-channel situation ( 2 4 )  
is solvable, since it reduces to the 1D case. We now turn to 
another solvable region, in which the number of open chan- 
nels is large: 

Of course, the condition ( 9 )  imposes an upper bound on N: 

The parameter ( 2 8 )  suggests that in Eq. ( 2 0 )  for the scatter- 
ing amplitude ( 17) one can apply the quasiclassical approxi- 
mation 

z 

The condition for the existence of a quasiclassical region 
between the turning points 

has the form 

Therefore, in Eqs. ( 3  1 ) - ( 3 3 )  we must neglect the term 1/4 
as an excess of accuracy. The coefficient in the function ( 3 0 )  
is determined by the normalization integral of q5',,. ( 2 )  over 
the classically accessible region. 

Expression the scattering amplitudes y,,, and P,,, in 
terms of the quasiclassical solution ( 3 0 )  makes it possible to 
see that the sums ( 2  1 and ( 2 2 )  in this case run over those n 
and n' for which the square root ( 3 1 )  is real. Bearing this 
comment in mind and going over from the sums ( 2 1 )  and 
( 2 2 )  to integrals, we obtain 

where the variables 
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have been used. In the second integral (35) we have kept the 
small terms in order to make the cutoff of the logarithmic 
integration obvious. If we change to polar coordinates r, 8, 
the difference between ( 34) and (35 ) is reduced to a change 
of the limits of the integration over the angle: 

For N% 1 the results (37) are carried over without changes 
to the case of an antisymmetric Y ( x , , ~ , ) .  The parameter 
In N% 1 that has appeared in the expression (37b) implies 
that the forward scattering is much stronger than the back- 
ward scattering. This circumstance permits us to calculate 
1,. 

6. LOCALIZATION LENGTH I, FOR N$1 

In a multichannel system I ,  can be determined as fol- 
low~.~ , '  We rewrite the relation ( 12), having decoupled it 
into N two-component equalities: 

The matrices i? and u effect a transformation (at the en- 
trance and exit) from channels that are orthogonal in the 
absence of defects to a new system of channels that are nor- 
mal for the given realization of the random potential. The 
parameters r, and the associated transmission coefficients 

determine the localization length I ,  for the nth normal chan- 
nel: 

If the r, are relabeled in ascending order 

the length I, corresponding to the least-localized mode will 
be given by the relation 

It should be noted that the asymptotic behavior of (38) and 
(39) is reached at 

i.e., when the transmission coefficients in different channels 
differ exponentially: 

As a result, the expression (39) is simplified? 

The evolution of the matrix u also ceases to depend on the 
parameters r, and is determined by the following Langevin 
equation:" 

, d  
la- unnr =- 

d L  
~ n i i p ~ n '  

- 

The step function 8 (n)  has the value O(0) = 1/2. The rela- 
tions (41 ) and (42) with the random scattering amplitudes 
( 15)-( 17) completely determine the localization length. 

To construct the Fokker-Planck equation for the distri- 
bution function W(L, u) it is necessary to know the follow- 
ing correlators: 

where we have used the notation (36). The product of two S 
symbols arises upon averaging over the rapid oscillations of 
( 17), on account of the exponential in the longitudinal di- 
rection and on account of the quasiclassical function (30) in 
the transverse direction. The first term in the right-hand side 
of (43) corresponds to the scattering in the previous chan- 
nel, and this gives an unimportant phase shift. On the con- 
trary, the second term in (43) is very important, since it 
contains a logarithmically divergent contribution from the 
forward scattering into nearby channels. On the other hand, 
the correlator (44) does not have divergences. Therefore, it 
is necessary to take it into account only in Eq. (41) for I,, 
wherep is absent. In other words, the main contribution (in 
the parameter In N )  1) to the mixing over the channels is 
made by forward scattering. Using the stochastic equation 
(42) in this way, we obtain the Fokker-Planck equation for 
the distribution function W(L, u,, ,u,*,. 1: 

On the right, the only terms that remain are those which, 
after the summation over n', contain the factor In N. In the 
limit L - w , when W becomes a stationary distribution 
function, the left-hand side of (45) can be discarded. If we 
now multiply the resulting equation by lu,, I2)u,, j 2  and inte- 
grate over all the random variables the following relation for 
the stationary correlators arises: 

+z ii' < ~ ~ o n ~ ~ ~ u o P ~ ~ 2 ~ < l ~ ~ ~  12) .  (46) 
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The normalized solution of the given equation is the con- 
stant 

Substituting thecorrelators (44) and (47) into Eq. (41) and 
replacing the summation over the even n by integration, we 
obtain the final result: 

The maximum value of I, for N) 1 is attained at the bound- 
ary of the region of applicability of (29) and is equal to 

7. CONCLUSION 

We have considered a system of two particles with in- 
teraction of the linear-oscillator type, placed in a 1D random 
potential U(x). The small parameter of the problem is the 
strength of U(x), while the interaction is taken into account 
exactly. We do not use approximations of the Hartree-Fock 
type, for which no justification can be seen here. Since the 
potential U(x) is chosen to be the same for both particles it is 
natural to regard them as identical, i.e., to investigate a sym- 
metric $(xl,x2) (bosons or a singlet state of electrons) and 
an antisymmetric $(xl,x,) (triplet pairing of electrons) sep- 
arately. The generalization to the case of distinguishable 
particles, e.g., for an exciton, does not give rise to difficulties. 
In either case, the pair energy decomposes into the quantized 
internal energy and a remainder term associated with the 
longitudinal motion. Thus, only a finite number N of inter- 

behavior the role of the interaction reduces to a smoothing of 
the random potential by the ground-state wave function. 
Therefore, weakening of the attraction gives rise to an in- 
crease of the localization length (25) to the value (27) at 
which the first excited level comes into play. Moreover, for 
an antisymmetric Y(xl,x2) the zero of the eigenfunction 
leads to a delocalized state [see (27a) 1. 

The calculation of I ,  can be brought to completion in 
the multichannel case as well (1  4N(kFl) .  Here the 
answers no longer depend on the symmetry of ( x ,  ,x,). The 
forward scattering (37b) becomes stronger (in the param- 
eter In N s  1 ) than the backward scattering (37a). This in- 
tensive mixing over the channels makes it possible to arrive 
at the result (48) for the localization length. For N) 1 the 
maximum value of I, is found to be greater by a factor of kFl 
than the localization length in a 1D system without interac- 
tion. 
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