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New classes of axisymmetric formations have been found that develop in steady inviscid flows. 
Particular attention is paid to toroidal and periodic vortex structures. The group classification 
has been carried out on the equations for the stream function. Several structures are derived 
which arise in plane-parallel motions of stratified fluid and in axisymmetric plasma flows. 

1. In the past fifteen years vortex structures, which are 
of interest in their own right, have attracted special attention 
from researchers in connection with coherent structures in 
fluids and plasmas. As is well known, however, there are 
very few explicit solutions for them. The present work de- 
scribes a number of structures which arise in steady axisym- 
metric flows. Particular attention is devoted to the forma- 
tion of toroidal vortices. Special cases include (a )  an 
exponentially decaying vortex screened by two walls; (b)  an 
inviscid analog of Taylor vortex columns; and (c)  a periodic 
"loop street," as well as a number of other flows. The group 
classification of the corresponding differential equations is 
carried out. Steady planar motion of a stratified fluid is also 
considered. Several magnetic vortex structures' are found in 
plasma. 

2. In classical hydrodynamics2 the equation for the 
stream function, 

1 
$1,+$11 - - $r=r2G (4)) +F ($) (1)  

with G = H ,  and F = - IT,, where H  and r are arbitrary 
functions of $ and the subscript denotes differentiation with 
respect to the corresponding variable, describes the class of 
steady axisymmetric (swirling) motions of an inviscid fluid. 
In plasma physics this equation is customarily referred to as 
the Grad-Shafranov equation. 

As is well knowq3 steady planar flow of an inviscid 
stratified fluid can be described by means of the equation 

where G and Fare arbitrary functions of p. In what follows 
we assume that at least one of the functions G and F in  Eqs. 
( 1 ) and (2) is nonlinear, and that G is not equal to zero. 

The group classification4 of Eq. (2)  with vanishing G 
permits us to specialize to an equation which admits an infi- 
nite-dimensional group-Liouville's equation. We can con- 
vert5 Liouville's equation into the Laplace equation and ob- 
tain a rich variety of exact solutions. In the general case Eqs. 
( 1) and (2) are invariant only under translations. Infinitesi- 
mal operators other than the translation operators are called 
~u~plementary .~  The result of the group classification of 
Eqs. ( 1 ) and (2) can be formulated as follows. 

The nonlinear equation ( 1 ) admits supplementary in- 
finitesimal operators only for two types of terms on the right- 
hand side: 

G=A exp ($) , F=B exp ($/2), 
G=A$n, F=B$(n+i)/', 

(3  

with A, BER. In the first case this operator is 

rap+ zd,-4d*, 

and in the second it is 
4 

ra,+zd, - -$a,, 
n-l 

while for n = - 7 an additional operator is admitted: 

Supplementary operators for Eq. (2)  appear only for 
the following right-hand sides: 

G-ATn, F-Brp(2"+')I', 

G-A exp (rp) , F=U exp (2/3rp), 

with A, BER. The first pair of functions corresponds to the 
dilatation operator 

3 
zdz+ Y 8, - - 989, n-l 

and the second to the two operators 

Thus linearization of even one of these equations seems un- 
likely. 

We introduce two illustrative examples. The solution of 
Eq. ( 1 ) with functions G, F given by (3)  is invariant under 
dilatation, and for n = - 3 has the form $ = rV(w), where 
w = z/r.  The function Vsatisfies a second-order differential 
equation. Under the substitution f = lnl w + ( w2 + 1 ) '121 it 
goes over to a form in which the independent variable and 
the first derivative do not appear: 

U"=G+AU-3+BU-'. 
TheconstantsA, Bcan bechosen (e.g., A = 1, B = 3) so that 
this equation has periodic solutions or solutions that tend to 
a constant as I f  I + W .  But in that case none of the contour 
lines of the function $ are closed. 

The solution of Eq. (2)  with an exponential right-hand 
side which is invariant under the operator M, can be repre- 
sented as 

cp=-3lnlzl+P(w), 
where 

~ = z + y ~ z - ~ .  
After the change of variables f = ln(w1 the equation for the 
function P i s  transformed into 

UM+U'=-3+A exp (U) +B exp('/,U). 
The only singular point of this equation (for B = 0, A > O), 
namely, U' = 0, U = ln( 3/A), is a saddle point. As a solu- 
tion of this equation we can take the function corresponding 
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to a phase trajectory coming into this singular point. Then it 
follows from the representation of the function e, that for 
sufficiently large values of z the streamlines R ,(y,z) in the 
plane of the flow are close to the line z = const. Letting one 
of the streamlines represent a solid wall, we obtain the flow 
of a stratified fluid over an "almost flat" bottom. 

3. More nontrivial solutions of Eqs. ( 1 ) and (2)  can be 
found by the method of separation of variables. A number of 
solutions of Eq. (2) with vanishing G, obtained by general- 
ized separation of variables, are given by K a p t ~ o v . ~  

Among all nonlinear equations of the form ( 1 ), only the 
equation 

with A, B e ,  admits the separation $ = f(z)g(r).  To the 
right-hand side of (4)  we can add a term of the form c$ 
which is annihilated by the dilatation transformation of the 
function $. In that case, if the constant A is nonvanishing, we 
can assume without loss of generality that it has unit abso- 
lute value. The functionsf, g must satisfy the equations 

where s is a separation constant. A nonlinearity of the form 
$In $ probably first appeared in the work of Rosen,' in a 
field-theory application. 

The qualitative behavior of the solutions of Eq. (6)  is 
given by the potential function.' 

II=f (BI2-s-B In1 f 1 ) . 
Bifurcation occurs for B = 0. 

Suppose the constant B is negative. Depending on the 
initial conditions, f then has one of the following forms: (a )  
periodic positive- (or negative-) definite; (b )  periodically 
changing signs; (c)  having a single extremum and vanishing 
as I z I  -. co In the last case there is an explicit expression forf: 

In what follows, solutions of the form (a),  (b),  and (c)  will 
be denoted by 1 f ,  2f, and 3 f ,  respectively. We will not consid- 
er negtive-definite 1 and 3f solutions. 

Equation (5)  also has a solution expressible in terms of 
elementary functions: 

g=exp(krZ+slB) , 
where 

B* (BZ+16A)Is 
k =  

8 
Other solutions can be found by applying numerical meth- 
ods such as Runge-Kutta. The only problem lies in choosing 
constants A, B, and s and initial conditions for (5)  so that 
adequately physical and interesting streamline plots are pro- 
duced. The existence of solutions of Eqs. (5 ) is guaranteed 
by Wintner's theorem9 for r > ro > 0. 

For A = - 1, B = - 10, and s = 0 the solution of Eq. 
(5)  satisfying the initial conditions g(ro) = ArA/8, g1(r0) 
= Ari/2 (where ro = 0.1 ), is an oscillatory function taking 
on positive and negative values alternately. In every interval 
within which it has a definite sign it has a single extremum. 
But if we set A = 1 and leave the initial data and the con- 
stants B and s unchanged, then we get a solution that grows 

on the interval [ro,r,) and decreases on (r,,r,] (with 
r, = 2.05 and r, = 2.95), then grows again and diverges as 
r-, w . The local minimum g,, is equal to 0.79 and the local 
maximumg,,, is equal to 2.05. These three solutions will be 
denoted by I,, 2,, and 3,, respectively. 

Every pair of solutions if, j, ( 1 gi, j<3) which allows us 
to reconstruct a stream function is called a combination of 
solutions and is denoted by if + j,. 

In order to discern the subtleties of the streamline pic- 
tures obtained by means of computer graphics, it is desirable 
to know the qualitative behavior of the contours of the func- 
tion $(y,z). To draw the contours we need to find the critical 
points of the function $, i.e., the points at which the gradient 
of $ vanishes. According to Morse theory, lo the nature of the 
nondegenerate critical points can be determined from the 
Hessian of $. In the present instance every nondegenerate 
critical point is either a saddle point or a local extremum. 
Below we will refer to the set of all the stream-function con- 
tours as the flow portrait. 

Consider a 2f + 2, combination of solutions. The 
points at which the functions f and g vanish correspond to 
straight lines in the R ,(r,z) plane, parallel to the r or the z 
axis. We thus obtain a partition of the flow portrait into 
rectangular cells. Inside each cell there is a critical point 
(where f '  = g' = 0 holds), i.e., an extremal point ofthe func- 
tion $. All contours lying within cells are closed. Closed 
contours correspond to toroidal stream tubes. 

The choice of constants A = - 2, B = - 10, s = 1 also 
can give rise to a 2f + 2, combination of solutions (see Fig. 
1; in all figures the z axis is directed upward). For this we 
need to specify initial data, e.g., by taking f(0)  = 10 and 
f '(0) = 0 and by setting the function g equal to 0.5 and its 
derivative equal to 3.0 at ro = 3.8. Then f has a half-period of 
0.7 andg is positive on the interval (R ,,R,), vanishing at the 
end points, where R ,  = 3.66 and R, = 4.25. If we treat the 
cylindrical stream tubes with radii r = R, and r = R, as hav- 
ing solid boundaries, then there are 17 torroidal vortices dis- 
tributed between the two cylinders with height H = 20.2d 
(where d = R, - R , and R ,/R, = 0.86. This solution qual- 
itatively resembles toroidal Taylor vortices. The ratio of the 

FIG. 1 
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FIG. 2. 

two radii and the ratio H/d of the cylinder height to the z2 1 
separation, as well as the number of vortices, agree with the $=exp(-? - - 2 + -) 2 

experimental data of Ref. 11. The azimuthal component of and 
velocity in this solution vanishes at the solid walls. Hence zZ ? 1 
this solution is more like the situation in which the inner $= (--+-+-I 
cylinder is first spun in order to create Taylor vortices, then 

exp 2 2 2 - 
stopped. 

The structure shown in Fig. 2a, which is periodic in z, 
arises from a lf + 3, combination of solutions. The initial 
data for f are specified as follows: f(0) = 0.3, f '(0) = 0; the 
maximum value of the function is fma, = 1.52; and the mini- 
mum value is f,,, = 0.3. This structure will be referred to as 
a "loop street." It contains two "paths" consisting of loops 
inside which there are vortices. The paths are separated by a 
band consisting of open unbounded contour lines. On the 
right and left of this pair of paths are located wavelike con- 
tours. When the initial conditions for f change [for example, 
to f(0) = 0.61, this structure may become two periodic vor- 
tex chains arranged in checkerboard fashion (Fig. 2b). In 
both cases the stream function has four critical values: c ,  

=fmaxgrnax C2 =fmaxgmln C3 =fmlngrnax C-I =fmlngmln (the 
values of g,,, and g,,, were given above). Which one of 
these structures appears depends on which of the numbers c, 
and c, is bigger. If c, < c, holds, then a loop street results; in 
the opposite case vortex chains result. 

The 3f + 2, and 1 + 2, combinations of solutions give 
rise to the flow portraits shown in Fig. 3. Every isolated 
vortex situated between two neighboring cylindrical stream 
tubes dies away exponentially as Izl-, cr, (Fig. 3a). In this 
sense it resembles the vortices found in Ref. 1. Figures 3b 
displays a "cat's-eye" structure which is periodic in z. In all 
probability, elements of this structure would be observed if 
one filled the space between two coaxial cylinders with liquid 
and displaced them paraxially in opposite directions. 

The localized vortex structure shown in Fig. 4 corre- 
sponds to the 3f + 3, combination of solutions. The open 
contour lines proceed to infinity as lzl-. co . If we take some 
bounded stream tube to be a solid wall, then the resulting 
solution can be interpreted as a flow of fluid or plasma in a 
torus. Every trajectory is now found to be "wound" about 
the corresponding toroidal surface. 

The solutions in Eq. (4) expressible in elementary func- 
tions (for A = - B = 2)  are FIG. 3. 
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FIG. 4. 

The vortex formations shown in Figs. 1-4 do not ex- 
haust the possible structures inherent in Eqs. (5) and (6).  
This is because Eq. (5),  in addition to the 1,-3, solutions 
described above, has other, qualitatively different solutions. 

If we add a term cr4$ to the right-hand side of (4),  an 
equation results which may be used to describe dynamic and 
magnetic vortices (in the terminology of Ref. 1 ) in plasmas. 
This equation also allows separation of variables in the form 
$ = f(z)g(r), the equation for f being identical with (6). 
To get the equation for g it suffices to add to the right-hand 
side of (5) the term cr4g, which may be regarded as a pertur- 
bation. In addition to solutions of the forms 2, and 3,, the 
perturbed equation has a solution (for c = - 0.2, A = 3, 
B = - 10, and s = 0)  which is positive in the interval [ro,r, ) 
(with ro = 0.1 and r, = 4.2), has two maxima and one mini- 
mum, and vanishes at the point r,. For r > r, this solution is 
oscillatory. This solution enables us to exhibit new magneto- 
hydrodynamic structures. One of this is displayed in Fig. 5. 
A figure-eight-shaped vortex pair is separated from single 
vortices along a straight line and dies away exponentially as 
I z I  -. W .  In the present example we have 
f = exp( - 2.52' + 0.5). If for the initial conditions in Eq. 
(6)  we take f(0) = 0.5 and f ' (0)  = 0 or f(0) = 0.8 and 
f '(0) = 0, then lf solutions result, which give rise to the 
flows shown in Figs. 6a, b. It turns out that the topology of 
these structures is extremely sensitive to the choice of the 
initial conditions for Eq. (6) ,  so that we can obtain in addi- 
tion to these structures others that are "close" to them. 

4. The only nonlinear solution of the form (2)  that al- 
lows the separation of variables p(y,z) = r(y)h(z) in the 
following: 

cpzz+cp,=Azcp+Bcp ln Icp I ,  (7) 

with A,BER. Then f satisfies Eq. (6)  and h satisfies 

One solution of this equation can be expressed in terms of 
elementary functions: 

Numerical methods can be used to find other solutions. 
Choosing the constants B = - 2, A = 2, and s = - 1 and 
theinitialconditionsh( - 1.8) = 0.15 and h '( - 1.8) = 2.3 
yields a solution which is positive-definite for 
z > zo = - 1.8, has two extrema, and diverges as z - +  w . This 
solution, extended to the region Rz = {z:z <zo), is an oscil- 
latory function in Rz . 

A completely different solution of Eq. (8) results from 
the following choice of the constants A, B, and s: A = - 3, 
B = - 8, s = 1, h( - 6.2) = 9.5, and h '( - 6.2) = - 2.8. 
This solution is positive definite and has six extrema in the 
interval - 6.2 < z < 1.9, and for z > 1.9 it oscillates with al- 
ternating signs. These three types of solution are denoted l,, 
2, , and 3,, , respectively. 

In order to construct a picture of the streamlines it suf- 
fices to plot the contours of constant p. But to find the fluid 
density it is necessary to go from Eq. (7) back to the Du- 
breil-Jacotin equation3 for the stream function. In the pres- 
ent case any function of the form 

cp=p (*)=a exp(c.9) +b exp (-c$), 
with a,b,cER, can be used to carry out the transformation. 
The density is expressed in terms of the function f l  by 
p = kp', and the magnitude of the attractive force is deter- 
mined by 

For A > 0 the attractive force is in the positivez direction and 
for A < 0 it points in the opposite direction. Since the sign of 
the density distribution is not specified by (7), there is a 
certain arbitrariness in the choice of the velocity field. 

Equation (7)  has a solution expressible in terms of ele- 
mentary functions: 

For this case the paths of the fluid elements are parabolas. 
The solutions 2, (for z > - 1.8) and 3, (for r > 0.1 ) 

have the same qualitative behavior. It follows that planar 
stratified flows of inviscid fluids can also exhibit "loop 
streets" (Fig. 2) and localized vortex structures (Fig. 4). 

Choosing the combination of solutions lf + 1, gives 

L I 

FIG. 5.  
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FIG. 6. 

rise to streamlines that are periodic in y. When the attractive 
force is in the negative z direction, the streamlines tend to- 
ward straight lines parallel to the y axis in the limit z+ m. If 
we regard one trajectory as a solid wall, the result is a de- 
scription of an inhomogeneous fluid flowing over a periodic 
bottom. 

Finally, Fig. 7 displays the streamlines associated with 
a 3, solution [initial conditions f(0) = 0.5, fl(0) = 01. It 
constitutes an unusual example of the "biocenosis"" of 
structures encountered earlier. The streamline topology can 
be changed by changing the initial conditions f o r j  

FIG. 7. 
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