
Experimental study of the critical dynamics in the vicinity of the smectic 
A-smectic Cphase transition') 

V. A. Balandin, E. V. Gurovich, A. S. Kashitsyn, S. V. Pasechnik, A. A. Tabidze, 
and A. C. Gol'dberg 

(Submitted November 13,1989; revision accepted April 10,1990) 
Zh. Eksp. Teor. Fiz. 98,485-5 15 (August 1990) 

The viscoelastic properties of a smectic over a broad range of developed fluctuations are described 
in detail on the basis of some theoretical concepts regarding the nature of the phase transition 
between the smectic A and Cphases. The spectra of all acoustic modes are presented. The critical 
behavior of the shear waves is studied experimentally. The orientational dependence of the 
absorption is obtained. The orientational behavior of the absorption is observed and explained as 
a function of how close the smectic is to the critical temperature. The temperature dependence of 
the compression modulus of the smectic layers near the transition point is studied. The critical 
behavior of the velocity and absorption of longitudinal sound over a broad range of ultrasound 
frequencies is investigated by resonator and pulse-phase methods. The temperature-frequency 
dependence of all (three) elasticity moduli of the smectic and of the bulk viscosity coefficients are 
calculated. The universal relationships between the corrections to the various elasticity moduli 
among themselves and the corrections to the bulk viscosity coefficients are verified 
experimentally. The corrections to the bulk viscosity coefficients, associated with the strong 
fluctuations of the smectic layers, are investigated. The specific features of the corrections in the 
low-symmetry C-phase due to the appearance of an additional orientational mode are discussed. 
The experimental data in the crossover region are analyzed, and the explicit form of the dynamic 
correlators of the order parameter is derived. 

1. INTRODUCTION 

At the present time a large body of experimental data 
has been accumulated from ultrasound studies of the dy- 
namics of various liquid-crystal phases. I" The results of 
studies on the propagation and absorption of longitudinal 
and transverse waves has made it possible to determine var- 
ious elastic moduli and kinetic coefficients in liquid crystals. 
The data obtained from these studies is in quite good agree- 
ment with contemporary theoretical ideas about the nature 
of acoustic modes in liquid crystals. 7-9 

However, numerous studies of the transitions between 
various liquid-crystal phases up until recently have been 
dedicated mainly to the study only ofstatic critical phenom- 
ena, specifically: critical calorimetry, ' the temperature 
dependence of the order parameter,12 and the susceptibil- 
ity.I3 The same is true of the theoretical description of criti- 
cal phenomena in liquid crystals. There are several reasons 
for the difficulties, both experimental and theoretical, in the 
study of the critical dynamics. The first is the existence in 
liquid crystals of a strong anisotropy. Because of it universal 
models, which are the conventional models in the theory of 
critical phenomena, with a multicomponent order param- 
eter, defined in the "isotopic" space, are inapplicable to the 
description of liquid crystals, or applicable only in a narrow 
region near the transition. This region is probably difficult to 
reach. Actual experiments are carried out in the transition 
(crossover) region and require a specific analysis in a situa- 
tion with a strong initial anisotropy. 

In addition, an experimental study of the critical phe- 
nomena in the presence of a strong anisotropy by means of 
ultrasound requires large quantities of a single-domain sam- 
ple, precise orientation of the wave vector of the excited 
wave with respect to the director and an accurate account of 
the surface distortions of the latter. 

The second reason for difficulties in an ultrasound 
study of critical phenomena in liquid crystals has to do with 
the fact that in the narrow temperature interval in which 
they exist they typically undergo numerous phase transi- 
tions. The pretransition regions, which are associated with 
various critical points, overlap each other. Therefore, in the 
interpretation of the results separating out the contributions 
from the various transitions becomes a quite complex prob- 
lem. 

Third, in the high-frequency region molecular dissocia- 
tion processes, which are independent of the critical phe- 
nomena, begin to be manifested. Their frequency depen- 
dence also must be taken into account in the processing of 
the experimental data. 

Finally, for the smectic phases ordinary hydrodyna- 
mics, strictly speaking, generally breaks down. This has to 
do with the strong fluctuations of the smectic layers. Even 
far from any transitions taking the fluctuations of the layers 
into account cause the sound absorption to have a nontrivial 
frequency dependence.I4 

Only in recent years has it been possible to overcome 
these difficulties. Mazenko, Ramaswamy, and TonerI4 have 
shown that critical fluctuations of smectic layers lead to the 
appearance of corrections to the bulk viscosity coefficients 
which diverge in the low-frequency limit as w - I .  A consis- 
tent theory of dynamic effects, associated with the fluctu- 
ations of the smectic layers in the smectic A phase, was con- 
structed in Refs. 15 and 16, and for the smectic C phases in 
Ref. 17. Almost simultaneous with these theoretical investi- 
gations experiments appeared confirming them, both on 
first 3s6318 and second5 sound. 

As to the phase transitions themselves, one of the sim- 
plest of these from the point of view of a theoretical descrip- 
tion turned out to be the smectic A-smectic C transition. The 
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region of developed fluctuations in this transition has been 
sharply fixed in numerous experiments (see, e.g., Refs. 10- 
13). The thermodynamics of this transition with the strong 
anisotropy taken into account was constructed in Ref. 19, 
and its critical dynamics was studied theoretically in Refs. 
20 and 21. 

The present paper is dedicated to an experimental study 
of the dynamics of the smectic A-smectic Cphase transition 
using ultrasound. The goal of this work is to confirm present 
theoretical  concept^'^-^' about the nature of this phase tran- 
sition, measure the material parameters of the substance 
(compressibility of the smectic layers, the viscosity coeffi- 
cients, the elastic moduli) and their critical dependences on 
closeness to the transition point, and investigate the contri- 
bution to the viscosity coefficients of the critical fluctuations 
and the fluctuations of the smectic layers over a wide fre- 
quency range. 

The critical dynamic effects, in spite of the difficulty in 
interpreting the experiment, turned out to be significantly 
more informative than the static effects. 

2. THEORETICAL PART 

2.1. Critical thermodynamics 

In the present section we will briefly describe the criti- 
cal behavior of the smectic phases near the temperature of 
the transition from the A phase to the C phase. Details of a 
calculational nature can be found in Refs. 19 and 20, which 
are specifically dedicated to a theoretical study of this transi- 
tion. We note that the temperature region of the developed 
fluctuations near this transition is quite broad. It is compara- 
ble with the width of the existence region of the smectic 
phases themselves. By virtue of this, the conclusions ob- 
tained as a result of a consideration of the critical fluctu- 
ations are to a significant degree of a general nature since the 
smectic phases can almost always be considered as being 
near to the investigated transition. 

In equilibrium smectics are systems of equidistant lay- 
ers, whose normal vector we take to be directed along the z 
axis. To describe the deviation of the smectic layers from 
equilibrium, we introduce the smectic variable u, which 
plays the role of a displacement vector of the layers along the 
z axis. The elastic energy associated with the curvature of the 
smectic layers to first order has the standard form's9 

Here B is the compression modulus of the smectic layers, 
and K is a coefficient analogous to the Frank modulus in 
nematics. 

The average direction of the major axes of the aniso- 
tropic molecules of which the liquid crystal is composed is 
given by the unit vector n-the director. The main term in 
the energy density associated with the inhomogeneous de- 
formation of the director in space has the following form: 

where K,, K,, and K, are the Frank moduli. 
The various smectic phases differ from one another by 

the arrangement of the anisotropic molecules inside the 
smectic layer. Thus, in the smectic A phase the director is 
perpendicular to the layer, wherefore the vectors n and e 
(the unit normal vector of the layer) coincide. In the smectic 

Cphase the director deviates from the normal to the layer by 
some angle. The intermolecular forces in this case determine 
only the projection of the director on the normal to the layer. 

A natural order parameter for the phase transition 
between the smectic A and C phases described above is the 
vector introduced in Ref. 19 

$= [ne]. ( 3 )  

Its value is identically equal to zero in the smectic A phase 
and differs from zero in the C phase. Since the vector e is 
directed along the normal to the layers, the vector 3, lies in 
the plane of the smectic layer and has only two components. 

In the energy expansion there are two terms which de- 
termine the relation between the orientation of the molecules 
(the director n) and the normal to the layer e: 

The parameter A characterizes the phase transition: when A 
is greater than zero the A phase is realized, and when A is less 
than zero-the C phase; U is a constant at the four-point 
vertex. 

The density p and the specific entropy o also enter into 
the complete set of thermodynamic variables of the smectic, 
in addition to the smectic variable and the order parameter 
3,. In the vicinity of the transition only the order parameter 3, 
fluctuates strongly; the remaining variables fluctuate weak- 
ly. Their deviations from equilibrium can be conveniently 
described by the components of the dimensionless vector (p 

Here Sp and So are the deviations from the equilibrium val- 
ues of the density and the specific entropy, respectively. 

As usual, to investigate the peculiarities of the phase 
transition it is sufficient to keep the terms of lowest order in 
3, in the energy density. In the interaction terms of the order 
parameter with the weakly fluctuating quantities p, it is suf- 
ficient to keep the terms that are linear in the latter quanti- 
ties. In the part of the energy that does not contain 3, it is 
sufficient to keep only the terms quadratic in the weakly 
fluctuating variables p,. As a result the energy density in the 
vicinity of the smectic A- smectic C transition acquires the 
following form: 

In expression (6)  we have introduced the vector 

D,,=[;]. 

As follows from Eq. (6),  the coefficients D, characterize the 
magnitude of the interaction of the order parameter with the 
fluctuations of the density, the specific entropy, and the dis- 
placement of the smectic layers, respectively. In expression 
(6)  we have also introduced the elastic modulus matrix 

where, in particular, 

271 Sov. Phys. JETP 71 (2), August 1990 Balandin etal. 271 



d2E a l n l  
gup-=p-=-~(-) a p a v , ~  , 

a l n p  a 

This notation, in contrast to the conventional 
gp; = A, g, = B, and g; = C makes it possible to use ma- 
trix formalism, which simplifies the otherwise cumbersome 
formulas. In Eqs. ( 8 )  Pi s  the pressure, g, is the compres- 
sion modulus of the smectic layers B, which was introduced 
in Eq. ( 1 ), and the elastic modulus gp; is the inverse com- 
pressibility. The elastic moduli associated with the compres- 
sion of the smectic layers satisfy the following relation: 

where I is the equilibrium spacing between the smectic lay- 
ers. 

Before embarking upon an exposition of the critical be- 
havior of the quantities introduced in expressions ( 6 ) - ( 9 )  in 
the vicinity of the A-C transition, we present typical values 
of the material parameters of a smectic: 

-the compression modulus of the smectic layers has 
the typical value 

-the compressibility of the smectic has a value of the 
same order of magnitude as in ordinary liquids: 

It follows from this that in the smectic phases there exists a 
small parameter 

which shows that the density in the smectic is weakly modu- 
lated, because the latter is close to a nematic. 

The components of the vector D, which figure in the 
energy density ( 6 )  and which describe the contribution to 
the energy from the interaction of the order parameter with 
the weakly fluctuating quantities, are equal in order of mag- 
nitude to the compression modulus of the smectic layers. 
The quantity U has the same order of magnitude: 

Finally, the characteristic value of the Frank moduli in a 
smectic coincides with their value in a nematic: 

As the analysis of Kats and LebedevI9 has shown, 
neither in the mean-field theory nor in the wide range of 
developed fluctuations does treating the fluctuations of the 
order parameter yield corrections to the gradient terms of 
the energy density ( 6 ) .  In the latter region the Frank moduli 
are not renormalized. Renormalization of the Frank moduli, 
corresponding completely to the universal behavior of the 4~~ 
model with a two-component order parameter, does not take 
place in the real situation. In what follows, by the region of 

developed fluctuations we mean specifically the region of 
nonuniversal critical behavior. In this region the critical be- 
havior is described by nonuniversal indices, which depend 
on the unrenormalized ratios of the Frank moduli K,/K2 
and K,/K,. 

In contrast with the Frank moduli the elastic moduli 
are very sensitive to how near the system is to the smectic A- 
smectic C transition. In the mean field theory these moduli 
undergo a jump at the transition 

It follows from Eqs. (10 )  and ( 1 3 )  that the elastic moduli 
decrease by a jump at the transition from the A to the C phase 
of the order of magnitude of g& . 

In the region of developed fluctuations critical correc- 
tions to the elastic moduli arise. The renormalized elastic 
moduli have the following form:20 

g --g - -  D,D,F ( z) 
PV - uv I+ (DgD) F (T) ' 

where D and g -  are unrenormalized quantities, and the 
magnitude of F is determined by the correlator of the order 
parameter 

where Tis the temperature, T is the dimensionless parameter 
of the nearness of the system to the phase transition of the 
form 

The correlator ( 17) has a critical singularity - T - "near the 
transition point. The specific heat index a is a small quanti- 
ty. In the standard with a two-component order pa- 
rameter it is close to zero. By virtue of the nonuniversality 
the index a lies within the limits 0.06-0.14. 

The quantity A figuring in expressions ( 4 )  and ( 6 )  is 
-7 - in the region of developed fluctuations. The suscepti- 
bility index y varies, depending on the starting ratios of the 
Frank moduli, in the range 1-1.25. 

In the mean field theory the order parameter behaves 
like r'I2 with approach to the transition point, and in the 
region of developed fluctuations-like ?. The magnitude 
of the index of the order parameter lies within the range 
-0.43-0.45, and the index of the correlation length 
Y-0.58-0.62. 

All the critical indices the nonuniversal region were cal- 
culated by the method of the renormalization group in three- 
dimensional space.I9 The essential results of the 
 experiment^'^-" agree with the qualitative and quantitative 
characteristics of the A-C transition described above. 

2.2. Dynamic viscoelastic properties of a smectic in the 
vicinity of the A-C transition 

A consistent description of the dynamic effects asso- 
ciated with the fluctuations of the order parameter was made 
in Ref. 20. A nondissipative system of hydrodynamic equa- 
tions for the long-wave variables of a smectic (the velocity v, 
the order parameter $, the density p, the specific entropy a, 
and the smectic variable u )  was obtained with the help of the 
Poisson bracket method.24 The kinetic terms, which take 
dissipative processes into account, were then added to these 
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equations in the standard way. The eigenmode spectrum of 
the smectic with the fluctuations of the order parameter tak- 
en into account was calculated with the help of the diagram 
te~hnique.'~ The technical details of the calculations can be 
found in Ref. 20 or in the review (26). 

The theoretical scheme developed in Ref. 20 for the 
study of critical dynamics provides the basis for the idea of 
the effective exclusion of the weakly fluctuating variables. 
As a result of such an exclusion it was possible to obtain an 
"effective equation of the dynamics" of the order parameter 
itself: 

Here re' and E '" are, respectively, the effective kinetic coef- 
ficient and the effective energy associated with $. Equation 
( 19) corresponds to the purely dissipative dynamics2' of the 
two-component order parameter. As was shown by the re- 
normalization group study in the scaling region, the kinetic 
coefficient depends on the wave vector q according to a pow- 
er-law relationship: 

where z is the dynamic index and is very close to 2. 
Along with the thermodynamic critical indices intro- 

duced in Sec. 2.1, the index z determines the scaling laws of 
the behavior of the various dynamic correlators. 

In what follows we will have need of the following irre- 
ducible dynamic correlator: 

Here w is the frequency. In the hydrodynamic and fluctu- 
ation regions the real functions F' and F " behave in the fol- 
lowing way: 

Here a and v are the above specific heat indices and the 
correlation length, respectively, and z is the dynamic critical 
index.27 

The spectra of the noncritical modes were determined 
in Ref. 20 as the poles of the corresponding renormalized 
response functions. We will present at once results pertinent 
to the spectra of the acoustic modes. 

The frequencies of first and second sound w as functions 
of the wave vector q are determined in the vicinity of the A-C 
transition by solving the system of equations 

Here 17 is the viscosity tensor of the smecti~:~.** 

smectic layers, and 172,4,5 are the bulk viscosity coefficients 
and are the shear viscosity coefficients. In Eqs. (23) we 
have introduced the vector 

(25) 

The complex quantities G -  figuring in Eq. (23) are the 
renormalized dynamic moduli g- . They have the following 
form:20,26 

G,- (o, z) =g,- - DwDP(o, 
I+[DgDlF(o, T) ' 

It is precisely the components of matrix (26) that determine 
the dynamic viscoelastic properties of the liquid crystal. In 
particular, they determine the acoustic spectra studied in the 
ultrasound experiments. It follows immediately from Eqs. 
(23) that the renormalized viscosity tensor, which takes the 
critical fluctuations of the order parameter into account, is 
equal to 

where the first term corresponds to the unrenormalized val- 
ue, and the correction has the form 

Here Im G- is the imaginary part of the dynamic renormal- 
ized matrix of the elastic moduli (26). 

Making use of the explicit form of the viscosity tensor 
(24) and the components of the vector f" figuring into Eq. 
(27), it is not difficult to calculate the values of the critical 
corrections to the viscosity coefficients: 

'/,06qs=lrn Go,--2 Im G,,-+In1 G,,-, 
'l,06qk=Im GPO--1m G,,,-, 

(28) 

'!206q2=Im Go,-. 
The imaginary part of the complex matrix (26) determines 
the fluctuational corrections to the sound absorption. Its 
real part determines the elastic dynamic properties of the 
smectic. In the vicinity of the phase transition the dynamic 
elastic moduli (7)  and (8)  are equal to 

ZNv- (a, T) ==Re G,,- (a ,  z) --g,,,-+6g,,-(o, z) . (29) 

The first term on the right-hand side of this equation corre- 
sponds to the unrenormalized value of the elastic moduli. 

Let us consider the behavior of the viscosity (28) and 
the elastic moduli (29). In the region of universal critical 
behavior the fluctuational corrections to the compressibility 
are much greater than the unrenormalized values: 

After some elementary calculations which have to do with 
isolating the real part of the matrix (26), it is possible to find 
expressions that describe the behavior of the elastic moduli 
in the scaling region (the region ofuniversal behavior). Tak- 
ing Eq. (30) into account, we obtain 

e is the equilibrium value of the unit normal vector of the v, P=u, P, 13. 
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For the critical corrections to the bulk viscosity coefficients 
in the scaling region we find 

o6q5 (Dp-Dd2 FN 
-= 

2 (DgD) FTF 
(Do-Du)Dp F" -= 

2 (DgD) F'2+F"Z 

o s q ,  D," F" -- 
2 (DgD)  F'2+F"2. 

The compressibilities in the scaling region near the 
transition diverge like T - ". The behavior of the elastic mod- 
uli has a more complicated character. In Eq. (3 1 ) the second 
terms vary like 7" in the hydrodynamic limit and are, gener- 
ally speaking, small in comparison with the first. However, 
they cannot be neglected, since in the opposite case the elas- 
tic modulus matrix g - becomes degenerate. 

From Eqs. (30)-(32) follow the laws of critical behav- 
ior in the scaling region. Using relations (22), we find in the 
hydrodynamic limit 

and in the fluctuation limit 

Note that since the finite frequency w suppresses the critical 
fluctuations, the scaling behavior of the smectic, described 
by the laws (30)-(34), is apparently not realized experi- 
mentally. For the majority of real second-order phase transi- 
tions in liquid media at experimentally realizable frequen- 
cies and temperatures condition (30) is practically never 
satisfied. In other words, the critical corrections to the mod- 
uli g - are less than their unrenormalized values. 

As follows from an analysis of experimental results,536 
at the most commonly used frequency for ultraviolet mea- 
surements w - lo6 sec - ' the critical corrections are much 
smaller than the starting elastic modulus gp;. Recall that the 
latter in smectics plays the role of the ordinary compressibil- 
ity in liquids dP/dp  and amounts to - 10" erg/cm3. How- 
ever, in the region of developed fluctuations the critical cor- 
rections 6g-, generally speaking, are not small 
incomparison with the small elastic compression modulus of 
the smectic layers g, - 10' erg/cm3. Thus, in smectics by 
virtue of Eq. ( 12) the width of the crossover region is broad- 
ened. In the crossover region the critical corrections become 
comparable to the unrenormalized values: 

(DgD)  F-DzFlguu-- l. (35) 

Calculating the real part of matrix (26), we obtain the fol- 
lowing cumbersome formulas for the corrections to the elas- 
tic moduli in the crossover region 

DP, [ (DgD)  -'+F'] Ff+F"' 6g -= ---- 
'"D~D) [ ( D ~ D )  - f + ~ f ] 2 + ~ n 2  

r v ,  p=u, P, (J. 

(36) 
The corrections to the bulk viscosity coefficients in the cross- 
over region have the form 

(DgD)  -IF" 
M =  [ ( D ~ D )  -'+F'I2+Fff2 

From formulas (36) and (37) it is seen that in the transition 
region between the region of universal behavior and the re- 
gion of weak fluctuations the behavior of the elastic moduli 
and the corrections to the viscosity coefficients already 
ceases to obey the simple critical dependences. This is be- 
cause the unrenormalized moduli figure in formulas (36) 
and (37), along with the fluctuation terms. 

Note that the elastic moduli and the corrections to the 
bulk viscosity coefficients in the crossover region behave in a 
very complicated manner. In particular, the absorption 
maximum and the minimum of the elastic moduli no longer 
need coincide at the phase transition point. Indeed, at the 
transition point the functions F' and F" figuring in the criti- 
cal corrections are extremal. However, the extrema of the 
quantities (36) and (37) can be shifted to one of the smectic 
phases. We emphasize that this effect is purely dynamical. 

Let us consider, finally, the region far from the transi- 
tion point, where the critical corrections can be assumed to 
be weak not only in comparison with the elastic compress- 
ibility modulusgp;, which has a value of - 10" erg/cm3, but 
also in comparison with the elastic compression modulus of 
the smectic layers g ,  - 10' erg/cm3, i.e., where 

In this case from relations (28) it is possible to obtain 

6gUu-=-D, 2 F ' ( o ,  71, 

6g,,-=-D,D,J' ( o ,  t )  , (39) 

Ggpo-=--DpZF' (0 ,  t) . 

For the critical corrections to the viscosity in the region of 
weak fluctuations we obtain 

'/206q2=D,2F", 

'/ro6rlr=D, (Dp--Du) F", (40) 
'/zo&q5=(D,-D,)2F". 

The critical correction in relations (39) and (40) were first 
obtained in Ref. 21 by the method of interacting modes. 

Making use of relations .(22), we obtain the law of the 
critical behavior of the fluctuational corrections to the elas- 
tic moduli and to the bulk viscosity coefficients. In the hy- 
drodynamic and fluctuation regions they have the following 
forms, respectively: 

We emphasize again that Eqs. (39)-(41) are valid as long as 
the critical corrections are small in comparison with the un- 
renormalized compression modulus of the smectic layers [as 
long as condition (38) is satisfied]. 

The critical corrections to the elastic moduli of a smec- 
tic satisfy the following relation: 

274 Sov. Phys. JETP 71 (2), August 1990 Balandin etal. 274 



Here the critical fluctuations always cause the elastic moduli 
gu, andgp; to decrease. The sign of the critical correction to 
the crossover elastic modulus g ,  is determined by the sign 
of the quantity D, /Dp and can be both negative and positive. 

The corrections to the bulk viscosity coefficients are 
connected by the universal relation 

The corrections to the bulk viscosity coefficients q, and 
q2 are always positive, and the sign of the critical corrections 
to the bulk viscosity coefficient q, is determined by the sign 
of the quantity 1 - D, /D, . This sign is not universal and can 
be both positive and negative. 

2.3. Corrections to the viscosity coefficients connected with 
the fluctuations of the smectic layers 

In the above examination of the critical dynamics of the 
A-C transition the fluctuations of the density p, the specific 
entropy, and the displacement of the smectic layers were 
taken into account in the first approximation. In the hydro- 
dynamic equations only the terms linear in the deviations of 
these weakly fluctuating quantities (5) were kept, and in the 
energy expansion, the quadratic terms. 

However, this approximation, which is valid for fluctu- 
ations ofp  and o, is, generally speaking, invalid for fluctu- 
ations of the smectic layers. The point here is that although 
the smectics possess solid-state order in the direction per- 
pendicular to the layers, the layers themselves can slip past 
one other. In such an infinite system the fluctuations destroy 
the long-range order.28 In a real system an account of the 
interaction of the fluctuations leads to highly nontrivial cor- 
rections to the sound absorption. To obtain them in the ex- 
pansion over the smectic variable ( 1 ) of the energy associat- 
ed with the deformation of the layers, it is necessary to take 
into account not only the quadratic terms but also the cubic 
terms 

where 

and p,, are the components of the weakly fluctuating quanti- 
ties introduced in Eq. (5).  In the thermodynamics taking the 
cubic term into a c ~ o u n t ~ ~ , ~ ~  leads to logarithmically weak 
(probably not experimentally observable) corrections to the 
elastic moduli. In the hydrodynamics the interaction of the 
fluctuations of the smectic layers leads to corrections to the 
bulk viscosity coefficients which are divergent in the low- 
frequency limit.14 

A consistent calculation of the magnitude of these cor- 
rections, based on the hydrodynamic equations for the smec- 
tic A phase, was carried out in Ref. 15 by means of the dia- 
gram technique2, and expounded in detail in Ref. 8. The 
interaction vertices in this technique are the nonlinear terms 
in the hydrodynamic equations proceeding from the cubic 
terms (44). 

We present the results obtained in Ref. 15. The correc- 
tion to the viscosity tensor due to the fluctuations of the 

smectic layers in the A and C phases has the following form 
[cf. Eq. (27) ] : 

and in the smectic A phase the coefficient A is equal to 
'F 

The dummy indices v andp run through the valuesp, o, and 
u; and the components of the vectors f and D', figuring in Eq. 
(45 ), are given by Eqs. (25 1 and (44). 

In the smectic A the corrections to the viscosity tensor 
also diverge in the low-frequency limit - w - . However, the 
coefficient A.  in the smectic C phase is different. I' The rea- 
son for this is that in the smectic C, along with the slow 
fluctuations of the smectic layers, there appears an addi- 
tional slow mode, the orientational mode. In the smectic C 
the orientational mode is strongly coupled to the mode asso- 
ciated with the oscillations of the smectic layers. Because of 
this coupling the coefficient A, in the Cphase is greater by a 
factor of than in the A phase: 

The positive quantity 2 > 1 depends on the material pa- 
rameters of the smectic C (the Frank moduli and the elastic 
moduli). Numerical calculation17 has shown that it can be 
much greater than unity ( 2 10). 

Making use of the explicit form of the viscosity tensor 
and the vector (25), we find that the fluctuations of the 
smectic layers lead to the following corrections to the bulk 
viscosity coefficients2' 

Here g-  are the elastic moduli, and the quantity A in 
the smectic A and C phases is given, respectively, by expres- 
sions (46) and (47). Note that the corrections to the bulk 
viscosity coefficients 7, and q2 are always positive. The sign 
of the correction to the bulk viscosity coefficient 7, is inde- 
terminate. Nevertheless, the universal relation 

which follows from Eqs. (48), ensures the growth of the 
entropy. 

2.4. Spectra of the acoustic modes in the vicinity of the 
smectic A-smectic Cphase transition 

In general, even far from the transition temperature the 
spectra of second and first sound, obtained from the solution 
of system (23), are quite involved. Nevertheless, they can be 
written in explicit form using the condition for the existence 
of a small parameter ( 12).3,8,14*19 

The ratios of the renormalized elastic moduli 
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also remain small. By solving the system of equations (23)  
taking Eq. (49) into account, it is possible to obtain the spec- 
tra of first and second sound. In the vicinity of the transition 
they have the following form: 

Here q, and q, are the components of the wave vector q 
along the normal e and perpendicular to it, respectively, 77 
are the unrenormalized viscosity coefficients introduced in 
Eq. (24),  ST are the critical corrections to the bulk viscosity 
coefficients (281, (32)' (37),  and (40),  S'v are the correc- 
tions to the bulk viscosity coefficients associated with the 
fluctuations of the smectic layers (48),  and g- are the re- 
normalized dynamic elastic moduli of the smectic (29),  
(31)' (36),  and (39) .  

The sound described by the spectrum (50)-(52) is 
analogous to ordinary sound in liquids or longitudinal sound 
in solids. The wave vector q coincides in this mode with the 
direction of the velocity vector. The mode (50) ,  (53),  (54) 
describes second sound, which is analogous to shear sound 
in solids. Second sound degenerates into the diffusion mode 
when the wave vector coincides with the normal to the layer 
or lies in it. 

3. SHEAR WAVES (SECOND SOUND) 

3.1. Experimental technique and results 

We investigated the propagation of shear waves in the 
vicinity of the smectic A-smectic C phase transition. As the 
objects of our study we chose materials which undergo the 
following phase transitions: 

pentyloxybenzylidene-hexylaniline (PBHA)- 

butyloxyphenyl-decyloxybenzoate (BOPD0B)- 

and butyloxyphenyl-nonyloxybenzoate (BOPN0B)- 

The smectic phases were oriented starting from the ne- 
matic phase by a magnetic field by means of a magnetic in- 
duction of 2.2 T with subsequent cooling. The study of sec- 
ond sound in the smectics was carried out by the acoustic 
shear impedance method. A detailed account of this method 
and a diagram of the experiment can be found in Ref. 3 1. 

A quartz disk served as the measuring element. For 

FIG. 1 .  Orientational dependence of the real ( R )  and imaginary (X) 
components of the impedance (the inverse wave vector) at f = 3 MHz for 
various substances: a )  BOPNOB: 1 ) A phase, T - T,, = 4 K ,  2 )  Cphase, 
T -  T,, = - 3 K; b)  PBHA: 1 )  A phase, T -  T,, = 4.3 K,  2 )  Cphase, 
T-T,,= - 1 K ; c )  BOPDOB: 1 )  Aphase, T-T,,= 12.5 K , 2 )  A 
phase, T -  T,, = 3.5 K.  

some experimental geometries the working surface of the 
disk was treated with various surface-binding substances- 
silanes, which created a homeotropic or planar orientation 
of the molecules of the smectic. The measurement of the 
angular dependence was made at 5" intervals. The funda- 
mental frequency of the experiment was 3 MHz. The abso- 
lute measurement error was at most 3-5%. The geometry of 
the experiment ensured propagation only of second sound. 

During the course of the experiment the imaginary ( X )  
and real (R ) components of the acoustic shear impedance of 
the liquid crystal were measured using radio devices. These 
components are related in the following way with the inverse 
wave vector of the propagating second sound: 

q - ' ( ~ )  =[H (a) +iX(o)] l p o .  (55 

Figure 1 shows the orientational dependence of the 
components of the impedance [or to within the constant fac- 
tor pw the inverse wave vector (55)  1. In these figures and 
everywhere below 8 is the angle between the normal vector 
to the smectic layer e and the wave vector q. 

3.2. Analysis of the experimental data 

Solving Eq. (50) for the square of the inverse wave vec- 
tor and using the definition of the components of the imped- 
ance (55),  we obtain after separating the imaginary and real 
parts 

The viscosity coefficient of second sound vcz,, which de- 
pends on the direction of propagation and takes account of 
the critical corrections and the corrections associated with 
the fluctuations of the smectic layers, is given by Eq. (54) .  
Equations (56) make it possible to express the material pa- 
rameters of the smectic in terms of the experimental values 
of the components R and X of the shear impedance. 
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FIG. 2. Compression modulus of the smectic layers g ,  calculated accord- 
ingtoEqs. (56) Cf= 3MHz): 1 )  BOPNOB, Aphase, T -  TAc = 4K,  2) 
BOPNOB, C phase, T -  TAc = - 3 K, 3) PBHA, A phase, 
T -  TAc = 4.3 K, 4 )  PBHA, Cphase, T -  TAc = - 1 K; 5)  BOPDOB, 
Aphase ,T-TAc=3.5K,6)Aphase ,T-T,c=12.5K.  

Figure 2 shows the compression moduli of the smectic 
layers in the investigated substances for the smectic A and C 
phases. As also follows from the mean field theory [see Eq. 
( 15) 1, in the transition from the smectic A to the smectic C 
phase the magnitude of this elastic modulus decreases by an 
amount comparable to itself: Ag, - 10' erg/cm3. The lack 

FIG. 3. Orientational dependence of the viscosity coefficient of second 
sound (54) calculated according to Eqs. (56)  Cf= 3 MHz): a) BOP- 
NOB: 1) A phase, T- TAc = 4 K, 2 )  C phase, T -  TAc = - 3 K; b) 
PBHA: 1 )  A phase, T -  TA, = 4.3 K, 2) Cphase, T -  TAc = - 1 K; c )  
BOPDOB: 1) A phase, T -  TA, = 12.5 K, 2) A phase, T -  TAc = 3.5 K. 

FIG. 4. Theoretical orientational dependence of the viscosity coefficient 
of second sound (54) for the two cases described by inequalities (57). 

of dependence of the magnitude of the elastic modulus gu; 
calculated according to Eq. (56) on the orientation confirms 
the single-domain character of the investigated sample and 
the form of the spectrum of second sound (50), (53), (54). 

Figure 3 shows the orientational dependence of the vis- 
cosity of second sound (54). It  can be seen that a change- 
over of regimes takes place in its orientational behavior: for 
the propagation angle 8 = 45" the absorption maximum 
(curve 2) changes into a minimum (curve 1 ) . The reason for 
this is the following. The theoretical orientational depen- 
dence of the viscosity of second sound, described by expres- 
sion (54), is depicted in Fig. 4. Here curves 1 and 2 describe, 
respectively, the situations 

The last two terms on the right-hand sides of these inequal- 
ities describe the critical corrections (28) and the correc- 
tions associated with the fluctuations of the smectic layers 
(48). These corrections in the vicinity of the transition de- 
pend strongly on the frequency and the temperature. As the 
temperature of the transition from the smectic A to the smec- 
tic C phase is approached, the critical correction Sr] grows 
strongly. Its growth with approach to the transition tem- 
perature leads to the changeover (57) of the regimes in the 
orientational behavior of the viscosity. 

However, the agreement of the experimental orienta- 
tional dependences (Fig. 3) with the theoretical (Fig. 4) 
breaks down in the propagation angle ranges 0-25" and 75- 
90". This has to do with the fact that at 0 = 0" and 90" second 
sound degenerates into the diffusion mode. The sound pene- 
tration depth in a sample of the investigated medium in this 
case is comparable with the depth of influence of the bound- 
ary conditions on the quartz disc. This may explain the dif- 
ference between the experimental (Fig. 3) and theoretical 

5 10(t/o).f08, sec 

FIG. 5. Frequency dependence of the correction (48) to the viscosity 
coefficient of second sound (54) associated with the fluctuations of the 
smectic layers, calculated according to Eqs. (56); 0 = 45". 
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(Fig. 4) orientational dependences of the absorption of sec- 
ond sound at these angles. 

Unfortunately, we do not know of any other experimen- 
tal data on the orientational dependence of the absorption of 
second sound in oriented smectic liquid crystals. (In Ref. 32 
only the orientational dependence of the real component R 
of the impedance was measured.) 

Let us turn now to the frequency dependence of the 
components of the impedance at constant temperature. The 
magnitudes of these components at the propagation angle 
0 = 45" were measured at three frequencies w = 9.86. lo6 
sec.', 1.88.107 sec-', and 3.14.10' secl.Thedependence 
of the viscosity coefficient of second sound on the inverse 
frequency is shown in Fig. 5. 

Making use of Eq. (47), from the slope of the straight 
line depicted in Fig. 5 we can make the following estimate 

Z is a dimensionless quantity associated with the appearance 
in the smectic C phase of an additional orientational mode. 
From typical values of the Frank modulus ( 14) and the esti- 
mate (58) we get the following estimate 

Note that the treatment of the frequency dependence of 
the damping of the sound according to Eq. (46), which is 
valid only for the A phase, gives rise to the invalid conclusion 
that the Frank modulus K decreases in the transition from 
theA to the Cphase. Estimate (59) agrees numerically with 
the experimental results of Ref. 18, in which, however, the 
increase of the fluctuational damping (47) by the factor B in 
the smectic C was incorrectly interpreted as a decrease in the 
Frank modulus. 

Finally, let us directly consider the smectic A-smectic C 
phase transition. The temperature dependences of the elastic 
modulus g, calculated according to Eqs. (56) and the vis- 
cosity of second sound 1 7 ( ~ )  are shown in Fig. 6. Far from the 
transition point the regular behavior of the absorption [of 
course, taking into account the temperature-independent 

corrections associated with the fluctuations of the smectic 
layers (48)] is determined by the unrenormalized viscosity 
coefficients. 

Figure 6 shows convincingly that in the region of devel- 
oped fluctuations the critical corrections are equal in order 
of magnitude to the unrenormalized value of the elastic mod- 
ulus g ,  : 

This is because the latter is relatively small. Thus, in the 
frequency range investigated (a - 10' sec - ' ) the critical 
fluctuational corrections, generally speaking, are not small. 
Therefore in the analysis of the critical behavior of the quan- 
tities g, and v(2 ,  it is necessary to use the cumbersome 
formulas (36) and (37). These formulas describe the tem- 
perature-frequency behavior of the viscosity and the com- 
pression modulus in the crossover region. The regular be- 
havior of the compression modulus of the smectic layers is 
determined on the smectic A phase side by the nematic- 
smectic t ran~it ion:~ 

The value of the critical index coincides with that obtained 
experimentally in Ref. 4. 

In the regions of developed fluctuations the absorption 
maximum (37) and the minimum of the value of the elastic 
modulus (36) do not necessarily correspond to the transi- 
tion temperature. The fluctuations of the order parameter 4 
are at their strongest, of course, at the transition point. How- 
ever, the functions F' and F ", which have an extremum at the 
transition point, figure in a complicated way in expression 
(36) for the renormalized dynamic elastic modulus and in 
expression (37) for the fluctuational correction to the vis- 
cosity, shifting the extrema of these quantities away from the 
transition point. This is quite evident from the experimental 
temperature dependences of the compression modulus (Fig. 
6).  The minimum of the compression modulus is shifted into 
the C phase. 

4. LONGITUDINAL WAVE (FIRST SOUND) 

FIG. 6. 1 )  Temperature dependence of the compression modulus of the 
smectic layers (a), and 2) the viscosity wq,, ,  of second sound (54) in the 
vicinity of the smectic A-smectic Cphase transition for BOPDOB, calcu- 
lated according to Eqs. (56); 0 = 45", f = 3 MHz. 

4.1. Experimental technique and results 

During the course of the experiment the values of the 
velocity ( c )  and the absorption coefficient of ultrasound (a) 
were measured in the smectic A and C phases ofp-(hexy- 
loxy) phenylether p-(decyloxy) benzoic acid. This com- 
pound possesses the following polym~rphism:~~ 

The orientational smectic phases were obtained by cool- 
ing the sample from the nematic phase in a magnetic field 
with a strength of 0.3 T for various angles between the wave 
vector and the magnetic field vector. Because of the large 
penetration depth of longitudinal sound (in comparison 
with second sound), the orienting influence of the surfaces 
of the measuring devices was negligibly small (the charac- 
teristic dimension of the sample was - 1 cm). The measure- 
ments were carried out over a wide range of ultrasound fre- 
quencies f = 0.15-27 MHz (in the frequency interval 0.15- 
1.3 MHz-by the resonator method34 using a specially 
shaped resonator, and in the frequency interval 3-27 MHz- 

278 Sov. Phys. JETP 71 (2), August 1990 Balandin et a/. 278 



FIG. 7. Temperaturedependence of the quantity a/f ( a  is the ultrasound 
tion coefficient) at 6' = 0"; X -4 .36  MHz, 0-4.69 MHz, A-1.2 
0 -3  MHz, A-5 MHz, + -8.7 MHz, .--15.8 MHz, 0-27.7 

--he-=-.---- -4 

338 393 3Y8 353 

by the modified pulse-phase method with variable frequen- 
C Y ) . ~ ~  

The temperature variations of the ultrasound velocity 
c - c, were determined by both of the indicated methods 
relative to the value of c,, which was measured in the nema- 
tic or isotropic phase. The error of measurement of the quan- 
tity c - c, was less than 1%, which for characteristic tem- 
perature variations of the velocity, of the order of 100 m/sec, 
were less than 1 m/sec. Note that the results presented below 
for the ultrasound velocity can contain a measurement error 
of the magnitude of c, (less than 0.596, or - 6 m/sec) . How- 
ever, it is of a systematic nature and does not influence the 
conclusions made in this paper. 

The error in the measurement of the absolute value of 
the ultrasound absorption coefficient by the resonator meth- 
od was less than 5%, and by the pulse-phase method, 10%. 
The latter method made it possible to determine the tem- 
perature variations of the magnitude of a with an error of - 2% relative to the absolute value of a .  The measurements 
and their analysis were carried out with the help of an auto- 
mated measuring-calculational complex.36 

Figures 7 and 8 show the temperature dependence of 
the absorption coefficient for the angles 0 = 0" and 90", re- 
spectively. For a single-domain sample the angle 8 coincides 
with the angle between the wave vector and the normal to the 
smectic surface. For the case 0 = O" a strong frequency de- 
pendence of the quantity a/f is observed both in the A and C 

phases. In this case in the low-frequency region there is a 
substantial pretransition growth of the given parameter. At 
0 = 90" the frequency dependence of the absorption coeffi- 
cient is weaker, and small anomalies in the vicinity of the A- 
C transition are observed only at low frequencies. The criti- 
cal anomalies of the quantity a/f grow as 8 varies from 90" 
to O" (Figs. 9 and 10) and decrease as the frequency in- 
creases. Figures 7-10 convincingly demonstrate the pres- 
ence of a strong anisotropy in the critical absorption of ultra- 
sound. 

Note that the character of the critical anomalies of the 
acoustic parameters in the vicinity of the A-C phase transi- 
tion does not vary substantially when a sample of oriented A 
phase is cooled either in the presence or the absence of the 
relatively weak magnetic field used in the experiment. 

Figures 11 and 12 show the temperature dependence of 
the ultrasound velocity for various orientations at the fre- 
quencies 0.36 and 27 MHz. The minimum velocity, which 
takes place at low temperatures, in the region of the A-C 
transition, for 0 near zero increases with increase in the fre- 
quency and at&5 MHz is practically absent. In this case the 

FIG. 8. Temperaturedependenceofthe quantity a/ f2  at 6' = 90" (notation FIG. 9. Temperature dependenceof the quantity a/f' at the frequency 0.6 
the same as in Fig. 7).  MHzat6'=0"(e),3O0(0),60"(0),90"(A). 
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FIG. 10. Temperature dependence of the quantity a/f  at the frequency 5 
MHzat B=0" ( a ) ,  30" ( 0 ) , 6 0 " ( 0 ) ,  90" ( A ) .  

phase transition is accompanied by a change in the velocity 
temperature coefficient (Fig. 12). At 8 = 60" and 90" no sig- 
nificant changes in the nature of the temperature depen- 
dence of the ultrasound velocity are observed in the investi- 
gated frequency interval with the exception of the lowest 
frequencies, where only small changes in the velocity tem- 
perature coefficient are noted. At all of the investigated fre- 
quencies the values of the ultrasound velocity at 8 = 90" and 
60" differed by no more than 1 m/sec. 

As can be seen from Figs. 11 and 12, the critical correc- 
tions to the sound velocity, like the corrections to the viscos- 
ity, are strongly anisotropic. The temperature dependence of 
the relative anisotropy Ac/c = [c(0") - c(90°)]/c(90") is 
shown in Fig. 13 over the entire investigated frequency inter- 
val. Note the existence of a dependence of the anisotropy of 
the ultrasound velocity on the frequency in both smectic 
phases. In the smectic A at I T - T,, ( k 3 K ( T,, is the A-C 
transition temperature) at frequencies < 5 MHz the fre- 
quency dependence of the indicated parameter is practically 
absent. This indicates that the low-frequency (hydrodynam- 
ic) limit has been reached. 

To calculate the viscosity coefficients and the elastic 
moduli of the smectic, the temperature dependence of the 
density was determined experimentally. The measurements 
were carried out with the help of a pycnometer with an error 
U< 0.1%. Within the limits of the indicated error in the inves- 

FIG. 12. The same as in Fig. 1 1 ,  for f = 27.7 MHz. 

tigated temperature interval the density is described by a 
linear lawp(T) = 1.099 - 1.599. lo3 T (here T is in "C,p is 
in g/cm3). 

4.2. Analysis and discussion of the experimental results 

Criticalbehavior of the ultrasound velocity 

We begin our analysis of the experimental results with a 
discussion of the critical behavior of the sound velocity. 
Note that the nature of the temperature dependence of the 
acoustic parameters at 8 = 90" (Figs. 9 and 11) indirectly 
indicates the preservation of the single-domain structure of 
the A phase in the transition to the C phase. In this case the 
orientational dependence of the velocity of longitudinal 
sound is described by Eq. ( 5 1 ) . 

From the frequency-temperature dependence of the ve- 
locity of first sound (Figs. 11 and 12) for the four orienta- 
tions it is possible to calculate the elastic moduli of the smec- 
tic, renormalized by the critical fluctuations, figuring in Eq. 
(5 1 ) . Figure 14 presents the temperature dependences of the 
elastic moduli of the smectic related to the compressibility of 
the smectic layers. With approach to the nematic phase they 
tend to zero in the low-frequency region. By virtue of the 
narrowness of the temperature interval of existence of the 
smectics, the given moduli remain small ( - 10' erg/cm3) in 
this interval, in agreement with Eq. ( 10). 

3?8 353 rK FIG. 13. Temperature dependence of the relative anisotropy of the ultra- 
sound velocity: 0-4.15 MHz, @--0.36 MHz, X-3 MHz, A-5 MHz, 

FIG. 1 1 .  Temperature dependence of the ultrasound velocity at the fre- .-8.7 M H ~ ,  A-15.6 MHz, 0--27.7 MHz. The arrows show the quanti- 
quency 0.36 MHz at t9 = 0" (O) ,  30" ( a ) ,  60" ( A ) ,  90" ( A ) .  ty GAc/c. 
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FIG. 14. Temperature dependence of the elastic moduli gu; and g,; : 0- 
0.36 MHz, A-5 MHz, A-15.6 MHz. 

The temperature dependence of the elastic modulus gp; 
(the compression modulus at constant interlayer spacing 1) 
is shown in Fig. 15. This elastic modulus has a magnitude - 10'' erg/cm3, which agrees with Eq. ( 11). From the cal- 
culated values of the elastic moduli (Figs. 14 and 15) it can 
be seen that over the entire investigated frequency-tempera- 
ture region the ratio ( 12) of the elastic moduli renormalized 
by the critical fluctuations remains small: 

This makes it possible in the analysis of the results on the 
velocity of first sound in the vicinity of the A-C transition to 
use Eq. ( 5  1 ), which was obtained to first order in the small 
parameter ( 12). 

The frequency dependence of the elastic moduli g, and 
g, far from the transition is apparently related to the ap- 
pearance at high frequencies of noncritical mechanisms of 
molecular dissociation. In addition, in the smectic A phase 

FIG. 15. Temperature dependence of the elastic modulus g,;, at the fre- 
quency 0.15 MHz. 

the behavior of the elastic moduli is complicated by the prox- 
imity of the nematic-smectic A phase transition. The regions 
of developed fluctuations of these transitions overlap, hin- 
dering the analysis of the dispersion properties of the elastic 
moduli. Nevertheless, at low frequencies, as can be seen from 
Fig. 14, the frequency dependence disappears. This indicates 
the attainment of the hydrodynamic limit. 

From Eq. (9) it is possible, using the starting values of 
the elastic moduli, to calculate the density (pressure) depen- 
dence of the interlayer distance I. The calculations show that 
as the density increases, the interlayer distance I decreases. 
In this case in the smectic A and C phases we obtain for the 
quantity (9  ) 

Generally speaking, it is quite possible that the interlayer 
distance also increases with an increase in the density. The 
magnitude of expression (60) does not depend on the tem- 
perature within the limits of measurement error and is the 
same in both phases. 

If the smectic A-smectic C phase transition were ab- 
sent, the behavior of the elastic moduli would be described 
by regular temperature dependence. To investigate the criti- 
cal corrections to the elastic moduli associated with the fluc- 
tuations of the order parameter, it is necessary to know this 
regular dependence. To determine it (the dashed curves in 
Fig. 14), we have made use of experimental data on the total 
velocity anisotropy (Fig. 13). The velocity anisotropy in the 
vicinity of the A-N transition is quite well described by the 
following power law 

where ATAN = 1 T - TAN 1, where TAN is the A-N transition 
temperature. The value of the critical index 0.25 is in agree- 
ment with the experimental r e s ~ l t s . ~ ' , ~ ~  

Taking Eq. ( 12) into account, it is easy to show that the 
total velocity anisotropy is equal to 

From this relation it follows that in the vicinity of the nema- 
tic-smectic A phase transition the critical behavior of the 
elastic moduli g, and g& and the total velocity anisotropy 
obey the same law. However, in contrast with the values of 
the elastic moduli (Fig. 14), which were obtained indirectly 
by an analysis of the orientational dependence of the veloc- 
ity, the total anisotropy was measured (Fig. 13) directly and 
more precisely. The regular behavior in the vicinity of the 
smectic A-smectic C phase transition (the dashed curves in 
Fig. 14) was constructed by extrapolation of the experimen- 
tal data near TAN according to the law (61 ). 

As can be seen from Fig. 14, in the transition from the 
smectic A to the smectic Cphase the elastic moduli g, and 
g ,  decrease dramatically. This decrease is manifested espe- 
cially strikingly at low frequencies. In this case the difference 
between the regular dependence (the dashed curve) and the 
experimentally obtained values of the moduli is of the same 
order of magnitude as the compression modulus of the smec- 
tic layers itself g, . This fact in combination with the theo- 
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retical value ( 15 ) of the mean-field jumps of the elastic mod- 
uli which take place in the transition from the A to the C 
phase confirms the estimates ( 13 ) 

D,, Dp, U- 10% erg/cm3. 

Recall that Ucharacterizes the self-interaction energy of the 
order parameter (4), while the quantities D, and D,, intro- 
duced in Eq. (6), characterize the contributions to the ener- 
gy density of the interaction of the order parameter with the 
deviation of the density p and the displacement of the smec- 
tic layers u from their equilibrium values, respectively. 

It follows from Fig. 14 that the fluctuational decrease of 
the elastic moduli begins even in the smectic A phase. As 
long as the critical corrections are small [and satisfy condi- 
tions (38) 1, they are described by expressions (39) and (41 ) 
and 

Here a is the specific heat index, which, according to theo- 
retical  calculation^,^^^^ is very small ( - 0.1 ) . According to 
the experimental results we have a 5: 0.25. Unfortunately, 
the numerical value of this index, obtained by an analysis of 
the experimental curves shown in Fig. 13, is very sensitive to 
the course of the extrapolated regular dependences and to 
experimental error. 

It is interesting to consider the possibility of obtaining 
the universal relations (42) between the critical corrections 
to the various elastic moduli experimentally. In Sec. 2 of this 
paper it was shown that both in the region of weak fluctu- 
ations and in the crossover region the ratios of the correc- 
tions to the elastic moduli are equal to 

From this it follows that the critical correction to the elastic 
modulus g,; (Fig. 15) is one order of magnitude less than 
the corresponding contribution tog, and lies at the limit of 
experimental accuracy. The values of the ratios (64), calcu- 
lated using the values of the critical corrections to the elastic 
moduli g, and g, plotted in Fig. 14, are given in Fig. 16. It 
can be seen that in the vicinity of the transition this quantity 
does not depend on either the frequency or the temperature. 

Criticaibeha vior of the viscosity 

Let us turn now our attention to a discussion of the 
viscous properties of the smectic in the vicinity of the A-C 
transition. The orientational dependence of the coefficient of 
absorption a of first sound in a single-domain smectic sam- 

FIG. 16. Temperature dependence of the ratio D,/D,:  C . 0 . 3 6  MHz, 
A-5 MHz, A-15.6 MHz. 

FIG. 17. Temperature dependence of the quantity 7, + 774: 0 - 0 . 3 6  
MHz, 0-4.47 MHz, 0 - 4 . 6 9  MHz, A-1.2 MHz, V-5 MHz. 

ple is described by expression (52). Applying expression 
(52) to the four curves of the dependence ofa/f on Tat the 
four orientations 8 = 0, 30, 60, 90°, we calculated the fre- 
quency-temperature dependences of the viscosity coeffi- 
cients of the smectic. The results of this calculation are 
shown in Figs. 17-19. 

The critical corrections to the bulk viscosity coeffi- 
cients are significantly greater than the corresponding cor- 
rections to the elastic moduli. However, the analysis of the 
viscosity coefficients in the vicinity of the A-C transition is 
more complicated. First, as is quite clear from Figs. 17-19, 
on the smectic A phase side the fluctuation region of the 
investigated A-C transition substantially overlaps the region 
of developed fluctuations of the nematic-smectic A phase 
transition. Second, even far from the A-Cphase transition in 
the smectic C phase there exists a frequency dependence of 
the viscosity coefficients in the hydrodynamic limit. This has 
to do with the fact that in the smectic phases strong fluctu- 
ations of the smectic layers lead to a highly nontrivial contri- 
bution to the bulk viscosity coefficients, which diverges like 
w - ' (Ref. 14). This contribution is not related to the critical 
fluctuations of the order parameter and must be considered 
separately. 

FIG. 18. Temperature dependence of the viscosity coefficients 7j,. Nota- 
tion the same as in Fig. 17. 
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FIG. 19. Temperature dependence of the viscosity coefficient q ,  + q2: 
W . 3 6  MHz, 0-4.69 MHz, .'-1.2 MHz, 0 - 5  MHz. 

The fluctuations of the smectic layers lead to the ap- 
pearance of the corrections (48) to the bulk viscosity coeffi- 
cients (see Fig. 20). Using the values of the elastic moduli 
g, and gu; entering into Eqs. (48) and determining the 
slopes of the straight-line dependences of @, on w - ' in the 
low-frequency region far from the transition, it is possible to 
determine the value of the parameter A, figuring in Eq. 
(47). Calculation shows that 

Taking into account that the critical fluctuations do not re- 
normalize the elastic Frank modulus K and its values in the 
smectic A and Cphases coincide, it is possible to describe the 
experimentally observed values of 87 ,  in the low-frequency 
region in the smectic A phase by an expression of the form 
(48) for E - 10. 

(Recall that the dimensionless positive parameter 5 
characterizes the increase of the fluctuational contribution 
associated with the oscillations of the smectic layers in the C 
phase in comparison with the A phase.) l7 Estimation of the 
Frank modulus then gives K - 10 - erglcm, which corre- 
sponds to typical values for it in the smectic phases. 

The numerical value 5 - 10 agrees with the experimen- 
tal results of Ref. 18. However, in this work the increase of 
the coefficient A was incorrectly interpreted as a decrease of 
the Frank modulus K in the transition from the A to the C 
phase. 

In the vicinity of the smectic A- smectic Cphase transi- 
tion divergent critical corrections to the bulk viscosity coef- 
ficients appear (see Figs. 17-19). They are due to the fluctu- 
ations of the order parameter. As long as the critical 

FIG. 20. Dependence of the quantities ij,, q ,  + i j?, and q ,  + Ij.2 in the S, 
phase: 0-fj,, Ayq ,  + fj,, 0-q3  + q4 ( T = 337 K),  S i j , ,  A- 
'11 + h, & ~ 3  + 74 ( T =  344 K ) .  

corrections are small, they are described by Eqs. (40). With 
the growth of the critical fluctuations in the crossover region 
(35) it becomes necessary to use the cumbersome expres- 
sions (37) to describe the corrections to the bulk viscosity 
coefficients. As follows from these relations, the critical cor- 
rections to the viscosity coefficients 7, and 7,  are positive. In 
smectics an interesting situation is possible in which the 
critical fluctuations cause the viscosity coefficient 77, to de- 
crease. It is specifically this situation that is reflected in Fig. 
17. The bulk viscosity coefficient 7, generally becomes nega- 
tive in the vicinity of the transition. Over the entire region of 
developed fluctuations the critical corrections to the bulk 
viscosity coefficients are related with each other by the uni- 
versal relation (43), i.e., 

Here D, and D, are the parameters introduced in Eq. (6). 
The difference between the experimental values of the 

viscosity coefficients depicted in Figs. 17-19 and their regu- 
lar dependence corresponds to the critical contribution ST. 
The regular dependence is constructed by direct extrapola- 
tion of the experimental data obtained for the smectic C 
phase far from T,, and for the A phase in the vicinity of TAN.  
In the region of developed fluctuations the ratio of critical 
corrections (66) is insensitive to the systematic errors asso- 
ciated with the determination of the regular dependence of 
the viscosity coefficients6 Note that, as follows from theory, 
the magnitude of the ratio D,/D, is not renormalized by the 
critical fluctuations. The numerical value obtained from the 
analysis of the critical corrections to the bulk viscosity coef- 
ficients agrees with the values (64) (see Fig. 16) obtained 
independently by an analysis of the critical behavior of the 
elastic moduli. 

As long as the fluctuational corrections are small, the 
critical corrections to the bulk viscosity coefficients in the 
hydrodynamic and fluctuation regions are described by the 
laws (41 ). Figures 21 and 22 present the temperature and 

FIG. 21. Temperature dependence of Svs in the S, phase: X 4 . 3 6  MHz, 
0 4 . 6 9  MHz, B-1.2 MHz, A-3 MHz, 0-5 MHz, .'-8.7 MHz. 
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FIG. 22. Temperature dependence of Sv5 in the S, phase: A--0.36 MHz, 
0-4 .69  MHz, A-1.2 MHz, 0-3  MHz. 

frequency dependences of the critical correction 67,. The 
solid line in Fig. 23 corresponds to the following value of the 
following combination of critical indices (see Sec. 2) : 

As might have been expected, the indices v and a are the 
same in both smectic phases. Their numerical values agree 
with the theoretical values obtained in Refs. 9, 20, and 27. 
The deviation of the critical corrections from the power-law 
dependences (41 ) determines the boundary of the hydrody- 
namic and fluctuation  region^.^ 

Analysis of the viscoelasticproperties in the crossover 
region 

With the approach to the transition temperature the 
fluctuations of the order parameter grow. However, for most 
real second-order phase transitions the critical corrections 
to the elastic moduli always remain small in comparison 
with their unrenormalized values. In other words, because of 
the large values of the unrenormalized elastic moduli the 
crossover region (35) is located in an experimentally un- 
reachable range of temperatures and frequencies. The criti- 
cal corrections can therefore always be taken to be small and 
can always be described by power laws of the type (41). In 
smectics the elastic moduli g, and g, , related to the com- 
pression of the smectic layers, are small. The critical correc- 
tions to the sound absorption, while remaining small in com- 
parison with the ordinary compression modulus g; - 10" 

7 f, MHz 

FIG. 23. Temperature dependence of Sv5 in the S, phase at T =  353 K: 
0 - 4 . 3 6  MHz, A-1.2 MHz, @-3 MHz. 

erg/cm3, in the crossover region become comparable with 
the modulus B- 10' erg/cm3. In this case in the analysis of 
the experimental data neither the fluctuational part nor the 
starting part can be neglected, and it is necessary to use Eqs. 
(36) and (37). According to these formulas the critical be- 
havior of the viscoelastic properties in the crossover region is 
described by the imaginary ( F "  and real (F') parts of the 
dynamic correlator (2 1 ) . These functions figure in a compli- 
cated way in the expressions for the critical corrections. 

It is interesting to extract the functions F' and F "  from 
the experimental data, and all the more so because according 
to current notions in the region of developed fluctuations 
these fluctuations should be universal. Solving the system of 
equations(36), (37) for the functions F' and F ", we obtain 

Here the compressibility matrix g and the vector D were 
defined in Eqs. (6) and (8)  ; g, is the unrenormalized elas- 

FIG. 24. Temperature dependence (a) of the function F' for w = 0.36 
MHz (0); after Ref. 3 (H); after Ref. 5 (A);  8.7 MHz (a); 15.6 MHz 
( V ) ;  27.7MHz (O),and (b) ofthefunctionFW forw = 0.36MHz ( 0 ) ;  3 
MHz ( 0 ) ;  5 MHz (A);  8.7 MHz (a); 15.6 MHz ( V ) ;  and 27.7 MHz 
( 0 ) .  
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tic compression modulus of the smectic layers (the dashed 
curve in Fig. 14); g, is the elastic modulus renormalized by 
the critical corrections (the solid curve in Fig. 14); Sq,,4,, 
are the critical corrections to the bulk viscosity coefficients 
(Figs. 17-19). We take the regular dependence of (DgD), 
figuring in expression (68), to be proportional to l/g,. The 
error associated with this is small of order ( 12) .3 '  Figure 24 
depicts the imaginary (F " ) and real (F' ) parts of the correla- 
tor of the order parameter (2 1 ) constructed from the data 
according to Eqs. (68 1. 

Functions of the form (21) were first calculated by 
Imura and Okano in Ref. 39 in the study of the nematic- 
isotropic liquid transition in the Ornstein-Zernike approxi- 
mation. In Ref. 4 it was shown that the Ornstein-Zernike 
approximation describes the experimental situation quite 
well for a weak first-order transition. 

The functions F' and F " in the region of developed fluc- 
tuations, plotted in Fig. 24, differ from the Imura-Okano 
functions. This is not hard to understand if we take into 
account that the scaling value of the critical specific heat 
index for theA-C transition, which amounts to -0.1, differs 
sharply from the value a = 0.5, which corresponds to the 
Ornstein-Zernike approximation. 

5. CONCLUSION 

As the analysis of the experimental data for the frequen- 
cies u - lo7 sec - ' showed, the damping of second sound is 
not small. In this case the measured components of the shear 
impedance (or to within a numerical factor the imaginary 
and real components of the inverse wave vector) are the 
most adequate parameters for the description of second 
sound. This follows strikingly from the formulas which were 
used in the analysis [Eqs. (56) 1. 

The compression moduli of the smectic layers, calculat- 
ed from the orientational dependence of the impedance (Fig. 
1)  confirm the form of the spectrum (50). However, the 
question of the orientational behavior of the viscosity coeffi- 
cient of second sound (54) in its propagation along the 
smectic layers and perpendicular to them remains open. 

The data on the frequency dependence of the imped- 
ance have made it possible to estimate the correction to the 
viscosity of second sound associated with the fluctuations of 
the smectic layers.I4 The estimates (58) and (59) do not 
contradict the increase predicted in Ref. 17 of the fluctua- 
tional damping of sound in the smectic C phase due to the 
appearance of an additional orientational mode. 

Finally, it should be observed that at w-  10' sec- ' the 
critical corrections to the viscosity, to the second sound ve- 
locity, and to the compression modulus of the smectic layers 
are comparable with their unrenormalized values. In other 
words, the fluctuations of the order parameter, while strong- 
ly renormalizing the bare values, nevertheless lead to univer- 
sal behavior. 

The analysis of the experimental data shows that a 
study of longitudinal (first) sound affords the possibility of 
completely determining the critical behavior of all the vis- 
coelastic properties of the smectic in the vicinity of the A-C 
transition. 

The elastic dynamic properties are determined by the 
three moduli (8). Their temperature-frequency behavior is 
shown in Figs. 14 and 15. As can be seen from these figures, 

in the transition from the smectic A phase to the smectic C 
phase the elastic moduli cause the compression modulus of 
the smectic layers B to decrease by an order of magnitude. 
Over a wide frequency-temperature region the critical cor- 
rections to the elastic moduli have a magnitude of - 10" 
erg/cm3. Thus, in smectic liquid crystals the very interesting 
situation is realized in which the critical corrections, while 
remaining small in comparison with the total compression 
modulus gp; - 10" erg/cm3, become comparable with the 
compression modulus of the smectic layers B. In this case the 
behavior of the elastic moduli of the smectic with the critical 
fluctuations taken into account is described by the compli- 
cated expressions (36) and (37). However, everywhere in 
the vicinity of the transition, including the crossover region, 
the corrections to the elastic moduli are related by the uni- 
versal relations (42). This is strikingly demonstrated by Fig. 
16. 

The regular behavior of the elastic moduli far from the 
transition point makes it possible to investigate the pressure 
(density) dependence of the interlayer distance in the smec- 
tics. 

The absorption of sound in smectics is determined by 
five viscosity coefficients. The fluctuational corrections to 
the shear viscosity coefficients are absent. The critical be- 
havior of the bulk viscosity coefficients is depicted in Figs. 
19-21. As long as the critical corrections are small, the cor- 
rections to the bulk viscosity coefficients - ( T - T,, ( - I . ' .  

In the crossover region the corrections to these coefficients 
are described by the cumbersome formula (37). 

The analysis of the frequency-temperature behavior in 
this case is quite complicated. Nevertheless, the critical cor- 
rections to the various bulk viscosity coefficients are related 
by the universal relation (43). Numerical analysis of the 
experimental data confirms this. 

The frequency dependence of the viscosity far from the 
A-C transition makes it possible to investigate the break- 
down of the hydrodynamics associated with the fluctuations 
of the smectic layers. For the smectic C phase there is a sin- 
gularity in the fluctuational sound absorption due to the 
presence of the additional orientational mode. The coupling 
of the orientational mode with the mode associated with the 
oscillations of the smectic layers leads to an increase in the 
proportionality coefficient in from of u - ' in the C phase in 
comparison with the A phase. In the present paper we have 
experimentally discovered an increase in the fluctuational 
correction to the viscosity in the smectic C in comparison 
with the smectic A by a factor of Z - 10. 

From the critical behavior of the viscosity and the elas- 
tic moduli it is possible to extract information on the behav- 
ior of the dynamic correlator (21). This correlator deter- 
mines the critical corrections to the viscosity coefficients 
and the elastic moduli. The frequency-temperature depen- 
dences of its imaginary and real parts are shown in Fig. 24. 
The analytic form of the function F in  the Ornstein-Zernike 
approximation is determined by a function of the Imura- 
Okano type.39 However, for the A-C phase transition the 
mean field approximation hardly applies. This is because the 
critical specific heat index a - 0.1 for the two-component 
order parameter differs sharply from the value a = 0.5 ob- 
tained in the Ornstein-Zernike approximation. It is for this 
reason that the experimental frequency-temperature depen- 
dences of F' and F "  in the region of developed fluctuations 
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are in poor agreement with the form of the Imura-Okano 
functions. In the region of developed fluctuations the error 
in determining the critical corrections and, consequently, 
the functions F is great. In addition, the exact form of the 
functions F is sensitive to the systematic errors associated 
with isolating the regular dependence of the elastic moduli 
and the kinetic coefficients. 
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sound was written by E. V. Gurovich, A. A. Tabidze, and A. C. Gol'd- 
berg. The second part (longitudinal waves) was written by V. A. Balan- 
din, E. V. Gurovich, A. S. Kashitsyn, and S. V. Pasechnik. 

2' In the vicinity of the A-C transition it is natural to expect that the elastic 
modulig -- which figure in Eqs. (48) are replaced by their renormalized 
values g - . 

"Generally speaking, for an exact calculation of F from Eq. (68), in 
addition to the values of gp;, gp; , and gu; measured in the presence of 
ultrasound it is also necessary to know the regular temperature depen- 
dences of the specific heat g ,  and the interlayer spacing 1. 
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