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The theory of diffusion-controlled phase transitions in an anisotropic medium is discussed and 
applied to the decomposition of solid solutions. A gradient correction to the free-energy 
functional in tensor form is employed to take into account the anisotropy of the crystal structure. 
A generalization of the Cahn-Hillard equation is used to model the decomposition process. The 
most favorable directions of decomposition, determined by the properties of the gradient energy 
tensor, are described. The asymptotic growth of decomposition structures as a function of time at 
the stage of coalescence is determined. The exponent in the asymptotic law is expressed in terms of 
the dimensionality of the space and the degeneracy of the minimum eigenvalue of the gradient 
energy matrix. The results are statistically averaged over the equilibrium initial conditions. 

1. INTRODUCTION The necessity of an anisotropic correction in order to 

The most widely used description of spinodal decompo- 
sition of systems with one order parameter (binary mix- 
tures, melts, and solid solutions) is the description given by 
Cahn and Hillard.' Their description is based on the system 
of  equation^"^ 

-- a(p - BAD,, 
d t 

where 

p is the relative fraction of one component of the binary 
mixture, F i s  the free-energy functional in units of k, T, p is 
the reduced chemical potential, defined as a variational de- 
rivative of F, p is the number density, A is Onsager's coeffi- 
cient, and 7~ is the gradient energy coefficient. According to 
Ref. 1, a functional of the form (2) describes the properties 
of isotropic systems and cubic crystals. 

Solid solutions are anisotropic systems, to describe 
which it is necessary to generalize the expression (2) .  The 
gradient part of the free energy in this case must have the 
form's3 

d 

Here d is the dimension of the space and the parentheses 
denote a scalar product. Based on its physical significance 
the quadratic form (Kx,x) is positive-definite, and the spec- 
trum of the symmetric matrix K consists of positive real 
eigenvalues. A general theory of spinodal decomposition 
with a correction of the form (4)  in the energy functional has 
not been previously constructed, probably because such a 
correction makes it much more difficult to study the process 
analytically, even at its initial stage. As will be shown below, 
if the decomposition process is described by an isotropic 
functional of the form (2), then one obtains results for aniso- 
tropic systems that are wrong. 

describe the decomposition of solid solutions stems primar- 
ily from the fact that the most general functional of one vari- 
able p is expressed in the long-wavelength approximation in 
terms of the quantity F,(p) with the correction (4) (it is 
assumed that F is an analytic function of p, Ap, . . . ) . 3  The 
possibility of describing the process with the help of only one 
variable p (the order parameter) in turn indicates that the 
other parameters of the system (strains in the crystal, the 
components of the stress tensor, etc.), vary over much 
shorter spatial scales and with much shorter relaxation 
times. For this reason they can be expressed in terms of the 
leading mode (the concentration mode). This principle for 
excluding fast modes is widely employed in the theory of 
self-organization of dynamic systems4 and Cahn essentially 
used it implicitly to construct a theory with one order pa- 
rameter.5-6 

In Ref. 7 it was proposed that both the initial stage (sep- 
aration of the mode of maximum growth) and the later stage 
of decomposition of anisotropic systems be studied by using 
the description ( 1 )-(4). Nonlinear effects then become im- 
portant. In this paper the description of the later stage of 
decomposition implemented in Ref. 7 for isotropic systems is 
extended to the anisotropic case. Thus spinodal decomposi- 
tion in an anisotropic system can be described completely 
based on the nonlinear equation ( 1) .' 
2. LINEAR ANALYSIS: STATIONARY POINTS OF THE 
AMPLIFICATION FACTOR 

We study the initial stage of decomposition with the 
help of the linearized equation ( 1 ). Transforming in Eq. 
( 1 ) , after linearization, to the Fourier components of the 
fluctuations about the average value p,, we obtain 

Here Sp(q)  is the Fourier component of the fluctuation, q is 
the wave vector, and h = 6' ZFo/6'p 2. For h > 0 the Fourier 
components Sp(q)  decay for all q. For h <O the Fourier 
components corresponding to the condition 

2 (Kq, q)  <-h, (6) 

grow; modes for which q lies outside the ellipsoid (6)  decay. 
The mode of maximum growth is determined by the condi- 
tion 
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The symmetry of K makes it possible to write the condition 
( 7 )  in the form 

From here we obtain the solution q = 0. If q#O, then, multi- 
plying Eq. ( 8 ) by bk -the eigenvector of the matrix K corre- 
sponding to the eigenvalue A, -we obtain 

The case of the general position corresponds to the case 
in which all eigenvalues of the matrix K nondegenerate. In 
this case there are several possibilities of solving Eq. (9) for 
q. The relation . 

cannot hold for all k if q#O, since the vectors bk form an 
orthogonal basis.9 If the condition ( 10) is violated for only 
one value of k, then because bk and b, are orthogonal for 
k # I  the eigenvector b, , determined to within a constant fac- 
tor, will be a solution of the system (9).  The length of b, is 
given by the relation 

2q2h+h+2 (Kq, q) =O.  (11) 

Since (Kq,q) = AIq2 Eq. ( 1 1 ) can be rewritten in the 
form 

Finally, if the vector q is orthogonal to less than d - 1 eigen- 
vectors bk,  then at least two of the d relations (9)  can be 
written in the form ( 12). By assumption, a11 A, are nonde- 
generate, so that the last possibility cannot be realized. 

Thus, except at q = 0, the function R (q)  has another d 
stationary points corresponding to the eigenvectors of the 
matrix K with the normalization ( 12). The value of the am- 
plification factor at these points is 

i.e., smaller values of R (q) correspond to larger values of A. 
Comparing Eqs. (6)  and ( 13) one can see that all stationary 
points lie inside the region C~:R (q)  )O). 

If the eigenvalues of the matrix K are degenerate, the 
wave vector space must be represented as a direct sum of the 
invariant subspaces Q, of the eigenvectors of the matrix K 
corresponding to different values of A,. As is well known, 
vectors from the different subspaces Q, are orthogonal.9 It 
can be shown that the stationary points of the function R (q) ,  
except q = 0, lie in the intersection of Q, and the sphere 2, 
determined by the relation ( 12). For stationary points 
q€Qr n Z ,  , R (q)  is constant and equal to ( 13). 

In the case of one eigenvalue with degeneracy d any 
vector is an eigenvector of K and the appropriate vectors lie 
on the sphere ( 12). This is not the general case, where R (q)  
has only d stationary points. 

3. KINETICALLY FAVORED DIRECTIONS OF 
DECOMPOSITION 

To determine which solutions of Eq. (7)  give the func- 
tion R (q) an extremum we shall study the definiteness of the 
quadratic form 

Differentiating R (q)  we obtain from Eq. ( 14) 

where Ski is the Kronecker 8 function. One can see from Eq. 
( 15) that the amplification factor R (q)  is minimum when 
q = 0, since (B(O)x,x) = - 2hx2>0, if x#O. 

Let the stationary point being considered as an extre- 
mum lie in the intersection Q, nZ,. Substituting into Eq. 
( 15) the expression ( 11 ) for h we obtain, using the proper- 
ties of an eigenvector 

the following expression for (B(q)x,x) : 

( B  (q) x, x) =4htq2x2-49' (Kx, X) - 16hr (q9 X) 2. ( 17) 

For definiteness we shall assume that the magnitude of 
the vector x is equal to 1. This is not important for the subse- 
quent check, since the function ( 17) is a homogeneous func- 
tion of q and x. We shall study first the case A, = A,, where 
A ,  is the smallest eigenvalue in the spectrum. The fact that A ,  
is the minimum eigenvalue implies (Kx,x) )A,, (see,e.g., 
Gel'fand9), whence we have (B(q)x,x) G - 16A, (q,x12. 
The quadratic form (Kx,x) is minimum if and only if x is the 
eigenvector corresponding to the eigenvalue A ,. Hence if A ,  
is not degenerate, the form ( 17) takes on only negative val- 
ues. Indeed, if x is not an eigenvector corresponding to A,, 
then the sum of the first two terms on the right side of Eq. 
(17) is strictly less than zero. If x is such an eigenvector, 
the? the sum of these terms is equal to zero, but because q 
and x are collinear the third term is less than zero. Hence if 
A ,  is not degenerate, the function R (q)  has an unconditional 
maximum at the corresponding stationary point, it is evident 
from Eq. (13) that this maximum will be a global maxi- 
mum.If A ,  is degenerate, then a global maximum is reached 
at all points in Q, n Z ,  and it will be a conditional maximum. 

The stationary points corresponding to A, with I > 1 can 
be studied in an analogous manner. Analyzing Eq. ( 17) it 
can be shown that at these points R (q)  does not have a local 
maximum. The directions of x in which the form (17) is 
positive are determined by the eigenvectors from Q, with 
i < I; the directions in which the form ( 17) is negative are 
determined by the vectors from Q, with i> I and from the set 
XEQ,, (q,x # 0. 

Thus the amplification factor R (q) has one local mini- 
mum at q = 0 and one global maximum in the set Q, nZ, ; all 
remaining stationary points will be saddle points. This 
shows that in the anisotropic case of the general position 
both the kinetically favored spatial size of the structures and 
the direction of decomposition are determined at the initial 
stage (in contrast to the isotropic case, when all modes 
whose wave vectors lie on the sphere (12) grow with the 
same amplification factor). 
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4. NONLINEAR STAGE OF DECOMPOSITION 

Following Ref. 7, we shall use a reduced form of Eq. ( 1 ) 
to study the later stage of decomposition (the coalescence 
stage, at which the structures grow). This equation is con- 
structed by rewriting Eq. ( 1 ) in terms of the Fourier coeffi- 
cients of the fluctuations p, expanding in a Taylor series 
integrals of the type 

9 6cp (q-qz- . . . -q,) 6rp ( q d .  . .6rp (q,)  dq2 . . . dq, 

which arise in the nonlinear terms, and dropping all terms 
containing derivatives with respect to q. This approximation 
corresponds to the point-equation approximation in the the- 
ory of autowave proces~es.'~ In Ref. 7 it is shown that going 
from Cahn's equation to the reduced equation is equivalent 
to the "mean-field approximation" in the well-known non- 
linear theory of spinodal decomposition." The analytical 
dependences given in Ref. 7 were compared with the results 
obtained by modeling the decomposition process by the 
methods of molecular dynamics and with calculations based 
on the theory of Ref. 11. The result showed that the asymp- 
totic expressions given in Ref. 7 agree well with earlier nu- 
merical results. 

We study the decomposition process in a region in the 
shape of a rectangular parellelipiped of volume V with im- 
permeable boundaries. The reduced equation has the form 

We represent Eq. ( 18) in the form 

where C(q) = Sp(q) 1, = o .  Integrating over q we obtain,us- 
ing Eq. (19), 

Let us study Eq. (20) at times much longer than the 
duration of the linear stage of the process. We write Eq. (20) 
in the form 

The form (Dq,q) is positive definite since (Kq,q) is positive 
definite and A is positive; generally speaking, A can be posi- 
tive or negative. Below, as in Ref. 7, we shall be interested in 
the solution of Eq. (21 ) for A < 0, since this case is always 
realized first and corresponds to the motion of the maximum 
of the structure factor in the region of small q. 

We note that a procedure analogous to the one present- 
ed above for the complete equation ( 1 ) leads to an expres- 
sion of the form (2 1 ), and A is determined in terms of an 
expression of the form 

Our approximation ( 18) means that these q- and t-depen- 
dent expressions are replaced by a function of t  only. 

We shall now apply to the integral on the right side of 
Eq. (21) the multidimensional Laplace method.'' In so do- 
ing we shall employ the results of Sec. 3, since the form of the 
function R (q)  is similar to that of the argument of the expo- 
nential function in Eq. (2 1 ) and in Eq. (2 1 ) time is a param- 
eter. In the case of the general position the spectrum of the 
matrix D consists of nondegenerate eigenvalues. The argu- 
ment of the exponential in Eq. (21) assumes a maximum 
value for the eigenvector q, corresponding to the minimum 
eigenvalue AD in the spectrum of the matrix D and having 
the length q: = - A /2AD. The asymptotic value of the inte- 
gral in Eq. (2 1 ) is given by the expression 

uC (q.)  exp (A2t /4hD)  ( 2 n l t )  
z=2 - 

I det l q q ( q * )  I " , 

where I (q )  = - q2[A + (Dq,q)] and I,, is the matrix of 
the second derivatives of the function I with respect to the 
components of the wave vector (the 2 appears in Eq. (23) 
because there are two symmetric maxima, one at q ,  and 
another at - q, ) . Substituting Eqs. ( 15) and ( 16) we ob- 
tain 

- q * , k  q*.l Z q q  (q . )  =2qe2 (-D+hDE-4hDP), - -- , 
4. q. 

det I,,  (q . )  =2dq.2d det ( h J - D - 4 h ~ p ) .  (24) 

The remaining analysis is simplest for the case of p- 
independent A and K. In this case the elements of the matrix 
P, expressed in terms of the direction cosines of the vector 
q,, are constant, just like the elements of the matrix D and 
the quantity A. Introducing the notation 

cs= 1 det (D-hDE-4hDP) 1 ,  
we obtain instead of Eq. (23), using Eq. (24), 

z=u,C(q.) exp ( A 2 t / 4 h ~ )  ( - n / A t )  d'z, (25) 

where u, = 2u(2AD ) d / 2  /a1/'. Ford = 1 we have det P = 1, 
a = 4AD, AD = 2Ax, u, = u/2"' and Eq. (25) goes over to 
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Eq. (13) ofRef. 7. 
An equation for the squared wave vector q,, corre- 

sponding to the maximum of the structure factor of the an- 
isotropic system, can be derived from Eq. (25). 

5. ASYMPTOTIC GROWTH OF STRUCTURES 

We study the case Fo = up + be) 4, which corresponds 
to the Ginzburg-Landau form of the free-energy functional 
extended to the anisotropic case: 

The expression (26) is obtained by approximating Fo by a 
quartic polynomial and shifting by a corresponding con- 
stant; the term of the form const ,p + const, remaining after 
we do this does not affect the kinetics. From Eqs. (26) and 
(22) and the definition of q: we obtain 

3bqo q.2=q,2 - - 
hlt hit 

Here A,, as above, is the minimum eigenvalue in the spec- 
trumofthematrixK,A, = 2 M , ,  andqL = - h/4A1. We 
rewrite Eq. (27) in the form 

Solving Eq. (28) for z, using Eq. (25 ), we obtain 

The " + " sign in front of the square root in Eq. (29) corre- 
sponds to C >  0 and the " - " sign corresponds to C <  0. If in 
Eq. (29) (q i t ) '  is an increasing function of time, then at 
long times a solution does not exist. If (92, t)' approaches a 
constant nonzero value, then q:t -t and in the limit 
t- oc q; - const # 0, which is also physically meaningless. 
The solution (29) exists when at longtimes (q i  t) '  decreases 
to zero. This is equivalent to q: decreasing. But then the 
asymptotic behavior of the solution is determined by an 
equation with no derivatives (for definiteness we assume 
C> 0): 

As noted above, at the initial stage of decomposition the 
short-wavelength part of the spectrum of fluctuations is sup- 
pressed. The decomposition process is concentrated in the 
long-wavelength region; this can be taken into account with 
the leap of the initial condition, constant in the sphere 
q2 < 2qh and equal to zero outside it. The quantity Cis deter- 
mined from the normalization condition 

=zo  = uJCdq: 

where y, is equal to 2, T, and 4 ~ / 3  and d = 1,2, and 3. 

Transferring to the dimensionless variables v  = q i  /q& 
and T = 2q&Mlt  (putting t into a dimensionless form in 
which the duration of the initial stage of the process 
corresponds to unity ), we obtain from Eq. (30) 

dv G ( v ,  z )  -v 
-= 

exp ( v2z )  exp (2v2z)  , G=i-A,. 
( v z )  

- Az 
d z  7 (v.rId ' 

here Y = Idet (K - A,E - 4A,P) 1. The condition (30) is 
equivalent to the equation G(v,T) = 0, whence 

exp ( v2z )  / ( v T ) ~ / ' = [  (i/gA~z+AZ)'h-ilzAi]IA~=y. (32) 

Raising Eq. (32) to the power 4/d, we write Eq. (32) in the 
form 

For sufficiently large 7 the solution of Eq. (33) is given by 
the Burman-Lagrange seriesI2 

m 

The series (34) converges for T >  4e/dy41d and then 
Y2 = ~ - ~ / ~ 7 ~  + o(7- ). The spatial sizelofthe decom- 
position structures grows as 

Thus for any d the growth exponent of the structures in 
an anisotropic system is equal to 1/2. However as the degen- 
eracy ofA1 increases the asymptotic behavior changes. If the 
degeneracy is equal to m, then the general form of Eq. (32) 
will be 

exp ( v2z )  v ( ~ ' - ' ) / ~  - - exp ( v z z )  
( U t )  ( d - m + l ) / Z  ,,(d-zm+z)/z,(d-m+i)/z = y' (36) 

Indeed, if we choose in the wave space a basis consisting of 
the eigenvectors of the matrix K, transform in the subspace 
Q, to the coordinates 

(Dj are angular variables), and integrate over Pi, then the 
integral in Eq. (21) is transformed into an integral over a 
space with dimension d - m + 1. The minimum eigenvalue 
of the matrix K in the new space is nondegenerate. Using the 
scheme described in this section we obtain Eq. (36), and the 
factor v'" - "I2 appears in the numerator, because on trans- 
forming to a lower-dimensional space the surface area of an 
m-dimensional sphere with radius q, appears in the inte- 
grand. It can be shown that for d - 2m + 2 > 0 the quantity 
l = 2 ~ / q ,  grows with the exponent ( d  - m + 1 )/ 
(2d - 4m + 4). Ford - 2m + 2 ~ 0 ,  the quantity 6 grows as 
(r/lnr) 'I4 ;I2 this case is close to the isotropic case studied in 
Ref. 7. The following results were obtained for an isotropic 
solution with d > 1 (m = d )  : 

E=EM[2rlln ( ~ y "  ] ' h [ l + O ( l / l n  r ) ] ,  d=2, 
(37) 

g = E ~ [ 4 ~ / l n ( 4 y ~ ~ ~ )  ] ' " [ l + O ( l / l n  z )  1 ,  d=3, 

i.e., the structures grow with an exponent of 1/4. It is well 
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known that the Lifshitz-Slezov theoryI3 gives an exponent 
of 1/3; at the same time some authorsI4 obtained by one or 
another method exponents less than 1/3. It follows from the 
results obtained above the anisotropic decomposition in a 
multidimensional system proceeds as a quasi-dimensional 
process and predominantly in the direct q,. We also note 
that isotropic decomposition is slower than anisotropic de- 
composition. This is connected with the quasi-one-dimen- 
sionality of the anisotropic decomposition, in which there is 
virtually no competition between decomposition in the most 
favorable spatial direction and in other directions. This situ- 
ation is different from the isotropic situation, in which 
modes with wave vectors of the same length are equally suit- 
able irrespective of the direction of the vector. 

6. AVERAGING OVER THE INITIAL CONDITIONS 

Equations ( 35 ) and (37) contain the quantity zo, which 
is the maximum deviation of the composition in the sample 
(monomineral grain) from the average value at t = 0. Esti- 
mates of zo may not be available or they may not be very 
accurate, so that it is more convenient to represent the 
asymptotic expressions as an average over an ensemble of 
equilibrium initial distributions of p. Assume that initially 
the system has a temperature To above the spinodal, and 
decomposition occurs by means of quite rapid cooling to the 
temperature T. We average over all possible distributions of 
the form (3  1 ). We rewrite Eq. (30) in the form 

The Gibbs distribution has the form3 

where the zero index denotes the quantities a, 6, and K at To. 
Substituting Eq. ( 3  1 ), we obtain 

w oc e x p  ( - p V ~ C ~ y ~ 2 ~ ' ~ q ~ ~ a ) ,  

Averaging Eq. (38) over the distribution (39), allowing for 
the fact thatg, = g + ,  i fC>Oandg+  = g -  i fC<Owe 
obtain after transformations the equation 

exp ( v . ' ~ )  / ( v * ~ ) ~ / ~ = y . ,  

where v, is the average of u obtained in the manner indicat- 
ed, 

Correspondingly, Eq. (35) assumes the form 

E . = ~ ~ T " ~ . ' / ~  . 

If the denominator is estimated to be of the order of A ;' in 
order of magnitude and the initial state is not too close to the 
spinodal, then Eq. (40) can be simplified as follows: 

In the isotropic case y in Eq. (37) must be replaced by 

and in the definition ofg, - A,  must be everywhere replaced 
by tt. 

In concluding this section we shall explain more pre- 
cisely what the case d < 3 studied above means. For d = 1, 
the initial conditions for Eq. ( 1 ) are such (in the three-di- 
mensional space) that they do not depend on two spatial 
coordinates. For d = 2, the initial conditions remain con- 
stant along one coordinate axis. Accordingly, for d = 1 the 
quantityp in Eq. (2)  is the linear density of lattice sites along 
the coordinate axis along which the initial condition varies 
and it has the dimension of inverse length. For d = 2, p has 
the dimensions of inverse length squared. Such states are in 
principle possible for some specific character of the ordering 
of the solid solution at the temperature To, but it is clear that 
in themselves they are exceptional. The fundamental result 
of this work is the following property of anisotropic decom- 
position: asymptotically the process is organized as a one- 
dimensional process. 

7. COMPUTATIONAL EXAMPLE; DISCUSSION 

An example of calculations based on Eqs. (37) is given 
in Ref. 7, where decomposition in feldspars (the solid solu- 
tion NaA1Si30,-KA1Si30,) was studied. According to Ref. 
15, this is an isostructural solid solution. The theory here is 
especially suited precisely for such solutions, since the devel- 
opment of spinodal structures in them reduces to the motion 
of cations in a relatively inert framework, which remains 
continuous throughout the entire crystal. In Ref. 7 the quan- 
tity zo was set equal to 0.1. Averaging over the initial condi- 
tions changes the formulas. The starting data for feldspars 
were taken from Ref. 16. In Ref. 7 the reduction of the free 
energy of mixing to a symmetric form gave b = 3.68 and 
a = - 0.58. Decomposition at T = 773 K was studied; at 
this temperature the unit cell is - l o 9  m in size, whence we 
get p=: m - d .  The size of the spinodal structures at the 
end of the linear stage of the process is 
6, = (75 f 10) X 10 - ' O  m. The quantity A ,  can be estimat- 
ed using the formula 

whence A ,  - 4 x  1 0  l9  m2. If the solid solution is isotropic, 
then tt can be determined using a similar formula. Let the 
spinodal decomposition proceed by means of a transition 
through the critical temperature Tc ,  i.e., po = 0. For defi- 
niteness let a, = - a, i.e., Tc - T z  To - Tc . Performing 
the calculations using the relations (41) and (42) we find 
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that in the anisotropic case with d = 1,2, and 3 the quantity 
y, is equal to 0.71, 1.6, and 3.1, respectively. The growth of 
the structures can be described in the form (35) with the 
coefficient y:/d equal to 0.71, 1.25, and 1.48 with d = 1, 2, 
and 3, respectively. In the isotropic case with d = 2 and 3 the 
quantity y, is equal to 0.9 and 1.6, respectively. The product 
in the argument of the logarithm in Eq. (37) has the form 
0.817 for d = 2 and 25.23 for d = 3. the expressions ob- 
tained should be used for values of T much greater than uni- 
ty. 

Equations (35), (37), and (40)-(42) can serve as a 
basis for the calculation of the kinetics of the growth of struc- 
tures in the process of spinodal decomposition of anisotropic 
and isotropic systems. In addition, if we transform in Eqs. 
(35) and (37) to dimensional variables and assume that On- 
sager's coefficient and the parameters of the thermodynamic 
potential are functions of the time-dependent temperature, 
we can study the effect of the rate of cooling on the kinetics of 
decomposition. This question is important in application to 
problems in metal science and geochemistry. 

The approximation of F,(p) by a quartic polynomial is 
not a significant restriction. In the general case, one seeks the 
roots of a polynomial of the type (28) of degree higher than 
two; this merely changes the constant y in the formulas ob- 
tained. 

We note that the correctness of using the reduced equa- 
tion in the nonlinear analysis was studied in detail in Refs. 17 
and 18, where the results of the numerical solution of Eqs. 
( 1 ) and (2)  in the two-dimensional case were compared with 
calculations based on simpler theories. The results of these 
works agree very well with the time dependences ofthe char- 
acteristic size of decomposition structures obtained in the 
Cahn-Hillard theory and in Langer's approximation. More- 
over, calculations based on the more complicated theory of 
Langer, Bar-on, and Millerk9 not only give qualitatively the 
same time dependence for the sizes of the structures, but in 
addition yield a dependence which is quantitatively not very 
different. 

8. CONCLUSIONS 

In conclusion we shall discuss the generality of these 
results. Consider the most general form of the equation de- 
scribing a diffusion-controlled phase transition in a system 
with one order parameter: 

d 

Here Aii is an element of the symmetric matrix of the kinetic 
coefficients (for simplicity we assume below that Aij are 
constants). We multiply Eq. (43) by SF/& and integrate 
over the space. Using the identity 

we obtain 

The only constraint on the theory is that the free energy must 
not increase with time, 

here the equality holds only on the stationary solutions 
p = const. For this reason the form BAiiqiqj should be posi- 
tive-definite, which is equivalent to the possibility of rotating 
the coordinates so that Eq. (43) assumes the form 

d 

Next, performing the transformation ri -ri (MAi  ) 
where A is the characteristic scale of the kinetic coefficient, 
we obtain Eq. ( 1 ) . As noted above, in the long-wavelength 
approximation the free-energy functional has the general 
form 

The coordinate transformations indicated above transform 
K once again into a symmetric matrix. Thus the description 
of a diffusion-controlled transition with one order parameter 
reduces to solving the problem ( 1 ) with the functional (44). 
Most importantly, in the dynamic description an anisotropic 
form cannot be reduced to an isotropic form, as can be done 
by rotating and then changing scales along the axes when 
analyzing the statics of critical phenomena based solely on 
the functional (44). This fact was apparently ignored in the 
theory of spinodal decomposition which was constructed 
initially precisely for applications to solid solutions. At- 
tempts to take into account the differences between decom- 
position in an isotropic medium and decomposition super- 
posed on a medium having higher symmetry were limited to 
the case of a cubic crystal.6 A general analysis of decomposi- 
tion in an anisotropic system was not performed. The con- 
structive development of a general theory, performed above, 
was made possible by the use of two quite simple, but funda- 
mental, assumptions. The first assumption consists of the 
introduction of an order parameter, which means that the 
relaxation times of all other parameters are much shorter. 
These parameters actually change with their own equilibri- 
um values, which depend on the order parameter, and there- 
by they are eliminated from the analysis. The second as- 
sumption consists of using the energy functional in its 
general form and the diffusion equation for the anisotropic 
system in the long-wavelength approximation. 

Thus it is possible to propose, starting from first princi- 
ples, a quite general scenario of phase separation in diffu- 
sion-controlled systems with one order parameter. Whether 
the decomposition is isotropic or anisotropic depends on the 
properties of the gradient-energy tensor, whose components 
can be determined from small-angle scattering data. The ex- 
ponent in the law of growth of the structures depends on the 
type of decomposition. The simplest form of the equation of 
decomposition in the anisotropic scenario is 

d 

which can be derived by transforming the dependent and 
independent variables after retaining in Eq. ( 1 ) nonlineari- 
ties up to and including the cubic terms. 
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onto) for sending me reprints of Res. 16 and 17. 

313 Sov. Phys. JETP 71 (2), August 1990 V. S. Mitlin 313 



APPENDIX 

We show here how to solve Eq. (36). We write Eq. (36) 
in the form 

exp (v2z)  
= yrd" 

( v Z 2 )  ( d - 2 m + z ) / r  

Next, three cases are distinguished. ford - 2m + 2 = 0 Eq. 
(A. 1 ) can be solved exactly: 

For d - 2m + 2 > 0, introducing p = 4v2r/(d - 2m + 2) 
we obtain instead of Eq. (A1 ) 

The leading term in the asymptotic expansion of the 
solution of Eq. (A.2) is 

For d - 2m + 2 <O, introducing p = 4&/(2m - d - 2), 
we obtain from Eq. (A1 ) 

The leading term in the solution of Eq. (A3) is 

2m-d-2 
v2 = (lnf + l n l n f ) .  

42 

One can see from the solutions presented that ford = 3, 
the exponent in the growth law is equal to 1/2 for m = 1, 1 
for m = 2, and 1/4 for m = 3. Thus as one goes from an 
anisotropic situation (m = 1) to an isotropic situation 
(m = 2) the exponent changes from 1/2 to 1/4 nonmono- 
tonically. In other words, for every d there exists a critical 
dimension of the manifold of wave vectors that correspond 

to modes of maximum growth, 

which marks the boundary between decomposition with a 
"quasi-isotropic" asymptotic law (m)m, , the exponent is 
equal to 1/4) and decomposition with an "anisotropic" 
asymptotic law (m <me,  the exponent is greater than or 
equal to 1/2). 
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