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Multiple scattering is treated in a new setting as Brownian motion in the space of scattering 
angles. We employ path integrals to derive new equations that describe the effects of scattering on 
the differential spectrum and polarization characteristics of the radiation. The results are of 
sufficient generality that we can derive as limiting cases both the known equations for an 
amorphous medium (nonoriented crystal) and new equations for an ideal crystal at T = 0 K. We 
compare numerical predictions with the spectral and polarization properties of electrons at 
E = 40 GeV in tungsten. 

1. INTRODUCTION 

The recent upsurge in interest in the effects of multiple 
scattering on the radiation from high energy charged parti- 
cles in matter is due to our newfound ability to experimental- 
ly investigate the passage of relativistic electrons and posi- 
trons through crystals. Experiments1 have been carried out 
at CERN, for example, confirming the theoretically predict- 
ed effects2 of multiple scattering on the spectrum of radi- 
ation emitted by high energy particles in crystals. 

Since the differential spectral characteristics of that ra- 
diation carry the most detailed information about the multi- 
ple scattering process, theoretical and experimental investi- 
gations of those properties are of most interest. 

It was pointed out in Ref. 3 that when one actually gets 
down to prescribing initial conditions for the problem of 
multiple-scattering effects on the radiation from a relativis- 
tic particle in an amorphous layer, the natural questions that 
arise have to do with the degree of polarization and the angu- 
lar distribution of bremsstrahlung emission. The method 
used in Ref. 3 to answer those questions was proposed by 
Migdal, and has been widely employed in studies of multi- 
ple-scattering effects on electrodynamic processes in con- 
densed media.4 

In the present paper, we describe a new treatment of 
multiple scattering as Brownian motion. We take a path in- 
tegral approach to obtain new equations that describe the 
effects of multiple scattering on the polarization and differ- 
ential spectral characteristics of the radiation. The genera- 
lity of our results enables us to derive from various limiting 
cases both the known equations for an amorphous medium 
(nonoriented c r y ~ t a l ) ~  and new equations for an ideal crys- 
tal at T = 0 K. We also compare numerical predictions with 
angular and polarization characteristics for these cases, ob- 
tained in experiments with tungsten. 

2. BROWNIAN MOTION AND PATH INTEGRALS 

We shall assume that the progress of high energy 
charged particle through matter constitutes random motion. 
For an amorphous medium, this is so because the random 
locations of the individual scattering centers (atoms of the 
medium) ensure that an infinitesimal change in the initial 
conditions will lead to substantially different final trajector- 
ies. In other words, the random nature of motion in an amor- 
phous medium derives from its structure. 

On the other hand, random motion in a periodic struc- 

ture-a crystal-is due to the specifics of particle dynamics. 
Under certain conditions (which are reviewed in detail in 
Ref. 5) ,  the motion of a fast charged particle becomes unsta- 
ble, and dynamical chaos sets in. One of the hallmarks of the 
latter is that a small change in initial conditions leads to 
trajectories that differ by so much that the motion may be 
considered to be random.') 

This sort of motion ensues when a fast-moving charged 
particle is incident upon a crystal at a small angle $to one of 
the crystallographic axes (z). In that event, the scatterers 
are not individual atoms, but chains of atoms parallel to the z 
axis. In order for scattering chains not to "coalesce" into a 
scattering plane (in which case particle motion would be 
regular), the angle between the initial particle velocity and 
the close-packed crystallographic planes must not be less 
than some characteristic angle a.5 Under those circum- 
stances, multiple scattering takes place in a crystal in much 
the same way as if the crystal were in fact an "amorphous" 
medium consisting of parallel filamentary scatterers sepa- 
rated from one another by random distances5 

The multiple-scattering induced velocity variation of a 
particle in a medium will be described here in terms of the 
deflection angle 6 ( t )  of the particle velocity vector v(t),  
measured from the direction n of the emitted photon? 

Multiple scattering involves the overall effect of a large num- 
ber of small, independent, random changes in the two-di- 
mensional vector 6 ,  so by virtue of the central limit 
theorem,'.' we can assume that 6 ( t )  is a Gaussian random 
proce~s.~ '  Furthermore, the behavior of 6 ( t )  can be consid- 
ered to be statistically independent in non overlapping time 
intervals, since it is governed by independent scattering 
events; the random process 6 ( t )  can therefore be approxi- 
mated by a Wiener process, or as Brownian motion. In other 
words, we will describe the multiple scattering of a relativis- 
tic charged particle in matter as Brownian motion in the 
space of the two-dimensional vectors 6. 

We can go from consideration of a random trajectory in 
the scattering-angle space to a statistical description in terms 
of an ensemble of trajectories in that same space, in which 
case Brownian motion can be described by the diffusion 
equation for the distribution function f (6,t)  of the random 
quantity 6 at time t: 
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Below we shall assume that the diffusion tensor satisfies 
DU = uiSU,  where ui is the rms scattering angle per unit 
time. By virtue of the isotropy of an amorphous medium, 
a, = u2; for an ideal crystal at T = 0 K, particle dynamics 
are such that u1 = 0, u2 = u,. Intermediate cases can be in- 
terpreted as if they were imperfect crystals at finite tempera- 
ture. We can write the Green's function for Eq. (2.2) in the 
form 

P(+o, to; 6, t)=p(6oi, to; Oi, t)p(6oz, t o ;  ez, t ) ,  t>to, (2 .3)  

The probability density p(80i, to;8i , t)  yields the probability 
that the state of the process at time t  is 8( ,  given that it was 
a,, at time to. The conditional probability density 
p(800i,to;9;,t) depends solely on the state ofthe process at the 
preceding instant of time, not on its entire previous history; 
this of course is the identifying characteristic of a Markov 
random process. For such a process, the probability den- 
sity3) p ( S i c , ,  ,tl;...;8i,n, ,t, ) for the process to start out from 
the initial state a,,, = 0 at time t  = t,,, = 0 and wind up in 
the states 8, ,, ,..., a,,, is given by the product 

p(6(1), ti; . . . ; .6.(,,, t") 

j t o  i 1 ) .  . - t i  ( ) (2 .5)  

With this expression as a starting point, following Ein- 
stein and Smoluchowski (see, e.g., Ref. 9) ,  we find the prob- 
ability distribution for realizations of such trajectories 8 ( t )  
when the process progresses through n intervals subsequent 
to its initial state; those intervals bound the trajectory such 
that a,,, < 8 ( t ,  )<i f  ;,, , k = 1 ,..., n, where and 8 ;,, 
are certain fixed values. The distribution takes the form 

The system of probability distributions thus obtained, 

is consistent, i.e., the distribution P, is the partial distribu- 
tion for P, + , ; specifically, 

by virtue of the fact t ha tp (8 , , ,  ,ti; 8,,, , t2) ,  as a conditional 
probability for a Markov process, satisfies the Chapman- 
Kolmogorov equation 

According to a theorem due to Kolmog~rov,~ the fam- 
ily of probability distributions (2.6) can be uniquely contin- 
ued with respect to a probability measure over the set of 
continuous, nondifferentiable functions S ( t ) ,  which vanish 
at t  = 0. That probability measure is known as the Wiener 
measure. This sort of mathematical construction enables one 
to average over Brownian trajectories; in particular, for a 
broad class of functionals J { S ( t ) )  in the space of functions 
continuous over the interval [O,t], it is possible to calculate 
path integrals over Brownian trajectories in the following 
manner. The trajectories 8 ( t )  are made up of straight-line 
segments 8, ( t )  joined at the points 8 ( 0 )  = 0,  
8( t ,  ) = 8( ,  , ,..., 8( t ,  ) = a,,, , so that the points t,,. . ., t ,  - , 
divide the interval [O,t] into n equal parts. The integral over 
paths is then given by'' 

where S D S ( t )  signifies integration with respect to the Wie- 
ner measure, and the function J ( 8 , , ,  ,..., a,,, ) of n variables 
is the value of the functional J { S ( t ) }  at the breakpoint 
a,,,, ( t ) .  

In the next section, we show how the functionals 
J { S ( t ) )  arise in the problem of the radiation emitted by rela- 
tivistic charged particles in matter, and how, making use of 
the definition (2 .7) ,  one can average these functionals over 
trajectories of the process 9 ( t ) .  

3. DIFFERENTIAL SPECTRUM OFTHE RADIATION 

Let a relativistic charged particle be incident with ve- 
locity v,, at time t  = 0 upon some condensed medium, and let 
it move within that medium for some time T. In dealing with 
the specific initial condition v ( t  = 0 )  = v,, as remarked in 
Ref. 3, one also has to deal with the degree of polarization 
and the angular distribution of bremsstrahlung. We now 
show that the proposed approach solves these problems. In 
macroscopic electrodynamics, the differential spectrum of 
polarized radiation within a solid angle d R  and a frequency 
interval dw is a functional of the classical particle trajec- 
tory" { r ( t ) , v ( t ) } :  

where k = wn is the wave vector, and the polarization vec- 
tors ei ( i  = 1,2), which in general are complex quantities, 
satisfy 

We transform Eq. (3 .1)  to the form 
T T-1  
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We adopt for the ei the real vectors e ,  and e,, specifying the 
linearly independent components of the radiation, without 
referring them as yet to any special directions in the plane 
perpendicular to n. 

The trajectory of a relativistic charged particle in mat- 
ter is a realization of a random process; it is therefore neces- 
sary to average Eq. (3.3) over all possible trajectories. With 
this in mind, we take advantage of the results obtained in the 
previous section, and making use of Eqs. (2.1 ) and (3.2), we 
write (3.3) in the form 

T T-I  

where a i ( t )  = e i6( t ) ,  a 2 ( t )  = 8: (t)  + 9: (t),  
j! = ( 1 - v2/c2) - I. In averaging this expression by inte- 
gration over paths, we also take advantage of the fact that we 
need only integrate over those trajectories that pass through 
the point ifi ( t  = 0)  = aOi at t = 0. Averaging Eq. (3.4) 
yields 

T  T - f  

where 

Since the functional in (3.6) is a Gaussian, the integral over 
paths can be evaluated analytically. The result (see the Ap- 
pendix) is 

where ri = ( i ~ a ~ ) " ~ .  With these expressions, Eq. (3.5) be- 
comes 

T T - t  

This equation is the general solution for the effect of 
multiple scattering on the differential spectral characteris- 
tics of radiation from a relativistic charged particle in mat- 
ter, and it enables one to investigate the polarization of that 
radiation. The degree of polarization of the bremsstrahlung 
is 

The angular spectrum of unpolarized radiation (J,,, ) is giv- 
en by the sum (J6::) + (JAf;). 

Using Eq. (3.9), we can derive the well-known results 
for the effects of multiple scattering on the differential spec- 
trum of bremsstrahlung from a relativistic particle in an 
amorphous target. To do so, we put a, = a, = a ,  where 2ais 
the rms scattering angle of the particle per unit time, and we 
transform from the system of vectors el  and e, to the physi- 
cally interesting system ell ,e,, where ell lies in the plane of 
propagation, which is defined by the initial velocity vector v, 
and the direction of the wave vector n, and e, is orthogonal 
to both ell  and n. Equation (3.9) then goes into Eq. (13) of 
Ref. 3, which specifies the average angular spectral density 
of bremsstrahlung polarized either in the plane of propaga- 
tion or perpendicular to it. 

4. MULTIPLE SCATTERING EFFECTS IN THE DIFFERENTIAL 
SPECTRUM OF COHERENT RADIATION FROM 
RELATIVISTIC PARTICLES IN CRYSTALS 

We now show that (3.9) can be used to investigate the 
effects of multiple scattering on the differential spectrum of 
the radiation emitted by relativistic charges particles in crys- 
tals. 

To that end, we consider a situation in which a particle 
of energy E is incident upon a crystal at a small angle $ to one 
of the crystallographic axes (z).  In that event, the particle 
will interact not with the individual atoms in the lattice, but 
with chains of atoms parallel to the z axis. The requirement 
for the atomic chain approximation to hold is $ ( R  /a,  
where R  is the screening radius, and a is the distance between 
atoms in the z direction. If the scattering chains do not con- 
stitute a scattering (close-packed) plane, then particle mo- 
tion will be essentially r a n d ~ m , ~  a condition produced by the 
dynamics of the problem. This makes it possible to treat the 
crystal as a condensed medium consisting of parallel chains 
of atoms that are randomly spaced with respect to one an- 
other. 

In the continuous field produced by a chain, the compo- 
nent of particle momentum parallel to the chain's axis (the z 
axis) is conserved; the particle can only be scattered azi- 
muthally, through an angle p, in the plane orthogonal to the 
z axis (see Fig. 1 ). That angle is determined by the particle's 
transverse energy EL = Ef/2 and the impact parameter b: 

where U(p)  = (cT) - ' ~ d z  u ( r ) ,  u(r)  is the potential ener- 
gy of interaction between the particle and an individual atom 
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FIG. 1. 

in the chain, p is the radius vector in the plane orthogonal to 
the z axis, cT is the thickness of the crystal, and p, is the 
distance of closest approach of the particle to the axis of the 
chain. 

The angle (6 - 6,1 through which the particle is scat- 
tered by the chain is related to the azimuthal angle q, by (see 
Fig. 1) 

Multiple scattering by different chains leads to a redis- 
tribution of particles in p.  The process is described by the 
kinetic equation for the particle distribution function f (q,,z) 
over angle p at depth z : ~  

where n is the density of atoms in the crystal. 
In the general case, the solution of this equation with 

boundary condition f (p,O) = S(p) is a complicated func- 
tion of p and z (Ref. 5 ) .  It can be simplified considerably if 
$) $, , where 4, = (4Ze2/Ea) '/* is the critical angle for axi- 
al channeling, and Z lei is the nuclear charge on each atom in 
the crystal. For angles 4 in that range, Eqs. (4.1 ) and (4.2) 
can be expanded in the small parameter U / E ,  - $2 /$2. TO 
first order, we obtain 

Typical values of the azimuthal scattering angle q, with 
$) 4, are small compared with unity, a circumstance that 
makes it possible to bring Eq. (4.3) to the form 

Equations (4.4) and (4.5) demonstrate that for angles of 
incidence in the range $c ($4 R /a ,  the distribution of inci- 
dent particles over the angles 16 - 6,( inside the crystal is 
Gaussian: 

where ac = q2+ is the rms scattering angle per unit time. If 
we assume each atom in the crystal to produce a screened 
Coulomb potential u(r)  = Ze2/r exp( - r/R), we obtain235 

These equations imply that the rms angle for multiple 
scattering of a relativistic particle from chains of atoms in a 
crystal is significantly larger than the same quantity in an 
amorphous medium. This fact, plus the nature of particle 
scattering in a crystal, leads to markedly different angular 
spectral distributions of the radiation emitted in a crystal as 
compared with that emitted in an amorphous medium. 

In order to show how to go from the general equations 
(3.9) to a form applicable to particle scattering in a crystal, 
we transform the system of vectors ei to the ex,ey system 
shown in Fig. 1. In that figure, ex is parallel to the intersec- 
tion of the plane containing ex and ey with the plane crystal- 
lographic axis z and the initial velocity vector v,. Renaming 
indices 1 +x,2 -y in (3.9) and putting a, = 0, uy = uc, we 
find that the aforementioned properties of particle scattering 
in a crystal imply that ( J A S ) ,  the distribution over energy 
and angle of radiation polarized in the plane formed by n and 
ex, and (J :L ) , the distribution for orthogonally polarized 
radiation, are given by 

T T - t  

xerp ( -i- ;;z) 

where r, = (iwac ) and I?0x ,aOy are the projections of I?,, 
the initial deflection angle, onto ex and e,,. 

Equations (4.8) and (4.9) thus comprise the desired 
solution, describing the effects of multiple scattering on the 
differential spectrum and polarization characteristics of ra- 
diation emitted by relativistic charged particles in an ideal 
crystal. 

It is well known6 that for an amorphous medium, 
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FIG. 3. 

5. NUMERICAL ANALYSIS 

To take an example, we analyze the angular distribution 
and degree of polarization of radiation emitted when an elec- 
tron passes through nonoriented (amorphous target) or ori- 
ented tungsten crystals. The parameters adopted for use in 
Eqs. (3.9), (4.8), and (4.9) are electron energy E = 40 
GeV, detected photon energy w = 200 MeV, and target 
thickness cT = 0.01 cm. 

Amorphous target. For ease of subsequent comparison 
of the angular distribution of the flux density in the amor- 
phous target with that in the crystal, we choose the polariza- 
tion vectors ex and ey to be arbitrarily oriented (but always 
in the same way) in the plane orthogonal ton, without neces- 
sarily relating them to the physically distinguished system 
described in Section 3. The differential energy spectrum for 
radiation with polarization i = x,y takes the form 

where 

and o is defined by Eq. (4.7). 
It is clear from Figs. 2 and 3, respectively, that the func- 

tions f x  and f y  are of the same form, but with a 90 "rotation 
between them in the (90x,90y) plane. A cross section 
through f, and f ,, and the degree of polarization 

in the plane if,, = 0, are shown in Fig. 4. The curves in that 
figure depict the situation in which the physically interesting 
choice ex +el , ,  ey +el yields the polarization basis vectors. 

Crystal orientation. We rewrite Eqs. (4.8) and (4.9) in 
the same dimensionless notation used for amorphous medi- 
um: 

FIG. 5. 
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FIG. 6. 

l o  Figures 5 and 6 show f ', and f; for photons emitted by 
fzC (+o=, +ow) = - (- ) "' Re 

2 0, 
an electron moving through a tungsten crystal at an angle 
$ = 2 mrad to the (100) crystallographic axis. Figure 7 

h h-E shows cross sections off and f ;, as well as the degree of 
2g(@o=r) " polarization PC given by (5.3 ), at = 0. The cross section 

ch" ( i t )  [ l + i t  t h ( i t )  ]'I* off: at I?,,, = 0 is shown in Fig. 8, in which f', = 0 and 
P C =  1. 

X erp {-g [ i  ( 1 + 8 ~ ~ ~ ' )  c+j60vz.1z Discussion. These results demonstrate that the radi- 
+ ation from a relativistic charged particle moving through an 

h (5.5) oriented crystal and undergoing multiple scattering pos- 
I a "  

fve ( @ o ,  60.) = (;) ~e 4 sesses a number of features that distinguish it from the radi- 
3 ation from a nonoriented crystal (an amorphous target). 

LE These features reflect the differences inherent in multiple 
th ( i t )  1~+2g(fhvy)' scattering in the two kinds of media. Specifically, if the angle 

ch5(jC) [ l + j t  t h ( j t )  l K ' 2  of incidence $ is such that qhc ( $ < R  /a  ( $c is the critical 
angle for channelization), then the objects responsible for 

x exp {-g [ i ( I + * ~ ~ ~ ' )  t+i . f~~yl~'  multiple scattering in a crystal are chains of atoms, which th(iE) 11 
produce a potential appropriate to a filament, while in an i+iE th(jg) ' 

'is (5-6) amorphous medium they are spherically symmetric scat- 
g - I(w) , b-(oo.)'T, 

2? 0, terers. This, along with the fact that the rms scattering angle 
uc is greater in a crystal than u, its value in a amorphous 

where a, is given by (4.6): medium, makes the angular distribution of the differently 
polarized components of the radiation differ markedly both 
from each other and from the polarization components in 
the amorphous medium. Apart from the strong anisotropy, 
the radiation coming from a crystal will also show pro- 
nounced polarization and much higher total intensity. 

FIG. 7. 
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These features of the angular distribution of the radi- 
ation emanating from a crystal make it possible to investi- 
gate experimentally the appropriateness of the proposed ap- 
proach for describing the effects ofmultiple scattering on the 
radiation from charged relativistic particles in matter. 

APPENDIX 

Let us calculate the multiple integral (3.6) ,  using the 
standard procedure for computing Gaussian integrals over 
paths.'' We first express Q ( "  ( p )  in the form 

where for typographical expediency we have omitted vector 
indices on Q, it, and u. Carrying out the integration over 
i t l , . . . , ,  and transforming to variables 
yk = it,,, (2uA') - ' I2,  k = 1 ,..., L, we may write Q(p)  in 
the form 

(A1 
where 

and the nonzero elements of the matrix A are 

The integral in ( A .  1 ) can also be transformed: 
L L 

= lim D:~)-"' ex, {$ (D:) D,,? ) -,[x B~D:::] ' ) 
L-t m n = l  k=n 

where D A L )  is the ( L  - n + 1 )th order principal minor of 
the determinant of matrix A,  located in the lower right-hand 
corner, and D iL: = 1 .  In the limit L + a, D AL' tends to the 
value of the continuous function D(T')  satisfying the differ- 
ential equation 

when the function is evaluated at the point nA'; the solution 
takes the form 

D(T') = ch r (T-T') , r= (ioo) :". 

With this in mind, we can continue the calculation in ( A 2 )  : 

Substituting (A.3)  into ( A .  1 ), we carry out the integra- 
tion over it,, and in the limit N--+ w we obtain 

-% 

Q"' (p) = (ch r i ~  (i+rit  th rir-t 2oip - - - t 9 t h r . r ) )  
ch Fi'C Fi 

eOia rf th rfz-2ucp/ch rfz-of pz th r ,~ / r ,  x exp {- -- 
2or l+rit th rir-2oitp/ch rfz-oitp2 th riz/ri 

Here we have reinserted the vector indices i = 1,2. 
Taking p  = 0  in (A .4 ) ,  we obtain Eq. (3.7);  differenti- 

ating (A .4 )  with respect t o p ,  and then putting p  = 0, we 
obtain Eq. ( 3 . 8 ) .  

" We shall not consider here such factors as thermal vibration, impurities, 
defects, and the like, which also lead to essentially random motion. 
The applicability of the Gaussian approximation to a crystal is exam- 
ined in Section 4. 

" In the remainder of this section we omit subscripts i = 1,2 on 9,. 
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