
Relaxed turbulent plasma state and anomalous transport processes 
A. V. Gurevich, K. P. Zybin, and A. V. Luk'yanov 

P. N Lebedev Physical Institute, USSR Academy of Sciences, Moscow 
(Submitted 22 March 1990) 
Zh. Eksp. Teor. Fiz. 98,468-484 (August 1990) 

Self-consistent kinetic and hydrodynamic equations are obtained which describe plasma 
dynamics under conditions such that magnetohydrodynamic turbulence is excited. The concept 
of the relaxed state of a turbulent plasma is introduced. It is shown that the magnetic field and 
current profiles in the relaxed state depend weakly on the form of the correlations of the magnetic 
field fluctuations. The resulting theory is in good agreement with experimental data taken from 
reversed-field pinches in the quasisteady discharge regime. 

I. INTRODUCTION type of device, although the basic ideas and methods are 
The problem of anomalous transport in tokamaks is of applicable in the general case. 

fundamental importance in the controlled thermonuclear Taylor7 first introduced the idea of the relaxed state of 
fusion program. It has been established that anomalous an RFP. He argued that, since the plasma pressure is small 
transport can be responsible for the transition to plasma tur- ( f l& 1 ), the magnetic field in the system must be force-free 
bulence. The difficulties in studying plasma turbulence (JIIB), i.e., it must satisfy the equations 
arise, in part, because even when the amplitudes of the sto- 
chastic fields are quite small they can drastically change the curlB=yB, divB=O. (2)  
macroscopic plasma state.' 

Here the quantity p in general depends on the magnetic sur- 
It is significant that, despite the presence of turbulence, 

face, p = p ( r ) .  Taylor's basic assumption has a phenomeno- 
the plasma in a tokamak may be in a quiescent and, in a 

logical character: as a result of turbulent mixing, the system 
certain sense, stable state. For example, sharp artificially im- 

relaxes to a state with 
posed density and temperature disturbances quickly die 
away in the steady state. It often appears as though the plas- 
ma has a preferred quiescent current profile to which it rap- 
idly relaxes when perturbed.2.3 Under certain specific condi- 
tions this quiescent plasma becomes unstable and a 
substantial amount of plasma is ejected, or relaxation oscil- 
lations, e.g., the so-called disruptive (sawtooth) oscilla- 
t i o n ~ , ~  are excited. 

A similar situation is observed in other toroidal confine- 
ment systems, in particular the reversed-field pinch (RFP). 
In a tokamak the longitudinal B, field (i.e., the field directed 
along the toroidal axis) produced by external currents in an 
order of magnitude larger than B,, the field produced by the 
current in the plasma. In the RFP B, and B, are comparable. 
The B, component decreases rapidly as a function of the 
distance r from the toroidal axis and vanishes at some point 
r, inside the plasma. Beyond this point the sign of B, is 
reversed, which is what gives the device its name. 

Under RFP conditions the Kruskal-Shafranov5 stabil- 
ity condition is not satisfied, in consequence of which MHD 
oscillations are excited. The amplitude of MHD waves in the 
steady state is 

In a tokamak where the Kruskal-Shafranov condition 
holds, the ratio b /B is at least a factor of ten smaller, which 
makes it harder to measure. The main contribution to the 
anomalous transport here may come from electrostatic drift 
waves, and the MHD activity may be less important. But as 
the plasma pressure increases (more precisely, as 
p = 8nnT,/B increases) the role of MHD disturbances 
grows.6 Thus information about the level of turbulence in 
the plasma has a more precise character in an RFP. In what 
follows it is therefore more convenient for us to analyze this 

due to conservation of the total magnetic field helicity. 
The introduction of the idea of the relaxed state (3 )  

proved to be extremely fruitful. Equations (2)  and (3),  to- 
gether with the natural boundary conditions at the axis 
( r  = 0 )  and on the metal liner ( r  = a),  

and the conditions for conservation of the total current Jand 
magnetic flux @, 

completely determine the structure of the magnetic field and 
the current in the discharge, as well as their dependence on 
external parameters. In fact, it is easy to see that the solution 
of Eq. (2)  in cylindrical geometry takes the form 

where J, and J ,  are Bessel functions. The field B, given by 
this solution is found to be not only in qualitative agreement, 
but in fair quantitative agreement with the experimental 
data (Fig. la) .  

On the other hand, the qnantity p itself, measured di- 
rectly, turns out to vary over the cross section (Fig. lb).' 
The structure as a function of the basic discharge parameters 
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is observed to deviate significantly from the theoretical pre- 
dictions (Fig. lc) .  Just as importantly, the phenomenologi- 
cal theory, although it determines the current and magnetic 
field structure, says nothing about the transport processes, 
the density and temperature profiles, or the properties of the 
waves that are excited. 

At the same time, experiment and numerical simulation 
convincingly demonstrate that the relaxed state is special: 
the plasma rapidly relaxes to it when the discharge is turned 
on or when pronounced disturbances are artificially intro- 
du~ed .~ , ' '  During relaxation the plasma wave energy usual- 
ly grows; in the relaxed state it is quiescent and can be shown 
to assume a minimum value.' 

Thus condition ( 3 )  is essentially violated in the relaxed 
state. What, then, is this state? The present paper is intended 
to study this question. We make no ad hoc phenomenologi- 
cal assumptions. The general equations are expanded in the 
amplitude of the stochastic oscillations ( 1 ) and in a small 
parameter related to the typical energy confinement time, 
which falls out automatically. 

As will be seen, the relaxed state is a steady self-consis- 
tent state of the plasma, in which, thanks to the anomalous 
transport processes, the properties of the excited modes are 
adjusted to the structure of the current and the magnetic 
field, and also to the density and temperature profiles. It is 
very important that the main role here is played by the 
anomalous transverse spreading of current induced by the 
turbulence, which leads to the establishment of the current 
and magnetic field profiles in the discharge. That the specific 
form of the profile turns out to depend relatively weakly on 
the details of the turbulence is surprising. 

In Sec. 2 we derive the general kinetic equation for elec- 
trons and ions under conditions such that MHD turbulence 
is excited in the plasma. In Sec. 3 we discuss the properties of 
the correlation integral which determines the wave-particle 
interaction in an RFP. In Sec. 4 we derive the full system of 
hydrodynamic equations describing an RFP plasma, includ- 
ing the effect of MHD turbulence on transport processes. In 
Sec. 5 we consider the resulting nonlinear quasistationary 
plasma turbulence state; we refer to it as relaxed turbulence. 

FIG. 1 .  ( a )  The functions B, (r )  and B,(r) given 
by Eq. ( 7 ) .  The points represent experimental data. 
(b)  Dependence of p ( r )  found experimentally 
(solid curve) and from Eq. ( 7 )  (dashed curve). 
( c )  F-@plot obtained from Eq. ( 7 ) .  The points rep- 
resent experimental data. 

The current and magnetic field profiles and their depen- 
dence on the form of the correlation function are studied 
numerically in the relaxed state. The rapid convergence of 
the iterative solution of the nonlinear equations is demon- 
strated. In Sec. 6 we consider anomalous energy losses. In 
the concluding Sec. 7 we derive equations for MHD oscilla- 
tions in a turbulent plasma. This completes the formulation 
of a closed self-consistent set of equations describing a re- 
laxed turbulent plasma state. 

2. THE KINETIC EQUATION 

Let us consider a plasma in a magnetic field B consisting 
of regular and fluctuating components, B, and b: 

The basic quantities characterizing the fluctuations are the 
correlation length LC and the correlation time rc .  In accord 
with the data, we will treat these as being large in compari- 
son with the gyroradii and inverse gyrofrequencies of the 
ions and electrons. 

Hence the kinetic equations describing the motion of 
electrons and ions in the field B can be written in the drift 
approximation as' ' 

where f = f(u,p,r,t) is the particle distribution function, 
V = uh + V,, is the particle velocity, p is the adiabatic in- 
variant, St( f) is the collision integral, and V,, is the particle 
drift velocity in the electric and magnetic fields E and B: 

c mcp VB 
V ,  = - [ E B ] + - [ ~ ~ ]  

B ? 2e 

p mc mcu2 + -(h rot h)h+ -(h(hV)h), 
2e eB 
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Taking into account (8),  we can write the distribution 
function f in Eq. (9)  in the form 

and, following our previous work,12.13 average (9)  and (10) 
bver an ensemble of random values of b. We find 

d f o  du d f o  
af.+(Y)-+(-)-+($\ at dr dt du ' - ) = ( S t ( f ) ) - ( 8 6 f ) .  9l.c 

h 

(11) 

Here the operator H has the form 

and the quantities SV, S(d,u/dt), and S(du/dt) are linear in 
the b/B corrections found from expanding Eqs. ( 10). Sub- 
tracting ( 11 ) from (9)  we find an equation for the correc- 
tion Sf to within terms of order b 2 / B  i: 

=-Bfo+St ( f )  -<St(!) ). (12) 

Equation ( 12), in addition to the linear terms, has one 
nonlinear term: 

This nonlinear correction, as we will see shortly, becomes 
important close to resonant surfaces. 

In the cases of interest the ion and electron mean free 
paths leri are considerably longer than the longitudinal (par- 
allel to the magnetic field) correlation length Lll,. Thus to 
lowest order we can neglect collisions in the right-hand side 
of Eq. ( 12). Hence solving Eq. ( 12) and using the result in 
(1 1 ), we finally get (from here on we omit the subscript 0 
from average quantities) 

= s t  ( f )  + ( B I dr j G (I'll?') B1f' dl?'). 

Here G ( r / r ' )  is the Green's function for Eq. ( 12), where I? 
is the phase-space volume. Equation ( 13) is similar to an 
equation obtained in Refs. 12 and 13. Note, however, that in 
deriving it we have not assumed that the function f varies 
slowly over the correlation length L, . 

In order to simplify the rest of the analysis, we limit 
ourselves to cylindrical geometry, which corresponds to 
small-aspect-ratio tori. Then the Green's function takes the 
form 

Here decomposing the field b, (r,O,z) yields the Fourier har- 
monics b,,,; m,n = 0, f 1, + 2 ,... are the indices of the to- 

roidal modes; r:, ( = r:,, ) is the radius of the resonant sur- 
face, defined by the condition 

where R is the major radius; and A,,, is a number that equals 
unity for r  = r:, and vanishes otherwise. 

Assuming that the function f is independent of z and I9 
and that the magnetic field fluctuations b are homogeneous 
and isotropic in 6, z, and t, we finally get the following 
equation: 

f a f  du a f  - + v,, - + - - =Ifl  ( f )  +S t ( f ) ,  
at ar ( at )au 
u  l a  1 ( )  = - - { + 
B r d r  

In writing the correlation F in (15) we assumed 

L < V T .  This relation is well satisfied in discharges at 
sufficiently high temperatures, in which case the correlation 
F is independent of the particle velocity u. 

From (15) we see that the integral Ip describing scat- 
tering of particles by fluctuations is a differential operator, in 
contrast to the integro-differential operator ( 13 ) . This prop- 
erty of I3 arises because the particles are magnetized; their 
gyroradii are small, so that the Green's function G away 
from the resonant surfaces is localized, G - S (r - r' ) . 

In order to investigate the solutions of this kinetic equa- 
tion, we have to know the form of the correlation integral F. 
This is discussed in the next section. 

3. THE CORRELATION INTEGRAL 

It follows from the kinetic equation ( 15) that in cylin- 
drical geometry the plasma dynamics is described by a single 
correlation function F( r ) ,  which is determined by the fluctu- 
ations b, of the magnetic field. The approximation of cylin- 
drical geometry is valid for tori of small aspect ratio, for 
which the minor radius a and the major radius R satisfy 
a 4R. Then solutions that are periodic in z can be Fourier- 
expanded in I9 and z: 

b.= b:." ( r )  eap (irn0+inz/R). 

From ( 16) we see that the period in z equals 2n-R. Substitut- 
ing ( 16) in ( 15) after averaging in 6 and z, we find the corre- 
lation F ( r )  : 

rn 
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Equation ( 17) shows it is essential to include the nonlinear 
term b,, L /B, since otherwise the correlation function con- 
sists solely of a sum of S-functions at the resonant fre- 
quencies: 

The actual relation ( 17) accounts for resonance broadening 
due to magnetic field fluctuations. Thus each resonance 
(m,n) broadens by an amount that scales with the amplitude 
b,, of the magnetic field fluctuation of that mode. 

Measurements of large-scale fluctuations in an RFP re- 
veal that modes with m = 1 and n = 5-10, with a spectral 
width Sn-5, are strongly excited; modes with m = 0 and 
m = 2 are excited significantly less, and other modes are ex- 
cited practically not at a11.I4.l5 When the fluctuation level 
b,, is small, ( 17) and ( 18) show that the correlation F is 
localized in narrow regions close to the resonant surfaces. In 
this case the contribution of the fluctuations to transport 
processes is less essential. Let us now estimate the fluctu- 
ation amplitude at which resonances effectively overlap over 
the whole extent of the discharge. For this we assume that 
the scale on which b,, ( r )  varies is large compared with the 
width of a resonance. Assuming further that, like r, the 
quantity r - b,, L /B varies in the interval [O,a], by inte- 
grating ( 17) we find 

s i n { I ( m ~ ~ / r + n ~ ~ ~ )  } 
F (r) = 1 bTr'(r) 1 ' bm, 

mh,/r+nh,/f: 
. (19)  

m.n 

From this we see that the characteristic width Sr of a reso- 
nance is 

nbm,n bmn 
6rR = 

(dldr,,) (mB,+nr,,,,B,/R) - 3- rmn. 

The separation between resonances is easily estimated 
using the relation 

Hence the fluctuation amplitude for which this separation 
becomes comparable with the width of a resonance is 

(lbmnI2)' rmn 
2- (20) 

B nR ' 

For typical pinch parameters we have r,, ( 0 . 3 ~  (in the 
principal mode) and a/R-0.1, from which we get 
b /B- 10- 2 ,  which agrees with the observed fluctuation am- 
plitude in an RFP.14*15 Hence magnetic field fluctuations in 
RFP conditions can give rise to effective heat and particle 
transport throughout the whole discharge. Below we will 
assume that the condition (20) holds, i.e., we will suppose 
that the correlation F ( r )  is a smooth function of r. The func- 
tion F ( r )  has several general properties that follow from the 
boundary conditions on the fluctuations 6,. In particular, 
since the discharge is enclosed in a conducting chamber, at 
r = a we have b, = 0. Accordingly as r-a we find 

4. HYDRODYNAMIC EQUATIONS 

Analysis of the kinetic equation ( 15) for real systems is 
extremely complicated. It is therefore natural to go over to a 
hydrodynamic description of the plasma. This is valid if the 
plasma variables do not change significantly over an electron 
collision time: 

where vei is the electron collision frequency and T, and u are 
the electron temperature and hydrodynamic velocity. Su- 
perthermal particles in a fluctuating magnetic field can also 
change the distribution functions considerably.'*"' For this 
reason it is necessary in the present problem that the trans- 
verse electron temperature gradient dT, /dr not be too large, 
or the hydrodynamic approximation will fail. In what fol- 
lows we assume that these conditions are met. 

Substituting the Maxwell distribution f, in (15) and 
introducing the hydrodynamic velocity 

and the electric current J  = ne(vi - v, ) parallel to the mag- 
netic field, after taking moments we arrive at the following 
system of hydrodynamic equations for the plasma number 
density n, the average velocity V l i  , the current J I I  , and the 
electron and ion temperatures T, and T, : 

dlll 1 a 1 a ezn 
- + - - (rV,JII) = - - (rR,) +Rz-verIll + -Ell, 
dt r d r  r dr me 

In Eqs. (22) we have written 

for the particle diffusive flux; the coefficients D , ,  D,, and D, 
are defined by the relations 

where 
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Here D t, and D Te" are the classical particle and thermal 
diffusivities, respectively, and %$'are the classical transverse 
ion and electron thermal conductivities. The expressions Ri 
and Hi result from electron and ion scattering by fluctu- 
ations. This scattering gives rise to current and velocity dif- 
fusion: 

A frictional force also arises as a result of the interaction 
between the charged particles and the fluctuations. it is de- 
scribed by the terms R, for the electrons and n, for the ions: 

An electric field E, appears in the system as a result of the 
difference in the electron and ion transverse diffusion coeffi- 
cients. From the condition for quasineutrality (V-J = 0)  we 
find 

DiTdTi/dr-D,dTe/dr+ (Di-D,) dnldr 
E,  = 

DeITe+Di/Tt 

In Eqs. (22) V, is the plasma drift velocity across the mag- 
netic field, defined in Eq. (10). The equations describing 
heat and particle transport include external heat sources Q, , 
Qi and an ionization rate Q, . Equations (22) must be sup- 
plemented by the Maxwell equations 

43% 
div B=O, rot B = - J, 

C 

The system of equations consisting of (22) and (23) de- 
scribes the pinch dynamics in the presence of magnetic field 
fluctuations. 

5. THE RELAXED STATE: CURRENT AND MAGNETIC FIELD 
PROFILES 

In the preceding section we derived a system of hydro- 
dynamic equations (22) and (23) describing the plasma dy- 
namics in the presence of magnetic fluctuations. Under RFP 
conditions right after the voltage is switched on, transient 
processes occur, following which a quasisteady state (which 
we call relaxed) can be established, where the current and 
magnetic field change smoothly during the lifetime of the 
discharge. Under these conditions the process can be consid- 
ered stationary and the total current and magnetic flux fixed 
[cf. Eqs. (5)  and (6 ) ] .  Hence in the limit fig 1 Eqs. (22) 
and (23) for the magnetic field B and the current JII assume 
the following form: 

(24) 
div B=O, 

where the differential operator 2 is defined by the following 
expression: 

h 

Physically the operator L is proportional to the resistivity; 2 
describes the current diffusion due to the fluctuations. In L 
we have ignored a term which describes classical collisional 
resistivity, since at sufficiently high temperatures it is small 
compared with the resistivity due to the$uctuations. If the 
resistivity were purely classical (i.e., if L were a number), 
then Eqs. (14) would have only the trivial solution Jil = 0. 

We append to Eqs. (24) the boundary conditions (4),  
(5) ,  and (6),  as well as the natural requirement that the 
current be nonsingular at r = 0: 

We see that the quasistationary system of equations (241, 
together with the conditions (4) ,  (5),  ( 6 ) ,  and (25), has 
nontrivial solutions which do indeed describe a relaxed state 
of magnetic field and current in a plasma that has undergone 
the transition to turbulence. 

The numerical solution of the nonlinear equations (24) 
for a given correlation function F ( r )  given by (19) is ob- 
tained by iteration. The iterations converge very rapidly in 
the region of parameter space where solutions exist: 1% ac- 
curacy is attained after three to five iterations. The func- 
tional form of B, ( r )  and B, ( r )  found numerically for the 
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FIG. 2. B, ( r ) ,  B, ( R ) ,  andp(r) obtained by solving Eqs. (24) with the 
correlation given by Eq. ( 19), where the modes b :"(r) are specified as in 
Ref. 14. The results obtained using the solution ( 7 )  are shown for com- 
parison (broken traces). 

case n = const, T, = const is shown in Fig. 2. Evidently this 
solution differs little from Eq. (7)  found by Taylor for the 
same discharge parameters. But the quantity p = JII / B  is 
found to vary (Fig. 2). 

An important property of the magnetic field profile de- 
scribed by Eqs. (24) is its weak dependence on the form of 
the correlation. This is because the function d In F /dr  ap- 
pears in Eqs. (24) instead of the correlation itself. As a con- 
sequence of this, all the magnetic field profiles found for 
various choices of F( r )  are close to one another. Figure 3 
shows two very different model correlation functions 
(curves a and b),  and Fig. 4 shows the solutions of Eqs. (24) 
corresponding to these functions. It is clear that the curves in 
Fig. 4 are very similar even for such different correlations. 
Note that a uniquely defined correlation function F ( r )  is 
associated with the solution (7)  for n = const and T,- 
= const. In fact, taking F ( r )  in the form 

F (r) = 
Co 

rB'" (dB/&) ' 

where C, is a normalization constant, we can easily convert 
Eqs. (24) into the linear equations (2)  and (3),  the solu- 
tions of which yield (7) .  Substituting (7)  in (26), we find 

FIG. 4. B, (r) and B, ( R )  obtained by solving Eqs. (24) with the correla- 
tion functions shown in Fig. 3. The solid trace corresponds to Fig. 3a, the 
broken trace to Fig. 3b. 

the exact correlation corresponding to Taylor's solution. 
Evidently it is singular as r-0: F ( r )  - l/r. Strictly speaking, 
therefore, it is impossible to reach a state with such a 
correlation. 

The behavior of the field structure as a function of the 
discharge parameters is usually determined's9 by a so-called 
F-6 diagram, where 

F=Bz (a) IE,, 0=B, ( a )  lB, 

(here a is the pinch radius and is the field averaged over 
the cross section). Hence the family of steady pinch states 
gives rise to the well defined F(6)  curve shown in Fig. 5. 
Reversal occurs for 6)6,z 1.2. On the other hand, the F(6)  
curve shown in Fig. 5 terminates at 6 = Om,, z 1.5. At large 
values of 6 the iteration process no longer converges. This is 
taken to mean that the desired RFP solutions exist only for 
6,<6<6,,, . 

We have examined the case of flat density and electron 
temperature profiles. Now we investigate how variable T(r) 
and n ( r )  affect the solutions, using for this purpose the real- 
istic profiles 

Figure 6 shows that the forms of T(r)  and n( r )  have little 
effect on the shape of the magnetic field. The function 
p ( r )  = Jll (r)/B_undergoes a more substantial modification. 
The form of the F-6 diagram changes noticeably (Fig. 7) .  It 

FIG. 3. (a )  Correlation function evaluated according to Eq. (19) using 
data from Ref. 14. The straight line (b)  represents the simplest possible 
correlation function. 

FIG. 5. F-0 diagram describing quasistationary pinch states. The curve is 
calculated for n = const, T =  const (solid trace). For comparison Tay- 
lor's solution is shown by a broken trace. 
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FIG. 6. B, (r) ,  B, (R), and p(r)  obtained by solving Eqs. (24) with the FIG. 8. B, (r),  B, (R),  and p(r )  for the case n = 1 - ?/a2, 
correlation given by Eq. (19), for the cases n = 1 - ?/az, T =  1 - r4/a4 T =  1 - r4/a4, With /1= T ~ v ~ , ,  = 1 trace). The solution (7)  is (solid trace) and n = const, T =  const (broken trace). shown for comparison (broken trace). 

follows from Figs. 6 and 7  that the results of calculations 
with realistic n and T profiles agree satisfactorily with the 
experimental data. l6 

In deriving Eqs. ( 2 4 )  we neglected the dissipation due 
to classical collisions in the equation for the current. Let us 
now examine how this affects the relaxed state. From Eqs. 
( 2 2 )  and ( 2 4 )  we obtain 

It follows from Eqs. (24) and ( 2 7 )  that collisional dissipa- 
tion is negligible when we have A = r,vei 4 1, where 
re = a2/D, is the energy confinement time in the plasma. 
But it is noteworthy that these properties of the relaxed state 
are preserved even when the parameter A = rEve is of order 
unity (Fig. 8). In this case the classical dissipation has its 
greatest effect at the edge of the discharge. Note that both 
classical transport processes and small changes in the corre- 
lation function exert a noticeable influence on the behavior 
of the solution near the edge of the discharge. For example, 
when the correlation function near the edge is raised to 0.1 
(instead of 0.03) ,  the functionp ( r )  vanishes at r  = a and no 
reversal occurs. 

Thus the solution of Eqs. ( 2 4 )  provides a good descrip- 
tion of the existence and properties of the relaxed state in an 
RFP, and also shows that the dependence on the form of the 
correlation function is weak. 

FIG. 7. F-8 diagram for the cases n = 1 - ?/a2, T =  1 - r4/a4 (solid 
trace) and n = const, T = const (broken trace), and for Taylor's solution 
(dot-dash trace). The points (0)  are experimental results (Ref. 7).  

6. ANOMALOUSTHERMALTRANSPORT 

Now we discuss the possible forms of the electron tem- 
perature profile. To lowest order in </< = E, neglecting 
collisions and the additional heat sources Q, , from ( 2 2 )  we 
get T, = const. To satisfy the boundary conditions in the 
same approximation, we should set T, = T,, where Tw is 
the wall temperature. But near r  = a conditions change 
sharply and the fluctuation amplitude drops, so that now we 
have to take into account electron collisions, the presence of 
impurities, radiative losses, etc. Consequently the shape of 
the T, ( r )  profile and the magnitude of T, ( 0 )  strongly de- 
pend on conditions near the wall. Consider an RFP dis- 
charge enclosed in a metal liner. In this case the main elec- 
tron losses are associated with line radiation from iron and 
oxygen impurity atoms and with bremsstrahlung. The total 
loss rate q( T, ) under these conditions was studied earlier. l7 

The thickness of the wall boundary layer including 
losses is determined by the parameter 

where v ,  is the effective rate at which particles lose energy 
due to radiation. Since 4 1 holds, we can assume that the 
layer is thin, i.e., the layer thickness Ax satisfies &/a< 1. 
Then under quasisteady conditions we find from ( 2 2 ) ,  tak- 
ing into account ( 15 ), 

Here x measures distance from the wall ( x  = a - r ) ,  

is the anomalous thermal conductivity, and x is the classical 
thermal conductivity. 

Equation ( 2 8 )  must be supplemented with the bound- 
ary conditions 

Thus the temperature profile in the main part of the plasma 
is flat, with an abrupt change in the boundary layer given by 
Eqs. ( 2 8 )  and ( 2 9 ) .  Since ordinarily To> Tw,  to first 
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order in T,/To we can take the wall temperature to be zero. 
For convenience in what follows we introduce the 

functions 

Then Eq. (28) takes the form 

It is convenient to express the right-hand side of (30) as the 
derivative of an effective "potential" U( y):  

dU A 
-- --- 
d y  Y  

91 ( Y )  . 

Analysis of Eq. (30) shows that the boundary condition 
(29) can be satisfied in the limit x - co only if there is a point 
where dU/dy = 0. It is this point which determines the tem- 
perature To in the interior of the discharge. Then the equa- 
tion for To takes the form 

By expanding (30) in the neighborhood ofy = 1 we can de- 
termine the form of the temperature drop at the wall. Setting 
y =  1 +y ,  weget 

From the definition of the potential U it is clear that 
U " a E ;  I .  Accordingly, by using ( U "  )'I2 < 1 we can solve 
Eq. (32) in the WKB approximation. Following the usual 
procedure, we find 

In getting (33) we used the boundary conditions (29) at 
x = 0. From the relation (33) we obtain the value of the 
thermal flux q, reaching the wall: 

From (34) we can determine the effective thermal 
transport coefficient: 

The energy confinement time corresponding to electron 
thermal transport is 

Note that ohmic heating under the present conditions can- 
not give rise to very large temperatures To, since by virtue of 
(3  1 ) and the results of Ref. 16, To is restricted to values < 1- 
3 keV. 

If additional sources heat the plasma strongly, then the 
temperature profile and energy confinement time change. 
To within terms oforder VT,/VTc, 1 Eq. (22) takes the form 

For simplicity we have ignored ohmic heating. The solution 
of Eq. (35) at r = a when T, ( r )  is well behaved at r = 0 and 
Eqs. (29) hold can be written in the form 

The heat flux to the wall is then 
D 

and the effective thermal transport coefficient D,,, as be- 
fore, is given by 

Taking F, B, and n to be constant, we have the rough 
estimate 

The energy confinement time rE is proportional to b - 'I2. 

This dependence implies that the energy diffusion coefficient 
scales as DE - T :I2. 

7. THE SELF-CONSISTENT TURBULENT APPROXIMATION 

We have examined the average current, magnetic field, 
and electron temperature profiles in a discharge. The ion 
temperature and plasma density can be investigated com- 
pletely analogously. The equations for the average quanti- 
ties, however, will contain the correlation function of the 
fluctuations, 

+ 00 

, F ( r ) = j  d~<b,b,'), 
0 

which is assumed to be given. To close the system of equa- 
tions we have to be able to evaluate F ( r )  . 

For this purpose, recalling Eq. ( 1 ) , we must consider 
small (but nonlinear) oscillations in the system. Subtracting 
the average quantities (24) from (22), we obtain the follow- 
ing equations for the fluctuations u and b: 

+qmAb, div b=0. (37) 

Here B(r)  is the average magnetic field defined by (24). The 
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operators I I ,  and I I ,  were defined following ( 2 2 ) ,  and 2 was 
defined following ( 24) .  

We emphasize that Eq. ( 3 7 )  includes terms both linear 
and nonlinear in the fluctuation amplitude. It is also impor- 
tant that the oscillations take place in a turbulent medium, 
which changes not only the form of the average profiles but 
also helps damp the oscillations by transporting the average 
field produced by the action of the fluctuations. This means 
that the fluctuations affect the properties of the eigenmodes, 
their growth rates, and the way they saturate. The equations 
must be augmented by the relation ( 19) for the correlation 
function F ( r ) .  Equations ( 19) ,  ( 2 2 ) ,  and ( 3 7 )  constitute a 
closed self-consistent system describing the relaxed turbu- 
lent state of the plasma. 

This system is, of course, highly nonlinear. But, as our 
calculations have shown, the magnetic configuration in an 
RFP depends only weakly on the form of the correlation 
function F ( r ) .  This gives us grounds to believe that a com- 
plete solution exists. An algorithm for finding it may be con- 
structed as follows: Let an initial magnetic configuration 
B r  , B r  be given, with the corresponding 
0 = 277aJ/@. Then using ( 3 7 )  we find the unstable modes 
and simultaneously calculate their saturation levels, deter- 
mined by both nonlinear processes and dissipation due to 
scattering off of fluctuations. Note that Eqs. ( 3 7 )  are close 
to the classical MHD system, so their solution must be simi- 
lar to that found by Schnack et a1.I0 Then, using ( 1 9 ) ,  we 
calculate Po' ( r ) .  Plugging Po' ( r )  into Eq. ( 2 2 )  we solve 
for B L1'(r) and B I1 ' ( r ) ,  which are then used as the magnet- 
ic fields in the next iteration step. The iteration process con- 
tinues until it converges. 

We are grateful to V. L. Ginzburg, B. Coppi, and M. 
Tendler for useful discussions. 
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