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We discuss the effect of superconducting fluctuations on the thermoelectric force and thermal 
conductivity of a superconductor in the vicinity ofthe critical temperature. To do this, we first 
find an expression for the thermal flux operator of the system of interacting electrons in the 
Cooper channel. Because our intention is to compare our results with experimental data on high- 
temperature superconductors, our final expressions are formulated for the case of a quasi-two- 
dimensional electron spectrum, allowing us to investigate both the two-dimensional and three- 
dimensional regimes of fluctuation behavior, as well as the crossover between them. We find that 
including the contributions from superconducting fluctuations leads to the appearance of a 
characteristic peak in the temperature dependence of the differential thermoelectric force of a 
superconductor near Tc , which is in agreement with the results of recent experimental 
investigations of high-temperature superconductors. 

1. INTRODUCTION 

In connection with global investigations of the high- 
temperature superconductors (HTSC) , researchers have 
become interested in the thermoelectric and thermal con- 
ductivity properties of these compounds, as witnessed by a 
number of experimental on the temperature de- 
pendence of the thermoelectric force and thermal conductiv- 
ity of high-temperature superconductors near their critical 
temperatures. These authors found a peak'-3 in the tempera- 
ture dependence of the thermoelectric force as the HTSC 
passed from normal to superconducting; this peak has not 
yet received a rigorous theoretical explanation. 

It should be noted that the question of how supercon- 
ducting fluctuations can influence the thermoelectric force 
of a superconductor near Tc was investigated earlier by 
MakL6 However, as we will show below, the principal contri- 
bution to the fluctuation-induced correction to the thermo- 
electric coefficient was missed in this paper. The authors of a 
recent experimental paper1 relied on the theory in Ref. 6, 
but, finding it impossible to explain their experimental re- 
sults within the framework of this theory, they had to settle 
for a semi-qualitative analysis of the phenomena and of their 
results. 

Thus, the question of how to construct a microscopic 
theory from first principles that explains the anomalous be- 
havior of the thermoelectric power of a superconductor near 
the critical temperature remains open. With regard to mea- 
surements of the temperature dependence of the thermal 
conductivity of the HTSC, Aliev et aI.495 noted an increase in 
the absolute value of the thermal conductivity as the tem- 
perature Tc was approached from above. 

In this paper we will investigate the influence of super- 
conducting fluctuations on the electronic part of the thermo- 
electric force and thermal conductivity of a superconductor 
at temperatures somewhat above the critical temperature. 
Because we intend to apply the theory we develop here to 
explain the properties of high-temperature superconduc- 
tors, we will treat the electron spectrum as quasi-two-dimen- 
sional. In any calculation of the thermoelectric force it is 

very important to determine the role of electron scattering. 
To do this, we must compare the correlation length ( with 
the mean free path I of the electrons. For the HTSC, both 
these quantities are extremely small, e.g., 6 in superconduc- 
tors of BISCO type is estimated to be 15-20 A, while I for the 
same single-crystal systems is estimated to be 80 to 90 A 
from an extrapolation of the residual resistance down to 
T= 0. It would appear that these numbers give us a basis for 
treating single-crystals of BISCO as clean rather than dirty 
superconductors. However, noting that the resistance (and, 
consequently, the mean free path) of these materials is ap- 
parently strongly temperature-dependent, we should admit 
the possibility that near Tc the mean free path and the corre- 
lation length may turn out to be of the same order of magni- 
tude. 

As will be clear from what follows, calculations of the 
fluctuation-induced corrections to the thermoelectric force 
and thermal conductivity are greatly simplified for the case 
of a clean superconductor. For the most part, we will be 
investigating this type of superconductor in what follows; 
however, the estimate we arrive at here show that the observ- 
able effects (e.g., the growth in absolute magnitude of the 
thermoelectric force and thermal conductivity as the tem- 
perature Tc is approached) are qualitatively unchanged for 
the case of a dirty superconductor as well. 

2. THE HEAT CURRENT OPERATOR IN THE PRESENCE OF 
ELECTRON-ELECTRON INTERACTIONS IN THE COOPER 
CHANNEL 

In order to calculate the fluctuation-induced correc- 
tions to the coefficient of the thermoelectric force and ther- 
mal conductivity by the linear-response method, we must 
first find an expression for the heat flux operator that takes 
into account the presence in the system of electron-electron 
interactions in the Cooper channel. 

There exist several approaches to this problem. We will 
follow the approach developed in Ref. 7 to investigate the 
influence of electron-phonon interactions on the thermo- 
electric force of impure metals, as this approach seems to us 
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to be most closely tied to first principles. 
We write the Lagrangian of the system of interacting 

electrons in the form 

where W is a field operator, W = W(x,t), and W' = W(xl,t); 
m is the mass of an electron, YSi = dW/dx,, i = 1, 2, 3; 
W = dWdt, and /1 is the interaction constant. 

The Hamiltonian of the system Hand  the energy cur- 
rent operator u can be obtained from the energy momentum 
tensor T i ,  

(6; is the Kronecker symbol) by integrating the corre- 
sponding components over the space variables: 

Expressing the field operators W(x,t) in the usual way 
in terms of the second quantization operators a, ( t ) :  

and substituting into Eqs. ( 1 )-(3), we find 

(E, is the energy of an electron). Since we know the explicit 
form of the Hamiltonian, we can write the equation of mo- 
tion for the second-quantized operators: 

The energy current operator now can be obtained by substi- 
tuting Eqs. (5 )  and (7)  into Eqs. ( I ) ,  (2),  and (4) .  The 
thermal current operator that we require is connected with 
the energy current operator by the relation 

where e is the electron charge, p is the chemical potential, 
and 

is the electric current operator. 
After some computation, we obtain the final expression 

where 6, = E, - E~ is the energy of an electron measured 
from the Fermi level. 

3. LINEAR RESPONSE OPERATOR AND DIAGRAMMATIC 
ANALYSIS 

In the method of linear response, the coefficients of the 
thermoelectric force and thermal conductivity are deter- 
mined by the relations 

where Q is the analytic continuation into the upper half of 
the complex frequency plane ofthe Fourier transforms of the 
following correlators: for the thermoelectric force, the cor- 
relator of the electron current and the thermal flux opera- 
tors, and for the thermal conductivity, the correlator of two 
thermal flux operators: 

Q < k  ( e - h )  ( X - X ' )  = -8  (t-t') ( [ 3 : ( x ) ,  y k e ( x ' )  ] >, 
(12) 

Q i k  (A-h)  ( X - X ' )  = -8 ( t - t ' )  ( [ 3 i h ( X ) ,  3kh(X')  ] ), 

here jh(x) and J'(x) are operators in the Heisenberg repre- 
sentation, X = (x,t), B ( x )  is the Heaviside step function, 
and the angle brackets denote averaging over a grand ca- 
nonical ensemble. 

Equation ( 10) implies that the heat flux operator must 
be associated with two vertices in the diagram technique 
(Fig. 1 ) : 

the vertex corresponding to the electric current operator is 
written as usual: ry = evi . Note that taking into account the 
interaction of the electrons in the Cooper channel leads to 
the appearance of an additional vertex l?:""" and to addi- 
tional diagrams over and above those included in calculating 
the fluctuation-induced conductivity. 

The diagrams that appear in the course of calculating 
the thermoelectric force in first-order perturbation theory 
with superconducting fluctuations taken into account are 
shown in Fig. 2, while for the thermal conductivity they are 
shown in Fig. 3. Investigation of diagrams containing the 
vertex rf""" (Fig. 2d and Figs. 3d-3e) shows that these 
diagrams are less singular as the temperature approaches Tc 
than the other diagrams; this is because this vertex contains 
the small momentum q g p .  This implies, as in the case of the 
conductivity, that the principle contribution near Tc to the 
thermoelectric force coefficient and the thermal conductiv- 
ity of a clean superconductor comes from diagrams of the 
Aslamazov-Larkin type (Fig. 2c and Fig. 3c), which we will 
also discuss in the subsequent sections. 

FIG. 1. Field-theoretic vertices corresponding to the thermal current op- 
erator. 
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4. FLUCTUATION-INDUCED CORRECTION TO THE 
THERMOELECTRIC FORCE 

Keeping in mind that the majority of HTSC studied to 
date have a layered structure, we assume that the electron 
spectrum is quasi-two-dimensional. In the limiting cases of 
strong and weak coupling between the layers, this also al- 
lows us to automatically obtain results for the two-dimen- 
sional and three-dimensional cases. 

Thus, for a Fermi surface in the form of a fluted cylin- 
der, the electron energy can be written in the form 

where v, is the Fermi velocity in the plane of the layer, w is 
the overlap integral that characterizes the probability for an 
electron to hop between layers, a is the spacing between lay- 
ers, and p = (p,, , pI ) is the quasimomentum of an electron. 

As we have already noted in the Introduction, we will 
be interested in the case of a clean superconductor, so that 

FIG. 2. Diagrams which arise in computing the thermoelectric 
power. For symmetry-related graphs we show only one dia- 
gram. 

we can ignore impurity scattering of the electrons. Then the 
single-electron Green's function for temperatures above the 
critical temperature can be written in the usual form with the 
spectrum ( 14): 

WP, en) =l/(ien-Ep), ( 1 5 )  

while the fluctuation-induced propagator8 is 

(16) 
where 

7 is the parameter of the Landau-Ginzburg theory for the 
case of a clean superconductor near T, , ((x) is the Riemann 
zeta function, $ ( x )  is the logarithmic derivative of the gam- 

FIG. 3. Diagrams which arise in computing the thermal conduc- 
tivity. For symmetry-related graphs we show only one diagram. 
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ma function, andp is the density of state at the Fermi level. 
Let us begin with a calculation of the thermoelectric 

coefficient. We will write the contribution to the linear re- 
sponse operator corresponding to diagram 2c in the form 

XBZj (q, Qh, 61,) L (q, Qk+m,)L (q, Qk) 7 (17) 

where the block Green's functions B, and B, have the form 

B, (q, a, CO.) =T J $ VG(P. 
en 

Near Tc we can neglect the dependence of the blocks B, and 
B, on the frequency f l k .  The expression for the block B, is 
known: 

where (v(vq)) = 1/2u~qll .  For the block B,, after some un- 
complicated calculations, we find 

i~ 1 0 D B2 (q, 0, a , )  = -(v (vq) )- - (v  (vq) ) 
32T, 8n 

where w, is the Debye frequency. Substitution of the first 
term on the right side of Eq. (2 1 ) into Eq. ( 17) gives a con- 
tribution to the thermoelectric force that cancels the contri- 
butions of the remaining diagrams in Fig. 2, which are calcu- 
lated under the condition p = constant. From this we see 
that the basic contribution to the thermoelectric force is giv- 
en by the second term on the right side of Eq. (2 1 ) . 

Subsequent substitution of the blocks (20) and (21 ) 
into Eq. ( 17) gives 

Reducing the sum in Eq. (22) over f lk to a contour integral, 
carrying out the analytic continuation in frequency w, in the 
usual way? and integrating over frequency, we find 

(23 

where 

is the quasi-two-dimensional parameter, which determines 
the effective dimension of the fluctuations. Finally, carrying 
out the integration over momentum q in Eq. (3)  over a single 
period of the fluted cylinder and making use of Eq. ( 1 1 ), we 
obtain the required correction to the thermoelectric coeffi- 
cient: 

Btr 9n2 T ,  1 COD T-T T-T,  -% -=--- In- - -+&,')I , 
fin 145(3) E P  T,T 2nT.[ T ( T .  

where 

is the thermoelectric force of a normal layered metal in the 
plane of the layers. 

Making use of the result Eq. (9)  for the fluctuation- 
induced conductivity of a layered superconductor, 

we can also write down an expression for the differential 
thermoelectric force calculated to first order and including 
the superconducting fluctuations: 

It is clear from a comparison of Eqs. (24) and (25) that the 
relative correction to the thermoelectric coefficient due to 
the fluctuations exceeds by the large logarithm the fluctu- 
ation-induced contribution to the conductivity and gives the 
primary contribution to the differential thermoelectric 
force:' 

T-T,  aO2 < -. 
T-T,  ' Tc 

As is clear for T * - Tc - Tc 6: (where T * is the temperature 
at which the size of the fluctuation-induced Cooper pair 
transverse to the layer is comparable to the spacing between 
the layers), the character of the temperature dependence 
changes from three-dimensional to two-dimensional. 

5. FLUCTUATION-INDUCED CORRECTIONS TO THE 
THERMAL CONDUCTIVITY 

The calculations of the fluctuation-induced correction 
to the thermal conductivity are analogous to those described 
in the previous section. The linear response operator corre- 
sponding to the diagram 3c has the form 

Q i j  ,h-h, ( a v )  = - 2 T Z  J 3 BZi (q, Qk, CO.) 
p, (2n13 

Here, in contrast to the calculation of the thermoelectric 
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coefficient, the primary contribution is determined by the 
first term involving the block B,. Substituting this term into 
Eq. (28) we calculate the sum over frequencies 0, as before; 
carrying out the analytic continuation and integrating over 
q, we find 

where x ,  = 1 / 3 ~ ~ ~ T r  is the coefficient of thermal conduc- 
tivity of a normal layered metal in the plane of the layers. 

It is clear that the temperature dependence of this fluc- 
tuation-induced correction is entirely analogous to that of 
the conductivity and the thermoelectric force, and in the 
limiting cases of two-dimensional and three-dimensional be- 
havior the fluctuations have the form 

X t l  9n5 -- - 
x, 128[7%(3) l 2  T-T, 

62<-. 
Tc 

6. DISCUSSION OF RESULTS 

As we already mentioned in the Introduction, in their 
investigations of HTSC near Tc the authors of a number of 
papers'-3 reported observing a peak in the temperature de- 
pendence of the thermoelectric force. The temperature de- 
pendence of the excess thermoelectric force obtained in Ref. 
1 is well described by the function ( T - Tc ) - and the 
authors attributed this to the influence of superconducting 
fluctuations. 

It is clear from our microscopic treatment of the fluctu- 
ation-induced contributions to the thermoelectric force for 
the case of fluctuations with three-dimensional behavior 
that exactly this type of growth of the thermoelectric power 
correction should be observed as we apprbdch the tempera- 
ture T, from above. Since this result is obtained in first-order 
perturbation theory with the superconducting fluctuations 
taken into account, the power-law growth in the immediate 
vicinity of Tc is limited by the contributions of succeeding 
orders. Furthermore, we cannot ignore the inhomogeneity 
of the sample, which leads to a washing-out of the transition 
temperature and to smearing of fluctuation-induced effects. 
Clearly, all this implies that the increase in the thermoelec- 
tric force observed near Tc must be cut off; therefore, its 
temperature dependence passes through a maximum and 
then, after passing through Tc , the thermoelectric force rap- 
idly decreases to zero, as it should in the superconducting 
phase. An estimate of the magnitude of the effect based on 
Eq. (27) shows that for compounds of the form YBCO the 
relative contribution of fluctuations near Tc can reach 20 to 
30%. 

With regard to experimental studies of the fluctuation- 
induced part of the electronic thermal conductivity, matters 
become much more complicated. First of all, the important 
thing here is the phonon thermal conductivity, which forms 
the background against which the fluctuation contributions 
xfl appear. Secondly, the electronic thermal conductivity it- 
self does not change very sharply on passing through the 

critical temperature (in contrast to the behavior of the ther- 
moelectric force), so that evidence of the fluctuation-in- 
duced effects is not so clear. Nevertheless, the authors of 
Refs. 4 and 5 noted the beginning of a growth in the thermal 
conductivity as the temperature was decreased down to 125- 
130 K; this temperature exceeds by 5-10 K the transition 
temperature measured by nulling the electrical resistivity. 
This growth can be associated with an observed fluctuation- 
induced contribution to the electron part of the thermal con- 
ductivity which, according to estimates based on Eq. (30), 
can reach a few percent near Tc . 

Let us say a few more words about Ref. 6, in which the 
fluctuation-induced contribution to the thermoelectric force 
of a superconductor was calculated for temperatures above 
the critical temperature. In our opinion, this work contains 
several inaccuracies, which lead to the impossibility of ex- 
plaining the available experimental material within the 
framework of theory presented there. First of all, the author 
of Ref. 6 took into account some necessarily small correc- 
tions - T / E ~ ,  which arise from the fluctuation propagator; 
however, he ignored similar terms which occur in the 
Green's function blocks and which also give important con- 
tributions to the thermoelectric coefficient P in the calcula- 
tion carried out above. Secondly, in the transition to the dif- 
ferential thermoelectric force according to Eq. (26) it was 
taken for granted in Ref. 6 that the inequalities& $0, and 
af, ) u, hold near Tc ; however, this assumption was com- 
pletely contradicted in calculating the fluctuation-induced 
corrections only to first order in perturbation theory. As a 
result, the differential thermoelectric force obtained in Ref. 
6 decreases monotonically to zero as the temperature Tc is 
approached. 

In conclusion, let us say a few words about the "dirty" 
case, where 1 4 6  holds. In this case, the diagrams for the 
linear response operator should be averaged over the posi- 
tions of the impurities, which leads to a renormalization of 
the vertices and the Green's functions. Since it is necessary 
to take into account terms of order T / E ~  in order to obtain a 
nonzero result for the thermoelectric force, the correspond- 
ing expansions must be carried out for all quantities which 
depend on energy-the density of states, the relaxation time, 
etc. Within the framework of our approach, this is an ex- 
tremely difficult problem. We have calculated only the cor- 
rection associated with expanding the density of states, and 
we are convinced that the contribution from processes of the 
Aslamazov-Larkin type lead to the same temperature de- 
pendence that we have found in our discussion of clean su- 
perconductors given here. That is, following the usual theo- 
ry of superconducting fluctuations, the small parameter 
T / E ~  in the coefficient in Eq. (26) is replaced by the corre- 
sponding parameter for the dirty superconductor 
case. The contribution from Maki-Thompson processes, in 
which only an expansion of the density of states is taken into 
account, turns out to equal zero. 

In conclusion, the authors express their deep gratitude 
to A. I. Buzdin, M. Yu. Reizer, and A. V. Sergeev for valu- 
able discussions and remarks 

' I  We note here that the logarithmic approximation In(w,/Z?rT, ) % 1, 
which is usual in the case of conventional superconductors, ceases to be 
valid for the high-temperature superconductors. This implies that for 
the case of a sufficiently high T, we are not permitted to omit the contri- 
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bution in Eq. (26) to the differential thermoelectric power, which 
comes from fluctuation-induced corrections to the conductivity and 
which can change not only the coefficient but in principle even the sign 
of the correction. 
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