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The existence of metastable states of a plane-parallel domain structure with a varying number of 
domain walls Nin uniaxial ferromagnetic plates is demonstrated theoretically and 
experimentally. Under quasistatic remagnetization or demagnetization the sample is in a 
metastable state with N < No, where No is the ground state. The energy barriers associated with 
nucleation inhibit the N -  N + 1 processes, while the magnetostatic barriers inhibit the N- N - 1 
processes. The N- N + 1 transitions may occur under the influence of radio-frequency fields. A 
theory of domain structures with a finite Nis developed to explain the nature and properties of the 
metastable states. The theory also predicts asymmetry of the magnetization curve and the 
existence of an average magnetization for H = 0 for odd N. 

INTRODUCTION 

The domain structure in a ferromagnet arises in order to 
diminish (or completely cancel that portion of magnetosta- 
tic energy caused by the jump of the normal component of 
the magnetization vector M(x)  along the edges of the sam- 
ple. The total dipole moment of the sample may be equal to 
zero when a domain structure is present (most commonly, 
two oppositely magnetized domains). However the multi- 
pole part of the magnetostatic energy Fm remains nonzero in 
this case and is dependent on the number of domains Nin the 
sample. As N grows the energy Fm decreases although the 
magnetic inhomogeneity energy F,, associated with the do- 
main wall structure will rise. The equilibrium number of 
domains No is determined from the minimum sum of these 
two energies." 

  here fore the ground state of the domain structure for 
H = 0 is determined by satisfying the following two condi- 
tions: 

The metastable states associated with the violation of 
condition ( 1 ) are well known in actual crystals. If the sam- 
ple is magnetized to saturation and the magnetic field then 
drops to zero, the so-called residual magnetization, as a rule, 
is conserved. This is either due to the inhibited formation of 
domain walls or their inhibited displacement in actual crys- 
tals. Permanent magnets, magnetic memories, etc., operate 
in such metastable states. 

Condition (1)  can be satisfied if the specimen is ex- 
posed to alternating fields of diminishing amplitude. Such 
"shocking" of the magnetic system is conventionally used 
for demagnetization of ferromagnetic materials and it is or- 
dinarily assumed that it results in satisfaction of both condi- 
tions, (1 ) and (2).  

In the present study we demonstrate that this is not 
always valid and investigate the metastable states associated 
solely with the violation of condition (2)  while condition 
( 1 ) holds (precisely or approximately). The experiments 

carried out on FeBO, weak ferromagnet plates have demon- 
strated that there exists, in addition to the ground state of the 
domain structure corresponding to N = No, an entire series 
of metastable states with N < No. These states are resistant to 
the effect of alternating fields and transitions between them 
(transitions of the form N + N  + 1) will occur only when 
certain critical frequencies and fields are achieved. 

The present paper discusses the nature and properties of 
such metastable states and considers the linear resonance of 
the domain walls in the metastable states. 

1. EXPERIMENT 

The experiment was carried out on rectangular FeBO, 
single crystal plates of thickness ~ 5 .  l o p 3  cm with trans- 
verse dimensions of - 10 ' cm. FeBO, is a weak easy-plane 
ferromagnet (M= 9.2 Gauss).' A regular through plane- 
parallel domain structure (Fig. 1)  was generated by apply- 
ing uniform elastic stresses which produce moderate uniax- 
ial magnetic anisotropy in the easy plane. Forced 
oscillations of the domain walls relative to their equilibrium 
position were generated by a radio-frequency magnetic field 
H along the direction of magnetization of the domains; the 
equilibrium positions were observed by a magnetooptic tech- 
nique described previ~usly.~ The frequency of field H was 
tunable over a broad range, from tens of Hz to 100 MHz. 

We discovered that a specific number N of domain 
walls, dependent on the sample aspect ratio, arose in the 
sample in its initial state. (For example for the sample with 
a = 1.5 mm, b = 50 pm, c = 1 mm, which we shall hence- 
forth refer to as sample No. 1, we found Nm, = 3.) Ordi- 
nary behavior of the domain structure was observed for any 
frequency of field H less than acertain critical frequency w, 
(for sample No. 1, we found vm = wm/2.rr = 4 MHz) : The 
amplitude of the forced oscillations of the domain wall 7;1 
grew to maximum values corresponding to total remagneti- 
zation of the sample for H>H, ( H ,  is the saturation field) 
as the amplitude of the radio-frequency field H increased; 
the demagnetized state with N = Nm, domain walls was 
reestablished in the sample when the field amplitude de- 
creased. 
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I 
FIG. 1 .  Structure of the plane-parallel domains. 

If a field of frequency exceeding w ,  was applied, an 
irregular transition to a state with a large number of domains 
occurred as a certain critical field amplitude 
H ,  ( H ,  < H, ) was reached; this state was conserved after 
the field H was removed. By tuning from 4 to 28 MHz for 
sample No. 1 it was possible to obtain all values of N from 3 
to 13. A further increase in frequency (to 100 MHz and 
higher) had no effect on N. 

The basic trend associated with this effect is shown in 
Fig. 2, which shows the number of domain walls that ap- 
peared in this sample when a magnetic field was applied at a 
given frequency. The horizontal line at N = 3 from 0 to 4 
MHz indicates that no demagnetized state aside from N = 3 
can be obtained by applying and then removing a field of any 
amplitude. The horizontal segment at the N = 4 level indi- 
cates that for frequencies corresponding to this range there 
will always be an H < H, such that the system goes from the 
N = 3 state to the N = 4 state. This then proceeds up 
through the segment with N = 13 which begins at 28 MHz 
and remains unchanged for all higher frequencies we stud- 
ied. Figure 3 shows a different aspect of this effect: The mini- 
mum amplitude Hi of the rf field required to obtain the value 
of Nshown in Fig. 2 for each frequency value. It is clear that 
Hi grows with frequency while remaining below H, . 

The experiment was carried out on an entire series of 
samples with different ratios of the dimensions a,  b and c. 
Different values of N,, and No, as well as various critical 
frequencies and fields corresponded to different samples al- 

V. MHz 

FIG. 3. Minimum of field amplitudes required for the N - N  + 1 transi- 
tion. 

though the behavior of the transition from the N to the 
N + 1, etc., states shown in Figs. 2 and 3 were common to all 
samples. 

This effect therefore made it possible to establish in 
each sample a predetermined specific number of domain 
walls N from the specific set Nmin, N,,,, + 1, ..., No char- 
acteristic of each sample. This was used to learn how phys- 
ical characteristics such as the magnetic susceptibility and 
the magnetic resonance frequency of the domain walls w,  
depend on N. The static magnetic susceptibility remained 
nearly independent of N, while the dependence of the 
squared frequency v, = wa/2n- on N is given in Fig. 4. 

We can conclude from all these experimental results 
that an entire set (up to 10 or more) of metastable states of 
the domain structure with a varying number of domain walls 
corresponds to the demagnetized state in the test samples. 
These metastable states corresponding to the relative energy 
minima are separated by rather high potential barriers, 
which permits observations of magnetic resonance in each 
such state. 

In the following sections we discuss the physical nature 
of these metastable states. 

FIG. 2. The minimum number of domain walls Nplotted as a function of FIG. 4. The squared resonant frequency of the domain walls v, plotted as 
frequency v. a function of N. 
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FIG. 5. Domain structure periodic i n  x 

2. EXPANSION AND COMPRESSION OFTHE DOMAIN 
STRUCTURE PERIOD UPON REMAGNETIZATION 

The idea of central concern to us among results of the 
numerous theoretical studies devoted to plane-parallel do- 
main structures is the concept independently confirmed by 
Kooy and Enz3 and Ignatchenko, Degtyarev and Zak- 
h a r ~ v . ~  These studies demonstrated that a magnetic field H 
not only alters the ratio of the domain volumes magnetized 
along and across H but also alters the period of the domain 
structure 20. As H grows the period will also grow and as H 
decreases, the period decreases. We recall in this section the 
primary results of these studies and then develop these ideas 
further. 

For unequal neighboring domains the magnetostatic 
energy depends on both the domain structure period 2 0  and 
the ratio q = d2/D (see Fig. 5). In this case the term asso- 
ciated with the dipole part of the energy of the entire sample 
(and hence dependent solely on q) can always be distin- 
guished; however the remaining multipole part of the energy 
F, depends on both D and on q and cannot be represented as 
a sum of terms, each of which depends on only one of these 
variables. 

The total energy density accounting for the domain wall 
energy and the magnetic field energy takes the form 

These equations are coupled equations by virtue of the inter- 
action term Fm (D,q) and changes in the magnetic field will 
not only cause a change in q but also in D, i.e., will produce 
an expansion or compression effect of the domain structure 
period. Ordinarily only numerical techniques can be used to 
analyze this effect given the mathematical complexity of the 
term Fm (D,q). We note that this term completely deter- 
mines the structure of the first equation in Eqs. (4),  i.e., the 
dependence of D on q. In the second equation in (4),  which 
describes the dependence of q on H (the magnetization 
curve), the term F, (D,q) ordinarily yields only minor de- 
viations from the linear law corresponding to neglect of this 
term: 

Both studies3x4 examined a model of a sample infinite in 
x, which made it possible to carry out a Fourier expansion of 
the magnetostatic potential and magnetization in this coor- 
dinate. The sample in Ref. 3 was assumed to be unbounded 
along they axis as well. A more general case was examined in 
Ref. 4 which accounted for the finite size of the sample in this 
direction. In this case the expression for the multipole ener- 
gy density takes the form 

wherep2 = k + (m/D)2 .  This expression describes a rath- 
er broad class of physical situations. For c g b  it can be ap- 
plied to a plate with an easy axis perpendicular to the sur- 
face, while for c s  b it can be applied to a plate with an easy 
axis in its plane. The exponential in the numerator of ( 6 )  can 
be neglected for D g r c  although even in this case the integral 
is not taken in general form. We consider certain limiting 
cases. 

For the case D&c & b (plate with the easy axis perpen- 
dicular to the plane) and passing to the limit b-+ in (6)  
(after substitution of the integration variable u = bk/2) or 
as is done in Ref. 3, considering such a limiting configuration 
from the outset, we obtain 

m 

F(D, q; H)='~~N~M2(1-q)2+Fm(D7 q)-MH(l-q)+y'D' In this case we obtain for the domain width the following 
dependence of D on q from the first equation in (4): 

, A  \ A ,  

where N, is the demagnetization factor of the sample in the For H = 0 we have q = 1 and this reduces to the familiar 
direction of the applied field H and y is the surface energy expression for the equilibrium domain width in a plate with 
density of the domain walls. the easy axis perpendicular to the surface, first derived by 

The equilibrium values of q and D for the given Hare  ~ i t t e l . ~  
determined by two equations: For a thin film with the easy axis lying in the plane 

( b & D g c )  we obtain from (6)  

- 
8Wb 1-cos(nnq) vD 

F m = - c  n2 ln-, nb (9 )  
n2c "-1 
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where v is a certain constant. In this case we obtain from the 
first equation in (4)  

The dependence of D on both the domain wall energy y and 
other parameters is substantially different from Eq. (8).  For 
q = 1 Eq. ( 10) reduces to the expression for an equilibrium 
domain width in a thin film, first proposed in the study by 
Ignatchenko and Z a k h a r ~ v . ~  

The experimental case of interest to us here does not 
satisfy either of these limiting cases. The easy axis lies in the 
plane of the plate, but the ratio D / b  lies in the intermediate 
range of parameters ( 1 5 D /b  5 10). A numerical calcula- 
tion was carried out for this case, which demonstrated that 
(6)  can be roughly approximated by the expression 

From the equation of system (4)  we have 

Thus although in differenisituations the dependence of 
D on q (and, consequently, on H a s  well) is determined by 
different expressions, from the qualitative viewpoint it has 
the same universal character first identified in Refs. 3, 4: 
Expansion of the domain structure period is observed as the 
field increases and compression of this period is observed as 
the field decreases. The same difficulty that occurs for an 
infinite expanding Universe occurs here for a sample that is 
infinite along the x axis: The velocities of the domain walls 
grow without limit at large distances from the coordinate 
origin. 

Large changes in D correspond to a change in the num- 
ber of domain walls N in the sample for a sample bounded 
along x. If there is nothing to inhibit the formation or de- 
struction of the domain walls, remagnetization of the bound- 
ed crystal will appear as follows. At values of H exceeding 
the saturation field H, we have q = 0 and N = 0. A reduc- 
tion in H to values below H, will produce one (or two) do- 
main walls and a nonzero q < 1. A further reduction in H will 
produce new domain walls whose number reaches the maxi- 
mum value N, for H = 0; here q = 1. As the negative value of 
H grows, the number of domain walls N will again drop to 
N = 0. However in reality the creation (or destruction) of 
each domain wall is associated with overcoming the poten- 
tial barrier. 

3. THE DOMAIN STRUCTURE WITH A FINITE N 

We consider a sample that is finite in all three directions 
with plane-parallel domain walls at random points with co- 
ordinates x,, ..., x,; here x, and x,, , denote the coordi- 
nates of the left and right ends of the sample. For definiteness 
we assume positive magnetization of the far left domain. 

In calculating the magnetostatic energy we use the gen- 

, eral expression obtained in Ref. 4 for the case of magnetiza- 

tion M(x,y) having any configuration in the xy plane and 
uniform in z in section c: 

where X' = kl + k : ,  

For this structure we derived an exact analytic expres- 
sion for the magnetostatic energy as "lattice" sums:' 

n-i 

n m-i 

where (n>m) 

z2 b 1 
f ( x )  = - 2 arsh - + - (c2-x2) 

x 2 

b bx x 
x arsh +-arsh- 

( z2+c2)  % 2 b 

c 4  x x X -- arsh - + - (c2- b2)  arsh 
2b c 2b (cz+ b2)  a 

C" -- b bx  
arsh - + cx arctg 

2 c c (x2+b2+c2) 'Ir ' (15) 

Therefore in the lattice representation the energy den- 
sity (14) breaks into sums of the interaction potentials 
between the nth and mth domain walls: 

between a domain wall and the left and right edges of the 
sample, respectively o 

and the interaction potential between the sample edges, 
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The signs of these potentials are such that the interac- 
tian between nearest neighbors is attractive, while the inter- 
action with the domain wall of the second coordination 
"sphere" is repulsive, the interaction with the third wall is 
again attractive, etc. Therefore if an even number of domain 
walls (or an odd number of domains) is placed between two 
domain walls, they will attract, while if an odd number of 
domain walls is used they will repel; here the edges of the 
sample are formally assumed to be domain walls. Hence- 
forth we will also require the value of the magnetostatic 
fields in the domains. For the present plane-parallel domains 
with random positions of the domain walls we have 

where 

Formally the situation is such that each domain wall gener- 
ates an oscillating magnetic field obeying an arc tangent law 
with the center at the wall position; the edges of this sample 
also produce fields, although these fields are of half the mag- 
nitude. 

The problem of equilibrium domain structure is posed 
substantially differently in a sample with a finite number of 
domain walls compared to the model with a domain struc- 
ture that is periodic in x. For a periodic structure D = 0 
corresponds to the magnetostatic energy minimum, and a 
finite value of D is obtained only when the surface energy of 
the domain walls is taken into account. In finite samples 
there exists a domain wall configuration for each N corre- 
sponding to the minimum magnetostatic energy indepen- 
dent of the boundary energy. Hence 

1 )  For each fixed value of N there is a domain wall 
configuration (values of the coordinates x,, ..., x, ) that 
minimizes the magnetostatic energy ( 14) and represents a 
solution of a system of N equations 

2) in comparing the sums of the magnetostatic and 
boundary energies of each minimizing configuration it is 

necessary to find the configuration corresponding to the 
ground state; 

3 )  by examining the behavior of the system in a magnet- 
ic field (or under other actions) it is necessary to determine 
the ranges within which a change in the domain wall config- 
uration will occur without changing the number of walls and 
where (and how) the phase transitions will occur when the 
number of domain walls N changes. 

In order to simplify the mathematical expressions the 
analysis below will be carried out for the limiting case of a 
sample that is unbounded along y. Since the finiteness along 
x is conserved in this case, all qualitative features of systems 
attributable to the finiteness of N are also preserved. 

Expression ( 14) in this case remains unchanged while 
the function f (x)  is substantially simplified: 

f (x) ='/&x2 1n(1+cZ/xZ) -'lpcZ In( I+xZ/cZ)+cx arctg(x/c). 

(18) 

Expression ( 16) for the z-projection of the magnetosta- 
tic field as a function of x and z takes the form 

xO-2 xO-x 
X, (x, z) =2M [arctg - + arctg - 

c/2+z c/2-z 

2,-2 + arctg - 
n-1 

c/2-z 

XN-,-x + arctg ---)I. 
c/2-2 

It is assumed in all these expressions that the coordinate 
origin is at the center of the sample [specifically, 
x, = - a/2, x,, , = a/2]. 

We consider the equilibrium domain structure, the 
magnetization curve and the magnetostatic field structure 
for different values of N. 

a), N = 1. Figure 6 gives the magnetostatic field energy 
Fplotted as a function of the position of the domain wall x ,  
together with the dependence of the magnetostatic field Hz 
on x when the equilibrium position of the domain wall is 
x ,  = 0. It is clear that the field Hz may reach its peak value 
both at the sample edge and in the center of the domain, 
depending on the ratio of dimensions of the sample. 

b )  N = 2. In principle this is a two-particle problem and 
the state of the system is described by the two-dimensional 
energy surface F = F(x,, x,) shown in Fig. 7. However from 
symmetry considerations we have x, = - x,, both for 
H = 0 and for nonzero values of H. Hence the problem re- 
duces to a one-particle problem and is described solely by the 
OA cross section of the energy surface F ( x , ,  x,) shown in 
Fig. 8, a (here we use the rotation D = x, = - x, ). Figure 8, 
b, shows the magnetization curve for this case. 

The most immediately evident characteristic of Fig. 8 is 
that the minimizing domain wall configuration does not cor- 
respond to the demagnetized state of the sample. The differ- 
ence between Do and 0 . 2 5 ~  when m = 0 holds is slight, but is 
fundamental. This effect arises because magnetostatic ener- 
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a 

FIG. 8. Energy plotted as a function of D  = x z  = - x ,  ( a )  and the asym- 
metrical magnetization curves m = ( M ,  ) / M  (b)  for N = 2 for a  = c, 
b =  oo. 

-0.01 

FIG. 6 .  The energy at domain wall position x ,  and the magnetostatic field 
(for z = 0, x ,  = 0 )  plotted as a function of the coordinate x for N = 1 for 
different dimensional ratios of the sample: c/a = 0.1 (a);  c /a  = 10 ( b ) ;  
b =  m .  

gy minimization corresponds to minimization of the sum of 
the dipole and multipole energy parts, and this sum is not 
always minimized when the condition for the vanishing of 
the magnetic moment of the system holds exactly. The sec- 
ond unusual effect-the asymmetry of the remagnetization 
curve-is due to the difference of the magnetization paths: 
In a positive field the domain walls converge and are annihi- 
lated, while in a negative field they are repelled to the edges 
of the sample. Both of these effects grow with a/c. 

In the planes x = Ifl Do corresponding to the equilibri- 

um positions of the domain walls only the magnetostatic 
field values averaged over the sample thickness z vanishes. 
Figure 9 illustrates the local fields in these planes and shows 
Hz ( 2 )  along the domain wall in precise equilibrium ( b )  and 
with a wall slightly shifted to one ( a )  and the other ( c )  side 
of equilibrium. It is clear that in equilibrium there are a num- 
ber of alternating sections where the field may be nonzero 
and have different signs. This means that the domain wall is 
under bending forces. The plane domain wall model corre- 
sponds to a rather high surface tension energy of the domain 
wall compared to the magnetostatic energy; the domain wall 
is located at the site where the magnetic field pressure is 
equalized over its different sections. When the excess surface 
tension energy condition is violated, the domain wall will be 
bent along z in accordance with the magnetic field picture 
shown in Fig. 9b. 

C )  N = 3. The three-particle problem reduces to a one- 
particle problem based on symmetry considerations only for 

FIG. 7. F(x , ,  x , ) / M 2  energy relief for N = 2 for a  = c, b = m .  
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FIG. 9. Field distribution in the plane of the domain wall for N = 2 for the 
equilibrium position of the domain walls D  /a = 0.2249 (b) and for those 
shifted from equilibrium: D / a  = 0.2258 ( a ) ,  D / a  = 0.25 ( c ) ,  for a = c, 
b =  m .  
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FIG. 10. Energy plotted as a function of D = x, = - x, for x, = 0 ( a )  
and the magnetostatic field for z = 0 as a function of the coordinate x (b)  
f o r N = 3 f o r a = c , b =  m. 

H = 0, when x ,  = 0, x, = - x ,  = D, application of a mag- 
netic field breaks the symmetry. The dependence of F on D 
for H = 0 is shown in Fig. 10a. This case is interesting be- 
cause the zero-value condition of the total magnetic mo- 
ments of the sample holds for any D and hence the minimum 
on the F(D)  curve is due entirely to the multipole part of the 
magnetostatic energy. 

Figure lob, shows the distribution of the z-component 
of the magnetostatic field in the z = 0 plane. The highest 
field value is achieved for a>c along the edges of the sample, 
while the highest value is achieved within the domains for 
a > c. 

d )  N = 4. The energy relief of the problem was also 
investigated for N = 4 in Ref. 7; this problem reduces to a 
two-particle problem both for H = 0 and when there is a 
nonvanishing external magnetic field, for x ,  = -x , ,  
x,  = - x,. As in the case N = 2 the situation is character- 
ized by an asymmetrical hysteresis loop and moderate resid- 
ual magnetization in an equilibrium demagnetized state, al- 
though these effects are much less clearly expressed than for 
N = 2 .  

Based on these examples we can draw certain general 
conclusions regarding systems with a finite number of plane- 
parallel domain walls. The domain structure configuration 
for H = 0 is such that the widths of the domains along the 
edges x = + a/2 of the sample are approximately half the 
widths of the other domains. This rule, which holds for both 
even and odd values of N, will be more accurately satisfied 
the larger the values of N. The most fundamental difference 
between such systems with a finite Nand a periodic domain 
structure is the resulting magnetization for H,, and the asym- 
metry of the hysteresis loop for states with an even value of 
N. However these effects are significant only for small N and 
decrease as a function of N. 

Figure 11 shows the magnetostatic energy plotted as a 
function of the number of domains for equilibrium configu- 
rations with different a/c ratios (circles). Here the solid 
curves represent the F(N)  relation for the same samples cal- 
culated by the Kittel formula5 obtained by assuming a do- 
main structure periodic in x with a domain width D = a/N 

FIG. 1 1 .  Energy plotted against N for samples with a finite number of 
domains (the circles connected by dashed lines) and for the periodic do- 
main structure model with N = a/D (solid lines) and for different c/a: 
1 4 . 5 ;  2-1; 3-5. 

[Eq. (7)  for q = 1 1. It is clear that the discrepancy between 
the exact and approximate values of Fbecomes insignificant 
for N >  3-4 and the equations from Section 2 can be used in 
samples that are finite in x.  Here, however, the potential 
barriers between states with different N must be taken into 
account in the finite samples. 

4. BARRIERS BETWEEN STATES WITH DIFFERENT NAND 
THE REMAGNETIZATION PROCESS 

We approximate the actual domain structure of a finite 
sample by using expressions for a domain structure that is 
periodic in x.  In this case the series in Eq. (19) can be 
summed exactly and the magnetostatic field H,(x,z) as 
b - a, takes the form 

+arctg [th($ ($ + z ) ) c t g ( ~ ( q  4 .  +:))I 
+arctg [th(% ($ - z))ctg($ (q -%))I 
+arc, [th(-& (+ - z))ctg($ (q + g))]}. 

(20) 

We then have for the magnetostatic fields at the domain cen- 
ter 

XC 
H .+=-~~M+~BM arctg( th- t g z )  

40 4 '  
nc nq 

~ , - = 4 n ~ - 1 6 ~  arctg (th - ctg - ). 
4D 4 

The indices + correspond to the fields in positively and 
negatively magnetized domains. 

When an external magnetic field is applied, the magne- 
tostatic fields change due to the change in q and D. As the 
positive values H rise, the magnetostatic fields in the posi- 
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In an ideal crystal H ,  is determined by the sum of the 
magnetic anisotropy field and the effective magnetic field 
related to the formation of the new domain wall; it depends 
on the shape and critical dimensions of the nucleus. In an 
actual crystal H, is largely determined by defects and inho- 
mogeneities. Hence we will treat H,, as a parameter of the 
theory under development, treating H ,  as a certain constant 
of the sample which in a first approximation is independent 
of N; the latter is valid for all nucleation models if the dimen- 
sions of the seed are much less than the domain dimensions. 

The horizontal dot and dash line in Fig. 12 corresponds 
to H ,  = 0.06Hs, provided as an example. We consider how 
remagnetization occurs in this situation. As the external 
magnetic field decreases from large positive values the first 
domain wall will not form when H = H, .  The field will de- 

FIG. 12. The total magnetic field at the domain center h = lH + H,, I/H, 
( H ,  = 47rM) plotted as a function of the external static field H  for differ- crease even further so that the curve corresponding to N = 0 
ent N  ( c / a  = 2/3, b = m ) .  The circles connected by the dashed line corre- intersects the internal field value H ,  and the first nucleus is 
spond to the N ( H )  relation determined by Eq. ( 2  1 ). The arrows indicate formed. Fields corresponding to transitions from the state 
the phase trajectory of the change in N ( H )  with decreasing magnetic field N = 1 to the state N = 2 and then to the state N = 3 also 
(h , ,  = H , , / H , ) .  

shift, although these transitions occur because the transition 
points in this example lie above H = H,  . However, the tran- 

tively-oriented domains, whose width grows, decay, while in 
the negatively-magnetized domains these fields grow. How- 
ever, the total magnetic field H + H ,' decreases with in- 
creasing H in each domain and then vanishes at H = H ,  . The 
dependence of the total field on H calculated from Eqs. 
(20a) is shown in Fig. 12 for a number of values N = a/D. 
The internal fields in the domains would change in the same 
manner if N were conserved while q changed. 

However, the change in the period of the domain struc- 
t ~ r e ~ . ~  causes the change in q to be accompanied by a change 
in the number of domain walls in the sample. Corresponding 
Eqs. (8)  and ( 12) can easily be rewritten for finite samples. 
For domains perpendicular to the plate, 

N-NOfI" (9) lfl'" (I), (21) 

for domains in the plane of the plate corresponding to our 
experimental situation, 

where No is the equilibrium value of N for q = 1 defined for 
situations (21 ) and (22) by different expressions. 

Figure 12 provides a sample curve corresponding to Eq. 
(21 ) for No = 5 (the circles represent its intersection with 
the curves of the internal field as a function of H for 
N = const). With no barrier between states with different N 
an irregular change in N would occur upon remagnetization 
of the finite sample in fields with values between the corre- 
sponding points (these values can be estimated more exactly 
by comparing the energies of the Nth  and ( N  + 1 ) t h  states). 
Here the same critical fields at which N changes will corre- 
spond to a rise and decay in the magnetic field. 

However each new domain, i.e., one domain (if the do- 
main was formed along the x = f a/2 edge of the sample) 
or two domains immediately (if the new domain was formed 
within the old domain) of the domain walls will form only if 
thez-component of the internal field is opposite the magneti- 
zation and exceeds the nucleation field H ,  : 

sition from the state N = 3 to the state N = 4 is no longer 
possible since it requires H < H ,  . Hence N,n, = 3 domains 
will remain in the sample up through H = 0, i.e., the system 
will be in a metastable state. 

Three domains will also be preserved as the field goes 
from zero to the point of intersection of the curve N = 3 with 
curve (2 1 ) . This would then be followed by a reduction in 
the number of domains in accordance with Eq. (21), since 
the energy barriers associated with nucleation examined 
above are one-way barriers and do not inhibit the N- N - 1 
transitions. However these transitions will be inhibited by 
purely magnetostatic barriers (Fig. 10, a ) .  Indeed, adding 
the external field interaction energy to the magnetostatic en- 
ergy (14) 

and solving Eq. (17) we obtain the critical values of the 
external fields H which are independent of the surface ener- 
gy density of the domain walls y at which the "excess" do- 
main walls are driven to the edges of the sample (or the two 
walls forming the "excess" domain collapse). 

We can show that these quantities exceed the magnetic 
field values for which the energies of the Nth and ( N  - 1 ) t h  

states given in Fig. 12 become equal. Therefore the 
N- N - 1 transition at the point where the energies coincide 
will not occur with a growing magnetic field: the field must 
grow further to achieve critical values. 

Therefore for H = 0 there may exist, in addition to the 
equilibrium state N = No, an entire series of metastable 
states: 

No-I ,  No-2, . . . , Nmin. 

However, like No all these states remain inaccessible 
when quasistatic remagnetization occurs: For H = 0 the sys- 
tem will always be in the state N = N,, which is given by 
condition (23). [We have 0.5 Oe 5 H ,  5 1 Oe for sample 
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No. 1 from (23) and (16) ifweassume that condition (23) is 
satisfied at the domain center for nucleation of the new do- 
main. ] 

Such a situation can be modeled by adding a certain 
periodic potential to total energy (3); for example, a simple 
potential of the type 

Indeed minimizing the total energy F (N)  with respect to N 
we obtain for this model an entire series of metastable states 
between N = Nmin and N = No [there is no minimum on the 
F( N) curve for N < N,,,, 1. 

A comparison with experiment makes it possible to esti- 
mate the parameter E which is found to be highly dependent 
on the dimensional ratio of the sample a/c. As a/c  goes from 
0.5 to 4 the value of E decreases from 0.8 y/a to 0.4 y/a. 

The periodic potential model (25) is simple and useful 
for a qualitative analysis of remagnetization if it is remem- 
bered that this model is both conditional and approximate. 
Therefore it does not reflect the way the size of the potential 
barriers changes as the magnetic field rises and falls since it is 
determined by different physical mechanisms, etc. 

5. RESONANCE OF THE DOMAIN STRUCTURE IN 
METASTABLE STATES 

We can easily show that the magnetic resonance fre- 
quency of the antiphase oscillations of the domain walls of 
periodic structure is determined by the expression 

on2 = - 4 d2F(D, Q) 
d9(D7 q, I = -. 

(26) 
m aq2 rl-o Dm dq2 7 

where m is the surface density of the domain wall mass; 7 are 
small deviations of the domain walls from equilibrium for 
the given H corresponding to specific values of D and q. 

For the case 6- w Liberts8 has derived an expression 
for w: that precisely accounts for the multipole part of mag- 
netostatic energy (7)  with a random q: 

16M2 ch (nc/D) -cos (nq) 
on2 = - In 

cm 2 sin2 (nq/2) 
(27) 

We have obtained an expression for of, precisely accounting 
for the magnetostatic energy of the general type (6) :  

4M2 N ,  8 
on2 = - 

m [ 5 + T ~ ( ~ , q ) ] ,  
where ~ , - 8 [ a r c t ~ b - ~ L n ( 1 + ~ ) + ~ L n ( l + ~ ) ] ,  b 

c 4b 

+ {arsh b - arsh 
b 

,,=-- D 1 q+2n 1 (D2 (q+2n)'+c2) " 

Expression (28) becomes (27) as 6- W .  Both of these 
expressions have a minimum in q at q = 1 and grow without 
limit as q-0. Both expressions for sufficiently large values 
of N approach an asymptotic form 

where the second term of the sum corresponds to the squared 
resonance frequency, neglecting the multipole terms in the 
magnetostatic energy. The role of the latter with large N 
reduces to formation of a negative addition to the squared 
frequency. The natural frequencies of the oscillations of the 
domain walls in the other limiting case of small N were inves- 
tigated in Ref. 7. 

The linear resonance of the antiphase oscillations of the 
domain walls was observed experimentally in all metastable 
states. The dependence of the squared frequency on N (see 
Fig. 4) is approximately described by the expression 

where w ,  and w, are parameters independent of N. The sec- 
ond term of the sum here corresponds to the second term of 
the theoretical equation (29); the first terms in (29) and 
(30) have both different values and signs. Therefore the ex- 
perimentally observed shift of the squared frequency, which 
is dependent on N, has a nonmagnetostatic origin. 

The possibility of experimental observation of magnetic 
resonance with various values of N indicates the relative sta- 
bility of the metastable states: they do not break down under 
a radio-frequency field if its amplitude is less than a certain 
frequency-dependent critical value. 

CONCLUSION 

The possibility of metastable states with a differing 
number of domain walls N was discovered experimentally in 
a weak FeBO, ferromagnet. Analysis revealed that the states 
are rather resistant to the effect of both quasistatic and radio 
frequency fields if the frequencies and amplitudes of the lat- 
ter are less than certain critical values that are different for 
states with different N. Applying radio frequency fields with 
frequencies and amplitudes exceeding the critical values 
causes transitions between the metastable states which serve 
to increase the number N. 

A theoretical explanation for the existence and the 
properties of such metastable states is offered. As initially 
demonstrated in Refs. 3 ,4  the remagnetization process will 
be accompanied not only by a change in the volume relation 
of the domains magnetized along and across the fields, but 
also by changes in the period of the domain structure. For 
the finite samples this corresponds to an increase in the num- 
ber of domain walls N as the field H decreases and a reduc- 
tion in N with increasing H. However, the creation of each 
new domain wall involves overcoming an energy barrier: 
The internal field (the sum of the magnetostatic and external 
fields) in the domain directed opposite the magnetization 
will exceed the nucleation field H ,  . The internal field magni- 
tude decays with increasing number N (with diminishing H) 
and may drop below H, until the system reaches an equilib- 
rium domain number No. In this case the N-N + 1 pro- 
cesses no longer occur as H decreases further and through 
H =  0 the system will remain in the metastable state 
N = N,, <No. There is a whole set of metastable states 
between Nm,, and No that remain inaccessible upon quasi- 
static remagnetization (as in the case N = No). 

Energy barriers also inhibit N- N - 1 processes with 
increasing magnetic field, although these energy barriers are 
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of a different physical nature: extending the domain walls 
outside the sample or the convergence of such walls, which is 
required for annihilation, serve to increase the magnetosta- 
tic energy. 

The existence of metastable states with different values 
of N has made it possible for the first time to experimentally 
investigate the dependence of the resonance frequency of the 
domain walls on N in the same sample. This relation corre- 
sponds to the theoretical relation. There is, however, an ad- 
ditional N-dependent contribution to the frequency whose 
origin requires further analysis. 

The theoretical analysis of magnetostatic energy and 
the remagnetization processes of samples with few domain 
walls, which was carried out here in order to identify the 
nature of the metastable states, allowed us to obtain a num- 
ber of unusual additional effects characteristic of this situa- 
tion. These include asymmetry of the magnetization curve, a 
nonzero average magnetization for an odd number of do- 
mains in both the metastable states and in the state corre- 
sponding to the global energy minimum, and the require- 
ment that the width of domains along the edge of the sample 

for H = 0 for sufficiently large values of N must be approxi- 
mately half the width of the remaining domains. 

' '  When the domains form that shut off the magnetic flux and cause F,, to 
vanish, N,, is determined by the minimum of the sum of F,. and the 
energy associated with the existence of the closure domains. This case is 
not examined here. 
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