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In a thin slit filled with a dielectric liquid, the long-range correlations in density fluctuations fall 
off much more slowly with distance if the slit walls are made of a metal than if they are made of a 
dielectric. A power-law dependence of the correlation function on the distance is found in the 
corresponding distance intervals. Results of the same type are found for thin slits and pores with 
dielectric walls filled with a conducting liquid. Two interrelated factors which are specific to this 
problem are pointed out: the modification of the Coulomb interaction in thin films and filaments 
and the specific dispersion of 2D and 1D plasma excitations. The van der Waals interaction of 
atoms in thin slits and pores is described. 

1. INTRODUCTION 

Under certain conditions, long-range correlations in a 
liquid filling a thin slit or pore may be quite different from 
the corresponding correlations in the interior of a large vol- 
ume of liquid, as we will show below. We say that a plane slit 
or cylindrical pore is "thin" if the distance R over which the 
correlations are considered are significantly greater than the 
slit width 1 or the pore radius a: 

Under this condition, the parameters 1 and a can lie in a fairly 
wide interval, say, from ten to several hundred (or even 
thousand) angstroms. The only reason for the upper limit 
here is the question of whether it is possible to observe a 
contribution from the long-range (and therefore quite 
weak) correlations under consideration here in (for exam- 
ple) experiments on scattering in a slit. The reasons for the 
lower limit on 1 and a, on the other hand, are not simply the 
matter of experimental feasibility but also the assumptions 
used in the theory. For example, in the discussion below we 
will ignore the spatial dispersion of the dielectric constant of 
the liquid and of the surrounding media. 

The asymptotic behavior of the correlation function of 
classical density fluctuations in a liquid is known to be gov- 
erned by the van der Waals interaction.'s2 The variation of 
the van der Waals interaction with distance is usually quite 
universal. If retardation can be ignored, for example, the 
energy of the van der Waals interaction of atoms is propor- 
tional to R - 6 .  The specific properties of the particular 
atoms and of the surrounding medium (if we are thinking of 
impurity atoms in a bulk liquid volume) affect only the pro- 
portionality factor in the interaction power law; the expo- 
nent does not depend on these properties. 

We show below that in a thin slit or pore the interaction 
of the atoms and the asymptotic behavior of the correlation 
function of the liquid can be of a specific nature. The corre- 
sponding exponents in the power-law functions of the dis- 
tance are quite different for metals and dielectrics. This dif- 
ference is a direct consequence of collective many-particle 
effects in condensed media; it is present ev:n in the simplest 
case, when two atoms interact in an empty thin slit with 
metal or dielectric walls. Two interrelated factors play an 
important role in determining the distance dependence of 
the interaction here: the modification of the Coulomb inter- 

action in thin slits and films (or in thin filaments) and the 
specific nature of the dispersion of plasmons and other elec- 
tromagnetic excitations in 2D (or ID) systems. Excitations 
with wavelengths A 2 R are important for the van der Waals 
interaction. We then find A = 2?r/k%l,a. from condition 
( 1 ) . It follows that 2D or 1D virtual electromagnetic excita- 
tions propagating along the slit or film (or filament) with a 
2D or 1D wave vector kg1 - ',a - which may be damped, 
may be important in problems of this type. 

2. VAN DER WAALS INTERACTION IN A THIN SLIT 

The correlation function of density fluctuations, 
y(r,rl) ,  in an isotropic liquid at large distances 
R = I r - r'l $a,,fiu/T (a, is a distance at the atomic scale, 
and u is the sound velocity), is given by 

T 
~ ( r , r ' ) = - ~  U(r,rf),  

nb- 
(2)  

m 

U(r, r') =-i" ' aeff,% (imS)aeff,2 ( i r i ~ s )  

8 - 0  

Here n is the average density of the liquid, the coefficient b is 
determined by short-range forces, and 

1 ~ E ( u )  
a.tf(o) = -- 

4n dn ' 
where E ( W )  is the dielectric constant of the liquid. The tem- 
perature Green's function of a photon in the medium which 
appears in (3)  satisfies the equation 

Expression (3  ) also describes the free energy of the van 
der Waals interaction of impurity particles in a liquid. In this 
case we should set 
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where N is the concentration of impurity particles, and 
E ,  ( w )  is the dielectric constant of the solution. If we are 
instead dealing with the interaction of atoms in a bounded 
empty volume, we should replace a e R ( w )  in ( 3 )  by the dy- 
namic atomic polarizabilities a (a ) .  

We first consider a liquid-filled plane slit of width I 
(whose boundaries run perpendicular to the x axis). For this 
system, we will find the Green's function Dik (w;r ,r l )  in the 
region 0 < x, x' < I and R  = I r  - r'l ) I .  The coordinates x 
and x' are assumed to be far enough from the walls of the slit 
that we can ignore the short-range forces exerted by the 
walls and induced by the walls in the atoms of the liquid by 
van der Waals dipole moments. At the middle of the slit the 
dipole polarization is obviously zero, because the effects of 
the opposite walls cancel out. 

We denote by E ,  ( o )  and ~ , ( w )  the dielectric constants 
of the walls of the slit for x < 0 and x > I ,  respectively, while 
E ~ ( w )  is the dielectric constant of the liquid filling the slit. 
We find solutions of Eqs. (4)  after Fourier-transforming in 
the coordinates y and z, 

and using the conditions that the quantities  ED,^ ,Dyk ,Dzk 
and curl,Djk and curl,Djk are continuous at the boundaries 
x = 0,I. We write the solutions for the region of w  and q 
values of interest here, which are related by the inequality 

under which the components of the Green's function are 
actually independent of the coordinates x and x'.  Here we 
have 

4nhqyeS [eipzO (XI-x)  -&,p,8 (x-x') ] 
D S Y ( o ,  q )  = i  

x?[&s (&ipz+&zpi) + I ( & i p 3 + & 3 ~ i )  ( E ~ P ~ ~ E ~ P Z )  1 

All the dielectric constants depend on the imaginary fre- 
quency iw here. In ( 7 ) - ( 9 )  we have introduced 

Expressions for D, and D, = Dyz are found from ( 8 )  
by replacing the factor qi in the first term by q: and - qyq,, 

respectively, and by replacing the factor q: in the second by 
q: and qyq,, respectively. The expression for D,, follows 
from ( 9 )  after we replace the factor qy by q,. In addition, the 
following relations hold: 

It can be seen from ( 9 )  that at the distances under considera- 
tion here, R  ) I ,  in coordinate space we have 

Dxa, ( r ,  r') =Dux(r, r') =Dsr ( r ,  r') =Dzx(r ,  r') =0. 

If the relations ( i w )  - ~ ~ ( i w )  - ~ , ( i w )  hold in the fre- 
quency region of interest, by making use of relation ( 6 )  we 
can ignore the second terms, containing the factor I ,  in 
square brackets in ( 7 ) - ( 9 ) .  These terms, however, may be 
important, in the case E ,  ( i w )  - c Z ( i w )  ) ~ , ( i w )  for example. 
In such a case the first and second terms in square brackets in 
( 7 )  are comparable in magnitude under the condition 

E ~ : I - E , P ~ ,  which is compatible with ( 6 ) .  We will be dis- 
cussing these cases separately below. For simplicity we set 

Interaction potential ( 3 )  and correlation ( 2 )  behave in 
the usual way if the terms containing the factor I, which we 
just mentioned, can be ignored in the calculation of the 
Green's function in ( 5 ) .  In this case the characteristic fre- 
quency of the problem, w,, is independent of R ,  being deter- 
mined exclusively by the absorption spectra of the given con- 
densed media. 

At distances I<R (iw,) (and T<&,) we 
find 

ti aezff (io) e4 (io) u(R)=--I d o  ------[5fT--]. ( 1 1 )  
2nR6 E ' ( ~ o )  ~3 ( 1 0 )  

In the opposite limit R  ) I ,  ~ / w g ' / ~ ( i w , )  and T < l i c / R ~ ~ / ~ ) ,  
we find 

Here we write the temperature-dependent component of the 
interaction potential, which is described by the s = 0 term in 
( 3 ) :  

According to ( 1 1  )-( 13),  the specific properties of the 
walls of the slit and those of the liquid filling the slit affect 
only the proportionality factors (which contain the dielec- 
tric constants of the media) in the power-law functions of 
the distance. The exponents in these functions are universal. 
As we have already mentioned, the approximations used in 
deriving ( 11)- (13)  are generally not valid in the case 
~ ( i  W )  > ~ , ( i  W ) ,  where W  is a characteristic frequency. It 
follows from the general properties of dielectric constants 
that the strong inequality ~ ( i w )  ) R ~ , ( i w )  can hold on the 
upper imaginary frequency semiaxis only if w  is not too 
large. For a modification of expression ( 13 ) which describes 
the contribution of classical fluctuations to the interaction, it 
is sufficient to impose the condition R  RE,^, which per- 
tains to static values of the dielectric constants. The inequali- 
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ty IE (iw ) 2 RE, (iw ) can lead to changes in expressions ( 1 1 ) 
and ( 12), on the other hand, only if this inequality pertains 
to characteristic frequencies w -Z. The contribution from 
the component D,, of the Green's function turns out to be 
the most important one in (3) .  

If a nonpolar dielectric liquid fills a slit with walls made 
of a polar dielectric, then we have ~ ( i w ) ) ~ , ( i w )  for 
w < 10" s - ' and ~ ( i w )  -E, (iw ) for higher frequencies. Ex- 
pressions ( 1 1 ) and ( 12) then remain essentially unchanged 
over a wide temperature range (which includes, in particu- 
lar, temperatures on the order of room temperature), except 
that the static values of the dielectric constants in (12) 
should be replaced by their values for frequencies 
-c/R> 10" s '. In (13), the static values of the dielectric 
constants still appear, and the quantity Us = , (R ), increases 
significantly in absolute value as the ratio E,/E,, increases, 
according to ( 13). On the other hand, expression ( 13) is 
valid only in the distance region R ) IE,/E,,, which becomes 
progressively more remote with increasing E,. In the oppo- 
site limit R & IE,/E,, we find 

8 ~ a . ? t , ~  
U,=, (R) =- ---- 

E ~ ~ ~ ~ R ~  ' 

The large factor E; here, in contrast with the situation in 
( 13), appears only in the denominator. It makes the quanti- 
ty U, = , (R ) small. 

The most interesting case is that in which a dielectric 
liquid (or gas) is in a thin slit with metal walls. Because of 
the divergence of E, (iw) as w --PO for a metal, the formal use 
of Eqs. ( 11 )-( 13) leads to infinite values of the interaction. 
Actually, the approximations made in the derivation of 
( 1 1 )-( 13) are not justified here under any conditions. The 
calculations must be revised. 

It follows from ( 14) that in the limit E,- w the quanti- 
ty U, = , (R ) is zero. For a dielectric gap with metal walls the 
thermal component of U(R) is thus extremely small in gen- 
eral. It is described for the most part by the term U, = , (R ); 
at large distances it usually falls off exponentially. That com- 
ponent will be ignored below. 

The behavior of the dielectric constant of the metal on 
the upper imaginary frequency semiaxis can be approximat- 
ed over a fairly broad part of the spectrum of interest here by 
the simple expression 

Below we assume v & w, . 
We first assume that the width of the thin slit satisfies 

I&c/w,. A calculation from (7), (15), (5),  and (3)  then 
leads to the following results. 

In the distance interval I& R &c/w,, lw;/2?~,, the ba- 
sic component of the interaction is found to be 

where the numerical factor A is given by 

and H,(z) and N,(z)  are respectively the Struve function 
and the Bessel function of the second kind. A numerical cal- 
culation yields Az0.05. The characteristic frequency here 
depends on the distance R and is given by 
W = w, (1 /2~,$) 'I2. Using ( 1) we find W2 & w;/E,,. AS- 
suming a,-oo and v&Z, we find the relations . - 
e3(1 W)ZE,~ ,  a e f f ( i Z ) ~ a e A ; , ,  and l&(iW)-R&,(i 75). 

For distances 

we find 

Here the characteristic frequency also depends on R: 

Under our assumptions we have iS) v and I&(i Z)  RE^,. 
We also assume ~ , ( i  W) Z E , ~  and aeff ( i  Z) ~ a ~ ~ , ,  since we 
have 75 5 c/R & w, - w,. 

At distances R %  (c /v ) (~~ , /~cE , , )  we have w(v. 
Under the additional condition 

we find 

The conductivity a of the metal walls which appears here has 
been introduced by means of the relation w; = 4wv,  which 
corresponds to the model expression ( 15), which we used 
for the dielectric constant of the metal. The characteristic 
frequency is given under these conditions by 

It depends on the distance R and satisfies the inequalities - 
w&v and ~E(~Z)>RE, , .  Here E ~ ( ~ W ) Z E ~ ~  and 
aeff ( i  Z )  zaeA;o. 

Above we assumed a, I /c& 1. If the opposite condition 
holds instead (w, 1 /c  ) 1 1, we find the following expression 
in the distance interval (c/w, ) &1&R < (c/v&:i2) (in which 
we have Z = c/Re:F) : 

27nfi~a,:,,~ 
U (R) =- 

256&",12R5 a 

In the particular case of an empty slit, E,, = 1, expres- 
sion (20) is the same as the result of Ref. 3. The conditions 
under which this result is applicable were not pointed out in 
Ref. 3, however. Even under the condition w,l/c> 1, expres- 
sion ( 19) again holds at sufficiently large distances. 

To determine the physical meaning of these results, let 
us examine, for example, expression ( 16), which holds when 
the retardation is totally ignored. To estimate the energy of 
the van der Waals interaction of the atoms when the retarda- 
tion is ignored, we should (first) work from the distance 
dependence of the interaction energy of electric dipoles and 
(second) determine the characteristic frequency of the pho- 
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tons or other electromagnetic excitations in the medium 
whose exchange constitutes the van der Waals interaction. 
The interaction energy of electric dipoles in a medium is 
usually proportional to E - 'R - 3; if retardation is ignored 
the characteristic frequency w, is independent of the dis- 
tance and usually lies in the interval 10'6-1017s-'. The 
expression for the energy of the van der Waals interaction of 
the atoms is then 

For a thin dielectric gap with metal walls, there are modifi- 
cations of both the distance dependence of the energy of the 
electric dipoles and the expression for the characteristic fre- 
quency W, which in this case also depends on the distance. 

Keldysh4 has shown that the Coulomb interaction ener- 
gy of changes in thin films is modified substantially if the 
dielectric constant of the thin film is significantly greater 
than that of the surrounding media. In the distance region of 
importance for the problem at hand, this energy is propor- 
tional to 1 - 'In R. It can be shown that results largely analo- 
gous to those found by Keldysh4 can be found in the opposite 
limit, in which the dielectric constants of the surrounding 
media are significantly greater than that of the film (in the 
case at hand, this is the dielectric constant of the liquid filling 
the slit). These comments apply in particular to the propor- 
tionality of the charge interaction energy to the quantity 
1 'In R. The interaction energy of two electric dipoles ori- 
ented perpendicular to the slit is then proportional to 
E; 'I - 'R - '. The van der Waals interaction energy can 
then be estimated from the following expression in this case: 

-ti@ ( R )  a 2 ( i a  ) ( i a  ) L2R4 

The frequency of 2D plasmons with wave vectors q-R - ' 
serves as the characteristic frequency here. If a thin metal 
layer is surrounded by dielectric media, we have 
w (q) a (ql) '/' for the dispersion of the spectrum of the 2D 
plasmons, as we know. It turns out that a similar dispersion 
prevails for collective plasma excitations which are propa- 
gating along the slit and which are localized near it in the 
case of a thin dielectric-filled (or empty) slit with metal 
walls. For an estimate we can assume 
Z(R)  =: (I/RE,,) '/'0,. Since Z2< w; follows from ( 1 ), we 
have a ( i  Z )  =:a, and c3(i ij) =:e3,, and we find the following 
result for the interaction energy of atoms in a slit with metal 
walls: 

This result agrees with ( 16). 
The estimate 

-haa,; (im) /e3' (6) L2R4 

follows directly from (3),  (5),  and ( 7 )  in the case 

le (ia) >Re3 ( i m ) ,  ~ e , ' " ( i ~ ) / c < q - R - ' .  

This estimate agrees completely with the results in (16)- 
(20), when the particular characteristic frequency Z speci- 
fied for each of those results is used. For example, if we set 

then we find expression (20) to within a numerical factor. 

The appearance of an 1 - 'R - dependence instead of a Ca- 
simir-Polder dependence R - in (20) is then due entirely 
to the modification of the Coulomb interaction in a thin slit 
with metal walls. The dynamic nature of the interaction is 
also extremely important for the validity of this estimate, 
and retardation is important for the results in ( 18)-(20). In 
the static limit (w = 0), if we ignore the first term in square 
brackets in ( 7 ) ,  we find (after a transformation to the coor- 
dinate representation) that D, is essentially zero every- 
where except at small distances, R 5 1. At large distances, 
Dx, is then dominated by the following term in the expan- 
sion in powers of the parameter RE,,/(~E,). Assuming 
q - R - ' and E,) E,,, we find 

(aVfic"Da(ml R )  I .=om (eOl2R) -', 
in agreement with ( 14). In a slit with metal walls (E,+ ) 
the static Coulomb interaction is completely screened at dis- 
tances R 2 1. 

It can be seen from a comparison of (16)-(20) with 
( 1 I)-( 13) that the van der Waals interaction of atoms and 
the long-range correlations in a thin slit with metal walls, 
filled with a dielectric liquid, fall off much more slowly with 
distance than they do with dielectric walls, because of collec- 
tive effects. 

Let us take a brief look at the question of long-range 
correlations and the van der Waals interaction of impurity 
particles in a thin layer of a liquid metal in a slit with dielec- 
tric walls. If k3 ( i  W )  2 R&(i W), then we are again obliged to 
consider the second terms, containing the factor I, in square 
brackets in expressions (7)-(9). The Green's-function com- 
ponents D,,,,, D,, D,,, and D, dominate in (3)  in this case. 
Under these conditions, the long-range correlations in a liq- 
uid metal fall off with distance much more slowly than does 
the van der Waals interaction of electrically neutral impuri- 
ty particles (atoms) in the same metal. Under the conditions 

we find the following estimate of the interaction potential 
from ( 3 ) ,  (5),  and (8) :  

- (i~)'/s,2 ( im)  L2R4. 

For impurity particles, the metal filling the slit substantially 
weakens the interaction; this weakening is described by the 
factor E; ( i  W) = E; ' ( i  W )  . For simplicity we consider 
only the case in which retardation can be ignored. For W>v 
we have 

This contribution to the interaction of the impurity particles 
is then 

-&(R) a t f ,  _ - - h w ~ a ~ f . o ~ "  
U ( R )  = 

1 2 ~ 4 ~ M 2  ( im)  R'a'sesta 

This component of the energy falls off extremely rapidly 
with distance and is comparatively small in magnitude. In 
addition to this component of the interaction energy of the 
impurity atoms there are terms proportional to R - 6 .  The 
latter are the main components here; an estimate of them 
takes the usual form 
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The quantity E, (iw,) [in contrast with E, ( i  75) ] is small 
because of the rather large value of the frequency w,. 

We find a completely different result when we look at 
the long-range correlations in a thin layer of a liquid metal. 
Instead of the relation aefl (i W) -aefi, we should set 

in this case. We then find the following contribution to U ( R  ) 
from the exchange of 2D plasmons: 

This is the dominant component. A systematic calculation 
yields 

where the numerical factor B is given by 

A numerical calculation yields Bz0.006. 

3. VAN DER WAALS INTERACTION IN A THIN CYLINDRICAL 
PORE 

We denote the dielectric constant of a thin cylindrical 
pore or filament of radius a by E, ( a ) ,  and that of the sur- 
rounding medium by ~ , ( w ) .  Using the cylindrical coordi- 
nate systemp, p, z, we first find the photon Green's function 
Dik(@;r,rl) for this system in the region 
0 <p, p' < a, R = I r - r'l &a. As in the case of a thin slit, it is 
assumed that the vectors r and r' are not too close to the 
interface. The spatial variation of the Green's function then 
essentially reduces to a dependence on z - z', without a de- 
pendence onp, p' or p, p '. For the Green's-function compo- 
nents D,,, D,, D,,, and D, we find from (4) a homoge- 
neous system of equations (without sources) which do not 
depend on the other components. These components are 
thus zero. Under the conditions specified above, the quanti- 
ties D, and Dpz are also zero. For the components 
D,, (w; z - zf )D and D,, ( a ;  z - z') we find the expression 

x exp - [ 
The expression for D,, is slightly more complicated: 

wherep,,, = [ k  + ( w ~ / c ~ ) E , , ,  (iw) ] and where we can 
setp,,, a g 1 in (24) by virtue of condition ( 1). 

If the inequality 

holds along with ( 1 ), we find from (23), (24), and (3)  the 
expression 

for distances RBA, and T&h, ,  while we find 

for RSA, and T<&/R. 
The van der Waals interaction potential has its usual 

form here. An inhomogeneity in the system (a cylindrical 
pore in the case at hand) affects only the proportionality 
factor in the corresponding power law for the potential of the 
interatomic interaction; there is no change in the exponent. 

If no condition ( 1 ) holds, condition (25 ) may be violat- 
ed only if E, (i  W) S&,(i 5 ) .  In particular, the inequality 
E, ( i  W )  $E2(i W) might be applied to the case of a conduct- 
ing liquid filling a thin pore with dielectric walls (if - 
W' < W; - w: ). Analysis shows, however, that the van der 
Waals interaction of impurity atoms in a thin pore has its 
usual form even when condition (25) is violated. The addi- 
tional correction terms which arise in this case are usually 
small. This situation can be explained in the following way. 
An important distinction between the problem of a thin 
plane slit and that of a thin cylindrical pore is that for the 
pore there is a significant modification of the Coulomb inter- 
action only in the one limiting case in which the dielectric 
constant ofthe pore, E , ,  is significantly larger than that ofthe 
surrounding medium, E,. A collective mode of the ID-plas- 
mon type also exists only in the case of a thin metal filament 
surrounded by a dielectric medium (it does not exist for a 
dielectric filamentary pore in a metal). This situation is in 
total agreement with the circumstance that the van der 
Waals interaction in a thin cylindrical pore could have spe- 
cific features only for E,  (5) &&,(iW). 

Furthermore, under the condition E,  BE, the Coulomb 
interaction of charges in a thin cylindrical pore can be repre- 
sented in the distance interval of importance here as a series 
whose first three terms (the most important ones) are pro- 
portional to the quantities 
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respectively (see Ref. 5, where the first two terms are written 
out explicitly). The interaction energy of electric dipoles is 
thus proportional to the quantity [ U ~ E : / ~ ( ~ ~ E , )  1 / 2 ]  - ' in a 
first approximation. The corresponding contribution of the 
van der Waals interaction potential in a thin pore filled with 
a liquid conductor can then be written 

If retardation is ignored, and if the condition W ( R )  )v 
holds, the role of the characteristic frequency is played here 
by the frequency of 1D plasmons with a wavelength A-R: 

a R m(R) = - oo ln" - < coo. 
R a 

Here 

[see ( 1 ) ;  we are assuming up -u,] , and we find the follow- 
ing expression for the interaction potential of impurity 
atoms: 

If, on the other hand, we have W ( R )  ( v ,  then 

Retardation does not cause any substantial changes in these 
estimates. Under the condition (awp/c )*  4 1, retardation 
plays a minor role over the entire distance interval for this 
component of the interaction, due to the exchange of 1D 
plasmons. By virtue of ( 1 ), and according to these estimates, 
these contributions to the interaction potential of the impu- 
rity atoms are smaller in the region R  ( A ,  than the terms of 
the usual type, 

which are also present. At distances R)A,, and only in the 
case W ( R ) ) v ,  this contribution gives rise to an important 
change in the coefficient of the R  - ' power law, but it does 
not cause a change in the exponent. 

For long-range correlations, however, some new expo- 
nents arise. In examining long-range correlations in a liquid 
conductor filling a thin filamentary pore in a bulk dielectric, 
we should set a e f f ( i W ) - o ~ / 4 ? r n 2  for Z ( R ) ) v  and 
aeff ( i  W)  =: (do /& )fi for W(R ( v  in the estimates above. 
As a result, we find the following estimates for y ( R ) ,  ignor- 
ing retardation: 

R T f i o p  ln112- for ( R ) B v  
16n2b2n3a3RS a 

Th R 
4nZb2naaZR4 (g ) In- for a ( R )  <v. a 

A systematic calculation yields 

in the distance region R ) a  and under the condition 
W ( R )  ) v. Here retardation has been taken into account, and 
we have 

For distances satisfying the conditions 

2naa2 R R "  
R W -  , ln-, R W [ E l n - ]  a, R>a, ( 3 0 )  

C E Z O  a EZOV a 

we have 

The modified Bessel function K , ( a / R )  which appears in 
( 2 8 )  and ( 3  1 ) actually reduces to In ( R  / a )  by virtue of ( 1 ). 

The decay of the long-range correlations over distance 
in ( 2 8 )  and ( 3 1 )  is considerably slower than the usual 
expression a R  - 6 .  The inapplicability of the expressions 
( 2 6 )  and ( 2 7 )  in this case can be seen formally in the cir- 
cumstance that these expressions become infinite because of 
the divergence of aeff ( i o )  = a&, (io)/4?rdn as o 4 0 .  

The difference between the exponents in the power-law 
functions of the distance for long-range correlations of den- 
sity fluctuations in a conducting liquid and for the van der 
Waals interaction potential of impurity atoms in this liquid 
also prevails in the spatially homogeneous case at large dis- 
tances R 92,. In this case the result found in Refs. 1 and 2, 

r ( R )  = 

vanishes, since for a metal we have ~(im) --r c~ as u - 0 .  In 
this case the interaction is dominated by the low-frequency 
part of the spectrum, in which we can set E, ( i o )  = ~ I T U / W .  
For impurity particles the result is 

and the correlation function of the density fluctuations be- 
comes 

This result of course applies to classical density fluctuations, 
in the case 

The role of the characteristic frequency is played here by the 
quantity W  = c2/4?roR 2. In the distance region 
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R)&-c /o ,  we have Z;igv. An estimate of U ( R )  for both 'E. M. Lifshitz and L. P. PitaevskiI, Statisticheskaya fizika Nauka, Mos- 

cases yields cow, 1978 (Statistical Physics. Part 2. Theory of the Condensed State, 
Pergamon, Oxford, 1987). 

~- - t i~ la ; ,  ( i a ) / e u 2 ( i ~ )  RE. 
Measurements of the structure factor in bulk liquid and 

gas volumes have recently become much more accurate, par- 
ticularly at small values of the wave  vector^.^.' At the same 
time, progress is being made in scattering techniques and in 
techniques for measuring atomic properties in thin slits.' 
There is accordingly the hope that the basic results derived 
above will be of interest for experimental research. 
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