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The instability of a modulated ultrarelativistic electron beam in a dense plasma is studied in the 
case in which phase oscillations in the beam are suppressed by the relativistic increase in the 
electron mass, and the nonlinear mechanism by which the oscillation amplitude reaches 
saturation is described by a functional dependence of the dielectric constant of the plasma on the 
field amplitude. External modulation of the beam is an effective tool for controlling the instability 
process. Under certain relations among the modulation frequency, the plasma frequency of the 
plasma, and the growth rate, this modulation prevents the system from entering the turbulent 
regime. There is thus the possibility in principle of beam transport over large distance through a 
plasma. The discrete set of modulation frequencies for which there exists a solitary-pulse solution 
and for which energy is returned to the beam is found by numerical and analytic methods. 

A preliminary modulation of an electron beam as it en- 
ters a plasma delays the transition of the system to a turbu- 
lent regime and promotes conversion of beam energy into the 
energy of a monochromatic wave, with a frequency equal to 
the modulation frequency.' For nonrelativistic beams of low 
density v = n,/n, 4 1 ( n ,  and n, are the beam density and 
the plasma density, respectively), the growth of the wave 
amplitude is stabilized by a trapping of resonant electrons by 
the wave and by a bunching of the beam.2s3 The same effect 
limits the wave amplitude in the case of a "slightly relativis- 
tic" beam, with y ~ " ~  4 1, where y is the relativistic f a ~ t o r . ~  

At ultrarelativistic energies, y ~ " ~  % 1, the nature of the 
instability changes, since the phase oscillations are sup- 
pressed by the relativistic increase in the mass of the beam 
electrons (the frequency of the phase oscillations, a,,, is 
smaller than the growth rate S), and the field amplitude 
reaches saturation because the dielectric constant of the 
plasma depends on the amplitude and the phase velocity of 
the wave  decrease^.^ In the latter case, the wave amplitude in 
the beam is small ( 12, I 4 n, ), and conditions become favor- 
able for the transport of intense electron beams along a 
strong magnetic field through a plasma without any substan- 
tial changes in the beam properties.'' 

The equation for the complex field amplitude in a plas- 
ma with an ultrarelativistic electron beam is5 

E 32n v'" y=-, Ep2=- -  Ye n9mcz, a =- 
3 1 

,,'I. ' 
EP 

This equation describes undamped nonlinear waves6 which 
grown in time in the linear stage of the instability, with a 
growth rate which depends on the parameter a, for an arbi- 
trary relation between the plasma frequency w, and the 
modulation frequency w (Fig. 1 ) . 

The existence of such waves in a plasma should clearly 
be accompanied by trapping of resonant electrons by a w?ve 
over a time on the order of a,, ' and by significant deviations 
from the original values of the beam properties. It is thus 

worthwhile to study beam modulation regimes under condi- 
tion such that field energy is returned to the beam, and the 
properties of the beam are unable to undergo irreversible 
changes as a result of phase mixing. In other words, we seek 
solutions of Eq. ( 1 ) which satisfy the condition d "y/drn = 0 
( n  = 1, 2, ... ) at T = f co. 

As is shown by the numerical study reported below, 
solutions of this type exist for a discrete set a, of parameter 
values. The ratio of the period of the nonlinear field oscilla- 
tions to the period of the beam density oscillations is plotted 
along the ordinate in Fig. 2a. An analytic solution has been 
found in the adiabatic approximation for the case la1 > 1, in 
which Eq. ( 1)  becomes an equation in which the highest 
derivative is multiplied by a small ~a rame te r .~  The results 
area illustrated by Fig. 2a, which compares the adiabatic 
theory with the numerical simulation. 

In contrast with the linear boundary-value problems of 
quantum mechanics, the problem at hand is nonlinear; by 
solving it one finds eigenvalues and eigenfunctions of a non- 
linear operator. The reason is that the change of scales 
y ,  = la1 - "*y and T ,  = Ial~ puts Eq. ( 1) in the form 

d3 d2 
P ( y , )  =2i - - - (sign a+ I y ,  1 2 ) ,  A= 1 a 

dztS d%t2 

FIG. 1 .  Linear theory. Plots of several properties versus the parameter a. 
I-The initial difference phase of the beam; 2-the growth rate; 3-the 
initial ratio of the field amplitude a to the beam density modulation N. 
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FIG. 2. a: I-Ratio of the period of the nonlinear density oscilla- 
- JO tions, T,, to the period of the nonlinear field oscillations, T, , ver- 

sus the parameter a; 2--curve calculated in the adiabatic approxi- 

20 mation. b: a dependence of (1,2)  the density maximum N ,  found 
through a numerical solution and in the adiabatic approximation, 
respectively, and ( 3 )  the largest of the field amplitude maxima + -10 

+ + +  0 r n . m .  

I +- - 5 0 '3 5 0 J a 

On the practical side, this study leads to the conclusion 
that there exists a discrete set w,, a(w, ) = a , ,  of modula- 
tion frequencies for which an ultrarelativistic beam has non- 
linear stability in a plasma. 

1. SYSTEM OF NONLINEAR EQUATIONS 

According to Ref. 5, the system of hydrodynamic equa- 
tions describing the oscillations of a nonliner plasma with an 
ultrarelativistic beam can be transformed through the 
change of variables 

E ( t ,  x )  = i  -- n,mc2) "' a ( t )  exp[i ( @ - 8 )  1, 
(3: v; 

[@ = ~ ( t  - X/V), where v is the beam velocity] to a system 
of equations for the "slow" amplitudes and phases of the 
field, a, 6, and of the beam density modulation, N, p: 

N a = - - s  2 in ( 8 - 9 )  , N - Q ~ I V = - ~  cos (8-q,),  

- 1 N d 
0 = -(a+ a2) - - cos ( 8 - 9 ) ,  - (N2@) =-aN sin ( F J - ~ ) ,  2 2a d~ 

amplitude) from the second and third equations of system 
(4) ,  we find the following results for an exponentially grow- 
ing solution, a exp (&), with S > 0: 

6=3'" (h+'-h-'), cos q='12 [ a ( h + + h - )  -11, 

These functions of the parameter a are shown in Fig. 1. 
The instability occurs after a threshold is reached, and it 
occurs under the condition a < 3. The growth rate reaches a 
maximum of 6 ,  = 31'2.2-4'3 at a = 0 and decreases, 
6-(-a)-"',ass- - CQ (Ref. 10). 

2. NUMERICAL SIMULATION 

For numerical calculations it is convenient to put Eqs. 
(2 )  in the form of canonical equations 

for the two pairs of canonical variables p = a sin r ] ,  q = a- 
x cos r] and PN = 1/2N, N with the Hamiltonian 

This system of equations is equivalent to Eq. ( 1 ) (the superi- a2 
H ( P N , N ;  p, q ) = p ~ ' - ~ ( a  

or dot means the derivative d /dr).  
From Eqs. (2)  we find the integrals of motion Since the function H(p,,N;p,q) is an even function of 

N2 a2 1 (P-a" )" the variables p ,  and p, Eqs. (6)  are symmetric under the 
H = - - - ( a + f  ) + - a ~ c o s ( 6 - - ~ ) +  -- 

4 4 2 4 ~ 2  transformationsp- - p,p, -. - p,, r=+ - 7. If a phase tra- 
jectory which develops in a 3D region H(p,,N;p,q) = 0 of 

P=a2-Nz@, (3)  phase space intersects the curve 

which reflect energy and momentum conservation in a plas- 
ma with a beam. If there are no waves in the plasma 
(H = P = 0),  we can lower the order of Eqs. (2) by trans- 
forming to the difference phase r] = 8 - p and using (3)2' : 

N 
ci=- - sin 9, 

2 

Working in the linear approximation, and omitting the 
terms a2/2 and a4/2 (which reflect the nonlinear depen- 
dence of the dielectric constant of the plasma on the field 

at some time 7 = 0, its evolution will therefore be symmetric 
with respect to this event. Accordingly, a trajectory of this 
sort, which emerges at T+ - co from a point of an unstable 
equilibrium position p = p, = q = N = 0, returns to it as 
7-+ + m. Numerical calculations show that symmetric so- 
lutions of this sort do indeed exist. 

Equations (6)  with initial conditions (5)  were integrat- 
ed over a wide range of values of the parameter a .  The points 
on the curves in Fig. 2 show symmetric solutions for the 
discrete set of values a, = 0.7362, 0.09298, - 0.7307, 
- 1.2716, - 1.7771, -2.2661, -3.08056, -3.7901, 
-4.4267, -5.0115, -5.5571, -6.0711, -6.543, 
- 7.478, and - 8.21 12. These points are seen to conform to 

smooth curves. Each value of a on curve 1 (Fig. 2a) corre- 
sponds to nonlinear oscillations with a given ratio of the 
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FIG. 3. Symmetric solutions for various values of a and n,/n,. 1-Oscil- 
lations of the density N; 2-scillations of the field a. a: a = - 0.7307, 
n,n, = 5/2; b: a = 0.09298, n,/n, = 2/1; c: a = 0.73625, 
n,/n, = 3/2. 

oscillation periods of the field, T,, and the density, T,. If 
this ratio is a rational number n,/n, ,  Eqs. ( 6 )  have a sym- 
metric solution, with n ,  field maxima and n ,  density maxi- 
ma, which corresponds to a return regime of the beam-plas- 
ma instability. Corresponding to these values of the 
parameter a, are the ratios n , / n ,  = 3 / 2 ,  2 / 1 ,  5 / 2 ,  3 / 1 ,  
7 / 2 ,  4 / 1 ,  5 / 1 ,  6 / 1 ,  7 / 1 ,  8 / 1 ,  9 / 1 ,  10/1,  11/1,  13/1,  and 
15/1.  

Figure 3  shows examples of symmetric solutions in the 
immediate vicinity of the resonance. Figure 4  shows projec- 
tions of a phase trajectory onto the N,  and q, p planes for 
the case a = 0.09298. 

3. SOLITON SOLUTION NEAR THE INSTABILITY 
THRESHOLD 

Since the instability is stopped by a nonlinearity at a low 
field amplitude near the threshold growth rate, 1 - a / 3  4 1 ,  
one can expand Eq. ( 4 )  in powers of l ~ l g  1, 

and use the linear asymptotic behavior in ( 5 )  as an initial 
condition, 

FIG. 4. Projections of the phase trajectory of a symmetric solution for nE 
= 2, n, = 1, and a = 0.09298 onto the ( a )  N, N plane and (b)  the q,p 

plane. 

After some simple calculations, the system ( 9 )  simpli- 
fies to 

and has the soliton solution 

where a, is the initial perturbation, and the function N ( r )  is 
found from the last of Eqs. ( 9 ) .  

From ( 1 ) and ( 12)  we find the maximum field energy 
density and the maximum amplitude of the beam density 
modulation: 

8v"W 46 
npmc2, I fib 1 max = - 

(vy3) lil 
nb. ( 1 3 )  

a y 

A mechanical analogy is useful in explaining the ap- 
pearance of a threshold frequency for the stability of abeam- 
plasma system and in explaining the nonlinear stabilization 
of the growth of the wave amplitude. Above the instability 
threshold, 

the two oscillators-the plasma and the beam-are coupled 
only weakly, since their resonant frequencies are quite far 
apart. As the parameter a decreases, these frequencies move 
closer together, and the system becomes unstable when the 
plasma frequency in the frame of reference of the beam, 

approaches the frequency of the plasma waves of the beam in 
the plasma, 

Qb=ymb/e%, mb= (v/y3)%mp. 

We thus find, in order of magnitude, a, =: ( R ,  / R ,  ) 2'3 -- 1 .  
In the nonlinear stage of the instability, the growth of the 
field amplitude is accompanied by a change in the dielectric 
constant of the plasma E,, = E + ~ ' ' ~ a ~ / y ,  and a shift of the 
threshold frequency of the system. For a fixed perturbation 
frequency w ,  the instability thus saturates when the field am- 
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plitude reaches the value a, = 61/2S, and we have 
a,, (a, = 3. Since the phase of the oscillations shifts si- 
multaneously, the beam goes into a region of retarding 
phases of the field at the time T, = S - ' arccosh (a, /a, ), 
and the wave growth gives way to damping. As 7- m, the 
beam-plasma system returns to its original (unperturbed) 
state, as the phase approaches its asymptotic value 7, = 28. 

As a decreases as w -a,, the growth rate increases to 
its maximum value S, = 31'2/24/3, and the necessary condi- 
tion for the use of the approximation of a weak nonlinearity, 
S( 1, which we used above, is violated." Numerical integra- 
tion of Eq. (4)  for arbitrary values a- l shows that the 
phase 7 increases without bound as time elapses, and com- 
plex nonlinear undamped waves characterized by two scales 
arise in a plasma with a beam. Asymptotic straight lines run- 
ning parallel to the abscissa correspond to symmetric solu- 
tions (solitary pulses) as r- co (Fig. 5) .  

4. ADIABATIC APPROXIMATION 

As we move away from the resonance into the frequen- 
cy region w < w,, and the damping rate in (5)  decreases to4' 

a change occurs in the nature of the nonlinear oscillations 
(Fig. 6). The reason is that a large number of periods of the 
field amplitude, TE =: la1 - fit into one period of the modu- 
lation of the beam density, TN =:S - I :  

The problem can be solved in the adiabatic approximation, 
in which the density is assumed to remain constant over the 
field period. ' ' 

Following Ref. 5, we renormalize system (4), 

and write it in the form 

pAf=-p sin q, 

FIG. 5. The oscillation phase V(T) for various values of a: I-a = 1;  2- 
0.093; 3- - 1.27. 

FIG. 6. Solitary pulse with a = - 5.5571 ( p  = 0.15267). a: The ampli- 
tudes N (curves I and 3)  and a ( 2  and 4).  1,2-Numerical solution; 3.4- 
analytical solution ((N),(a2)"'  ) .  b: ~ ( 7 ) .  c: I-q(r); 2-(q). 

where the prime means the derivative with respect tox = 8t, 
and where we have identified the small parameter of the 
problem: 

With p = 0, we find the following equation from ( 15 ) : 

A solution of this equation is 

-arcch (2/3A2)'"+2 (1-3AZ/2)  I"=* (x-x,) +2'"-ln (1+2"'). 

The f correspond to the wings ofa cusp soliton which has a 
singularity in its derivative at the point x,, A (x,) = 3 - 'I2 

(Refs. 5 and 1 1 ). At ,u > 0, this singularity disappears, but a 
numerical integration (Fig. 6 )  reveals that Eq. (17) de- 
scribes only the tails of a solitary field pulse, since fast oscil- 
lations with a period T,  ( TN arise when the singularity is 
crossed (see Ref. 11, where a similar equation was studied). 

To study the solution near the singularity x, we intro- 
duce the new variables A, = A - 3 - 'I2, [A, 1 ( 3 - 'I2 and 
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g = x - x,, 16 I 4x0. In the limit pr]'< 1, one finds5 from 
(15) 

To the left of the singularity, the asymptotic form of (18), 

is the same as the asymptotic behavior of solution ( 17). 
In the region 1 5p4/5 it is convenient to introduce the 

new variables u = p - 2/5/A I and f = p - 4/5{ : 

The small term r]* z p  - 6/5 was discarded in the transforma- 
tion from ( 18) to (20). 

A numerical solution of (20) reveals (Fig. 7) that the 
function increases monotonically near 6 = 0, coincides with 
(19) at - f- 1, and has a singularity at 6, ~ 4 . 3 :  

It follows from (21) that the width of the transition region 
is, in order of magnitude, A[- 1 and A{-p4/'. 

There is another solution, r]' = - 1/(4p), near the sin- 
gularity (Fig. 7), for which a' changes sign at the point { = 0 
(Ref. 5). However, a numerical calculation shows that that 
solution does not join with ( 19), and a cusp soliton5 is not 
realized. 

At finite values ofp, the singularity in the derivative at 
the point x, thus disappears. When we move into the region 
x > x,, however, the singularity in (21 ) appears; near it we 
have u s  1, and the approximation ]A, I 4 1, used in the deri- 
vation of Eq. ( 18), is not valid. Furthermore, the nature of 
the solution changes to the right of the transition region, 
x - x, 2p4/', according to the numerical calculation (Fig. 
6).  

The appearance of fast oscillations in the field ampli- 
tude, while the amplitude of the beam density varies mono- 
tonically, makes it possible to integrate Eqs. ( 15) at constant 
values of p and p'. Eliminating the phase r ]  from the first 
equation with the help of the third, we find 

FIG. 7. Solution near the singular point of the field amplitude A ( x , , ) .  I- 
U ( 0 ;  2--corresponding solution according to the equations of Ref. 5 
( ~ ~ 0 . 1 5 2 6 7 ) .  

Integrating (22), we find (cf. Ref. 11) 

wi+w2 w,-w, h-cn[ ( fg )"E/2p ,  k] w=--- 
2  2  I-h cn[ ( f g )  "'8/2p, k ]  ' 

where cn (x,k) is the elliptic cosine, { = x - x,, and w, > w2 
and b + id are the roots of the fourth-degree equation 
U( W )  = 0 (Appendix 1 ) . The period of the nonlinear oscil- 
lations of the field amplitude is 

where K(k)  is the complete elliptic integral of the first 
kind.'' 

In the central part of the pulse we have f ~ g = :  1, and the 
oscillation period is TE ~ p .  As we approach the singularity 
p, = 2.3 3/2 andp: = 6 - ' I2,  however, the oscillation peri- 
od increases (Appendix 2) : 

The condition for adiabatic behavior, T k 4 1, is violated. At 
the limit of the range of validity of the approximation, 
T ;  5 1, at which expression (24) is still valid qualitatively, 
we find TE zp4l5, which agrees in order of magnitude with 
the width of the transition region in (2 1 ) . 

Near the singularity, the asymptotic form of (23) is 
bell-shaped, 

and it describes an extreme peak in the field amplitude (Fig. 
6).  For - &>p, the asymptotic behavior in (26) is the same 
as that in (21 ) (to within A x ~ p ~ l ~ ) .  

Solutions which are averaged over the fast oscillations 
and which describe the monotonic variation of the beam 
density are of interest: 

Tz+E 

(p)=Tz- '  p (Ef )dI ' .  
E 

For the calculations it is convenient to use the equation 
p" = - A cos r] ,  which follows from ( 15). Averaging it 
over the nonlinear period (Appendix 3 ) ,  we find 

pf f=- (A  cos q > =  - l+2p1' + I [  
~ , ~ g - ~ z ~ f  E (k) 

- fg--1 
4~ f - g  K ( k )  ' 

where K(k)  and E ( k )  are the complete elliptic integrals," 
and p = ( p ) .  

Equation (27) can be integrated by quadratures. Be- 
cause of the complexity of the final expressions, however, we 
have carried out a numerical integration. The results are 
shown in Fig. 6a (curve 3 ); they agree well with the results of 
a numerical solution of the original system of equations, 
(15). 
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Also plotted in Fig. 6 are the quantities 

<q>=(-a)"'<A cos q), 
( a ? ) ' / ~ = ( - a ) ' b ( A Z ) ' h  7 

where ( A  cos r ] )  is given by (27), and ( A  ') is calculated in a 
corresponding way: 

where n(n,k)  is the complete elliptic integral of the third 
kind.I2 The other quantities are defined in (23). 

By analogy with mechanics, Eq. (22) can be interpreted 
as the motion of a particle with a mass of 2p2 in a potential 
well U( w). The characteristics of this well evolve slowly in 
time (Fig. 8) as the functionsp andp' described by Eq. (27) 
vary. At the initial time, withp = p' = 0, the particle is at the 
bottom of the well, at the point w = - 1 (Fig. 8a). With 
increasingp, the depth of the left-hand minimum decreases 
(Fig. 8b), and at the singularity, with p, = 2 X 3 - 3/2 and 
pf = 6 - 1/72 

C , the curve has only a single minimum. The parti- 
cle thus "rolls down" into the well on the right and becomes 
a nonlinear oscillator (Fig. 8, c and d ) .  After the density 
p (x )  has reached it's maximum, the well evolves in the oppo- 
site direction, and the system returns to its original state as 

with n)  1 maxima of the field amplitude and a single density 
maximum (Figs. 1 and 6).  For this purpose we note that a 
solitary pulse corresponds to an integral number of periods 
of the field amplitude oscillation, Ax = nT,, between the 
two singular points on the p ( x )  curve ( p ,  = 2.3-3/2, 
p: = + 6 - ), as can easily be verified with the help of the 
mechanical model introduced above: When the solution re- 
turns to the slow branch, the position of the particle on the 
potential curve should be the same as that at the time at 
which the fast oscillations appeared (Fig. 8c). This situation 
corresponds to the condition specified. A more rigorous per- 
turbation theoryi3 leads to an expression which differs from 
(23) by the replacement 

E 

in the argument of the elliptic cosine. Using this expression 
and (24), we find the following from the relation Ax = nT,: 

E ,  

X +  CO.  

Finally, we can derive the asymptotic behavior of the 
spectrum of values p, corresponding to soliton solutions 

FIG. 8. Plot of the potential energy U ( w ) .  a-p = 0,p' = 0; b - - p ~ 0 . 2 7 3 ,  
~ ' ~ 0 . 2 7 9 ;  c-p = 2 . 3 3 ' 2  ~ 0 . 3 8 5 ,  p' = 6 ' "  ~ 0 . 4 0 8 ;  d - ~ ' ~ 0 . 4 5 1 ,  
p ' ~ 0 . 4 7 5  (the crosses on curves a-c show the position of the particle). 

where the points 0 and 6, correspond to the critical values 
p : = 6 1 / 2  andp:= - 6 1 / 2  ( ~ , = 2 . 3 - - ~ / ~ ) .  Theinte- 
gration has been carried out numerically. The correspond- 
ing spectrum of values of a = (2/p ) 2'3, 

is shown by curve 2 in Fig. 2, for comparison with the results 
of the numerical calculations. 

Let us examine the mechanism for the nonlinear satura- 
tion of the instability at frequencies w <a,; this mechanism 
is particularly obvious far from the plasma resonance, 

I E I  ) v1I3/y. In this case the presence of an external modula- 
tion singles out a beam mode w = kv, and the plasma mode is 
not excited in the initial stage of the instability. With increas- 
ing field amplitude, however, the frequency of the natural 
waves of the plasma, 

decreases, and the beam wave branch and the plasma wave 
branch1' come close together. At a field amplitude 
I Ec I = 3 'I3 ~ E I  '/'Ep, the beam mode and the plasma mode 
couple nonlinearly. It is important to note that in this stage 
of the instability the dielectric constant is E,, = ( 2 / 3 ) ~  < 0, 
the plasma remains opaque to the growing waves, and ener- 
gy continues to build up in the beam mode. Later on, how- 
ever, the behavior of the system changes radically, and the 
rapid growth of the wave amplitude is accompanied by an 
abrupt transition (abrupt on the scale of the small parameter 
p)  of the plasma to a state with E > 0. Beyond this point, the 
nonlinear interaction of the beam mode and the plasma 
mode is accompanied by a nonlinear process in which the 
beam and the wave go out of phase, and energy is returned to 
the beam because the two oscillators-the plasma and the 
beam-go out of phase (Sec. 3 ) . An important distinction 
from the threshold (resonant) instability, however, is that 
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waves appear at the frequency w, - w (which is consider- 
ably higher than the rate 8 = w , / l ~ 1  These waves are 
accompanied by small-scale jumps in the wave phase veloc- 
ity, like those described in Ref. 5. In contrast with a cusp 
soliton,' formed by growing and decaying beam wave 
branches, the solutions found above support the assertion 
that energy is returned to the beam only during the excita- 
tion of the plasma mode. 

5. MAIN RESULTS 

In a plasma with an ultrarelativistic electron beam, 
y ~ ' ' ~  % 1, the nonlinear saturation of the instability stems 
from the dependence of the dielectric constant of the plasma 
on the field amplitude: 

This dependence leads to a nonlinear change in the phase 
velocity 

with respect to the beam velocity u; a further consequence is 
a deviation from the phase resonance of the beam with the 
wave. The electrons go into accelerating phases of the field, 
and energy is returned to the beam. Since the period of the 
nonlinear oscillations (which is on the order of the recipro- 
cal of the growth rate) is small in comparison with the time 
scale for trapping of electrons by the wave (in comparison 
with the reciprocal of the phase oscillation frequency), the 
beam as a whole is displaced with respect to the wave, with- 
out breaking up into bunches. 

Near the instability threshold, where the growth rate 
vanishes (6-0) and the relaxation time of the phase veloc- 
ity is quite long ( T, -6 - +0), the beam electrons undergo 
a smooth transition into a region of accelerating phases of 
the field, and the solution assumes a soliton form. With in- 
creasing growth rate, the relaxation time of the phase veloc- 
ity decreases. Since the process is inertial, the beam slips 
through the region of accelerating phases, enters a region of 
retarding phases, etc. The number of these nonlinear cycles 
is finite for the values of the parameter a found above (Fig. 
2).  

At modulation frequencies w < w,, far from resonance, 
la1 ) 1, the nature of the instability changes, since the plas- 
ma is initially opaque to the perturbations which arise in the 
beam, and the role of the plasma electrons reduces to one of 
screening these perturbations. As the field amplitude grows, 
however, the dielectric constant increases and the plasma is 
bleached when E, changes sign." The beam subsequently 
interacts with the plasma wave, and the nonlinear process in 
which the phase matching is lost occurs as described above, 
over a large number of nonlinear cycles. For modulation 
frequencies close to the resonant frequency, la1 g 1, the sign 
of E is essentially irrelevant (Fig. 2), since the plasma 
bleaching time T, z 8  - is comparable in magnitude to the 
time scale of the nonlinear process in which the plasma 
matching is lost, F, =; ( I E ~  w, ) - I .  

A necessary condition for the transport of the beam 
over a large distance in the plasma is a modulation at fre- 
quencies close to the resonance, a, = 0.093 and a, = 1.271; 
this modulation results in a rapid return of wave energy to 
the beam (the return regime of the instability). The opti- 

mum instability regime for the excitation of waves with a 
high energy density is found at small growth rates, at w < a , ,  
where the prolongation of the linear state of the instability 
makes possible the buildup of a significant amount of energy 
in the beam mode (Fig. 2b) .5 

It is physically obvious that the transport of a beam of 
relativistic electrons through a plasma results in a heating of 
the plasma, so the dissipative effects which are seen at a finite 
temperature must be taken into account. The condition for 
the collisionless approximation holds if the collision rate in 
the plasma, v,,, is small in comparison with the instability 
growth rate 6 (Ref. 9) .  

Furthermore, the appearance of a low-velocity electron 
beam as a result of the appearance of a return cu1;rent 
j / e  = n, u z n,c is accompanied by the excitation of ion 
acoustic waves, with a growth rateI4 

if u > us (Ref. 9) .  Consequently, the condition under which 
our approximation is valid, 6 )  ai [with 6 z ( ~ " ~ / y )  wp and 
k z A  ; ') 1, is the inequality 

APPENDIX 1 

The roots of the fourth-degree equation 

where z,,, are given by 

zi=h/3+R+S, z2=h/3- ( R + S )  /2+3'"i ( R - S )  12, 

R ,  S= (h3/27-2p2h/3+2p4*Q'")'", (A1.3) 

APPENDIX 2 

To determine the asymptotic behavior of T, near the 
critical point, p -2.3 3'2, pl-+ 6 - we seek a solution of 
(27) in the form 

where the coefficients L and Mare to be determined. Substi- 
tuting (A2.1) into the right side of (27), and using (A1.3), 
and (23 1, we find L = 3 - For M we find the transcen- 
dental equation 
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from which we find M z  - 0.12. Substitution of (A2.1) into 
(23) leads to 

which yields estimate (25 1. 

APPENDIX 3 

A convenient way to evaluate the integral on the right 
side of (27) is to eliminate cos 77 and to transform to the 
variable w with the help of (16),  (22),  and the relation 
dg = dw/wl ,  where w' is given by (22) .  As a result we find 

The trigonometric substitution15 

[see (23) ] puts the integral in a standard form. l6 This inte- 
gral is expression (27 1. 

" In an unmagnetized beam, under the condition yv113) 1, transverse 
oscillations arise, and the instability becomes a kinetic in~tability.'.~ 

In the region 1 ~ 1 %  1, the terms a2/N and a4/N2 can be discarded, and 
system (4)  becomes the same as that found in Ref. 5. 

3' Even for 6 ~ 1 ,  the modulation of the beam density in (13) remains 
lower than the background density Iir, I,,, ( n , ,  because of the param- 
eter ( ~ y ' ) " ~  > 1 in the denominator. _ 

4 '  In dimensional variables, we have = 8(v/y'l&I ) 1'20p 4 (&/o r .  
5 ,  This effect is analogous to the nonlinear bleaching which occurs in laser 

systems with optical shutters. 
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