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A quantum theory of propagation of solitons in a nonlinear medium is developed based on the 
nonlinear Schrodinger equation for the operators of the positive- and negative-frequency parts of 
the field. A derivation of this equation is given in the functional integration representation, which 
is convenient for the analysis of the dynamics of quantum field fluctuations. The propagation of a 
fundamental soliton, initially in a coherent state, is analyzed. It is shown that the statistics of the 
soliton photons in the nonlinear medium does not change. At the same time the fluctuations of 
one of the quadrature components of the field may be suppressed under certain conditions. 
Interference between the soliton and the coherent radiation alters the photon statistics of the 
resulting field. The conditions under which optimal suppression of the fluctuations of the number 
of photons is ensured and their sub-Poisson statistics is reached are elucidated and analyzed. 

1. INTRODUCTIOI. 

In recent times questions of production and utilization 
of quantum states of electromagnetic fields (squeezed states 
and states with sub-Poisson photon statistics) have attracted 
the increased attention of investigators: such fields are con- 
nected with prospects of solving a whole series of fundamen- 
tal and applied problems of physics. Among these are at- 
tempts to detect gravitational waves and the perturbations of 
space due to the Earth's rotation predicted by the general 
theory of relativity, as well as the possibilities for substantial 
enhancement of limiting characteristics of various devices in 
interferometry, spectroscopy, optical coupling and informa- 
tion processing. 

For quantum fields in the squeezed state the reduction 
in the fluctuation of one of the quadrature components be- 
low the level of fluctuations corresponding to the coherent 
or vacuum state is characteristic. For fields with sub-Poisson 
photon statistics the dispersion of the photon number fluctu- 
ations is smaller than the average value. 

In published papers, as a rule, treat the production of 
optical fields with markedly quantum statistics for the con- 
tinuum radiation. The formation of quantum squeezed 
states of light pulses was analyzed only in Refs. 5-1 1, with 
Refs. 6-1 1 dealing with optical solitons. However the au- 
thors of Refs. 6-8 linearized the nonlinear operator equa- 
tions describing the propagation of the solitons with respect 
to the quantum fluctuations. Their conclusions are therefore 
applicable only in the initial states of propagation. The re- 
sults of Refs. 9-1 1 are not subject to this limitation and have 
more general character. 

References 6, 7, 9-1 1 discuss the suppression of quan- 
tum fluctuations of Schrodinger solitons, formed in nonre- 
sonant cubic-nonlinear media,'' while Ref. 8 discusses the 
suppression of resonant exciton solitons (the so-called 2.n) 
pulses). It is shown in Ref. 8 that in the exciton region of the 
spectrum of semiconductors for pulses of 1-3 ps duration the 
cubic nonlinearity is x ' ~ '  - 10-6-10-4.5 esu. Such a large 
nonlinearity permits the formation of solitons in relatively 
weak fields for maximum intensities on the order of a few 
milliwatts. On the other hand for Schrodinger solitons the 
power requirements are so far about one watt. 

In this paper we develop the quantum theory of Schro- 
dinger solitons. We first give the derivation of the operator 
nonlinear Schrodinger equation (NSE) in functional-inte- 
gral form. This representation of the NSE makes possible the 
study of the evolution of quantum fluctuations outside the 
framework of the parametric approximation. We establish 
the regularity of the suppression of the quantum fluctuations 
of one of the quadrature components of the soliton in the 
process of its nonlinear propagation. We show that the inter- 
ference between the soliton in the squeezed state and coher- 
ent pulse with special modulation of the envelope or the 
phase permits substantial suppression of the fluctuations of 
the number of soliton photons. 

We note that the analysis of the quantum effects in the 
propagation of solitons in Ref. 9 and in the present paper is 
carried out in the Heisenberg picture. In Refs. 10 and 11 the 
operator NSE is solved in the Schrodinger picture; further in 
Ref. 11 it is also shown that quantum solitons are formed in 
the squeezed state. However the photon statistics was not 
investigated in Refs. 9-1 1. 

2. THE NONLINEAR SCHRODINGER EQUATION AND ITS 
FUNCTIONAL-INTEGRAL FORM 

We represent the electric field of the soliton, entering 
(Z = 0)  an optically nonlinear medium, in the form 

io ( t )  = E ~ ( + )  ( t )  e - ' u ~ f + ~ , ( - )  ( t )  eiuot, (1)  

where E :, + ' ( t )  is the slowly varying in time operator of the 
positive-frequency part of the field in the Heisenberg pic- 
ture, E :, - ' ( t )  is the corresponding hermitian conjugate op- 
erator, and w, is the carrier frequency. 

In turn E :, + ' ( t )  can be written as 
+- + m 

E:" (f) = 5 e(w.+Q) a(*) e-In' dQ=e(wo) 1 a ( Q )  ciQt dQ, 

where a ( a )  is the photon annihilation operator at frequency 
w, + fl, which satisfies the usual boson commutation rela- 
tions, and €(aO + a) is the coefficient that determines the 
contribution of the various modes. The right side of (2 )  is 
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valid for a narrow band spectrum. 
Let the soliton modes be in coherent states. We denote 

the eigenstate and eigenvalue of the operator a(n) by 
Ja( l2))  and a(f2):  

with 
+ - 

where a ( t )  is in general a complex function. 
We write the coherent state of the soliton in the form 

where we assume for simplicity that fl takes on a discrete set 
of values. It is not hard to verify that 

(E:+' ( t )  )=<{a) I ~ b + '  ( t )  I { a ) > = e ( o o ) a ( t )  = A o ( t ) .  (6)  

For the problem under consideration we have 

Ao ( t )  =A0 sech ( t lz , )  , ( 7 )  

where T, is the soliton width. 
In a nonlinear medium we write the field in the form 

E ( t ,  z )  =E(+)  ( t ,  z )  exp[-i(oot-koz)  ]+E(- )  ( t ,  z) 

x exp[i(oot-koz) I, (8) 

where ko = c/& is the wave number and co is the linear part 
of the dielectric permeability of the medium. The nonliner 
inducgon operaAor will be taken in the normally-ordered 
form D,, = &,{:E3(t,z) :, where E,, is the nonlinear part of 
the dielectric permeability. 

Assuming that the operators E ' + ' (t,z) and E ' - (t,z) 
are slowly varying functions of their arguments we find in 
the second approximation of dispersion theory the following 
NSE for E ' + = E ' + ' (t,z) (see also Refs. 6, 10, and 1 1 ) : 

Here the z axis is parallel to the direction of propagation, t is 
the time in the comoving system of coordinates: 
t-t - Z/U,U = (dko/dwo) - ' is the group velocity, and the 
parameter g = d 2kddw; characterizes the dispersion of the 
group velocity. The derivation of (9)  is similar to the deriva- 
tion of the classical NSE see, for example, Ref. 12). 

We pass to the dimensionless variables 

where the operator kernel G(.r,v;f) satisfies the equation 

with boundary condition 

and i is the unit operator. 
Let us divide the segment [0,f] into N small intervals 

Af =f,+, -f,(j=0,1,2 ,..., N- 1); fo=O,f, =<. The 
evolution of the operator G on the ( j + 1 ) - st interval A< 
with the nonlinearity neglected ( P =  0)  is described by the 
expression 

In view of the condition ( 15) we have at the end of the 
first interval 

The effect of nonlinearity (0 +O)  on the small segment Af 
may be taken into account with the help of the infinitesimal 
operator, Ref. 13. Further 

The same expression can be obtained by solving ( 14) by the 
perturbations method. 

Repeatedly using (16)-(18), we obtain for the 
"Green's function" of the entire segment [0,<] 

+m + m  N-i  

with7 = T ~ ,  T =  ~ ~ , a n d f ,  <<,+,.ForAf-ObutAfN={ 
the expression (19) may be written as 

In the new notation the NSE (9) takes the form t (2) = - 
aQ 8 9  +p,$+*=o (11) i i-- Bb 2 Here T is the time-ordering operator:" 

with boundary condition 

4 ( ~ 7  5-0) =$o ( T )  . 
We look for a solution of Eq. ( 1 1 ) in the form In the case under consideration the role of time is played by 
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the coordinate x. The differential DT denotes integration 
over an infinity of trajectories connecting the points with the 
coordinates (7,O) and (T,<). 

Equations ( 13),  (20 ) ,  and (21 ) constitute a formal so- 
lution of the NSE ( l l  ) in functional-integral form. Replac- 
ing the operators in it by c-number functions leads to the 
corresponding classical equations.'3,'4 We also note that in 
the limiting case of a nondispersive nonlinear medium 
(g = 0) these equations lead to the familiar result 

The functional-integral form of NSE obtained here is con- 
venient for the analysis of the behavior of the soliton fluctu- 
ations in the temporal representation. 

3. SOLITON SQUEEZED STATES 

We shall show that a soliton propagating in a nonlinear 
medium, which starts from a coherent state, ends up in a 
squeezed state. We write the operator $,(T) in the form 

where the function a,(r)  is classical, & ( T )  is an operator, 
and 

< E o  ( T )  )=O. (2% 

We solve (13 ) ,  ( 2 0 )  by iteration. To the propagation 
regime of a single soliton coresponds the value = 1  of the 
nonlinear parameter. If the quantum fluctuations of the soli- 
ton are ignored [ f ,(r) - 0] then the problem reduces to the 
well-studied classical one.'* In that case the NSE with the 
boundary condition (23a) has the fundamental solution 

a (7 ,  % )  =exp ( - i % / 2 )  sech T .  ( 2 4 )  

Consequently, in the framework of the functional-integral 
NSE the formal Greens's function ( 2 0 )  corresponds to the 
operator 

We now analyze the behavior of the quantum fluctu- 
ations. Let us replace the operator $in ( 2  1  ) by &(T) .  In the 
linear approximation in the fluctuations we have 

We neglect the effect of the fluctuations on the trajectories 
over which we are integrating in (20) ,  i.e., we replace 
g 0 [ r ( x )  I by &(q). Then 

S ~ ( 1 1 ) = a o ( 9 )  [Eo+(q)+E0(9)  I ,  6 9  ( 9 ) = S : ( 9 ) % ,  

and 

T exp [B ( ~ ( x )  ) I  =exp  [ i B o  ( ~ ( x )  ) + i s 9  ( q )  I .  

Thus, in this approximation, the integral ( 2 0 )  takes the 
form 

G ( %  9 ;  % ) = f 6 ( ~ - q ) e x p  [-i%/2+ i 6 9 ( 9 ) ] ,  

where relation ( 2 5 )  was taken into account. As a result the 
solution of Eq. ( 13 ) takes the form 

To analyze the dispersion of the quantum fluctuations 
of the soliton {(T,<) = $(T,C) - ($,,(T)) in the nonlinear 
medium it is sufficient to consider the terms linear in C,(T) 
and 6; ( T ) .  As a result we obtain 

E ( T ,  g )  = [ l - i H ( . s ,  % ) I  E o ( . ~ ) e x p ( - i b / 2 )  
- i H ( z ,  S )  Eo+  ( T )  exp  [ i  (2rp--G/2)1. ( 2 8 )  

where H(T,[) = a; ( T ) <  and q, is the initial phase of the 
soliton. 

We introduce the quadrature components 

X=E++E, Y= i (E+-E) ,  

their averages are (X) = ( Y )  = 0. For the relative disper- 
sions of the quadratures we have 

<xz (T '  ' ) ) }  =1*2H(r ,  g )  sin 2@+4H2 ( I ,  c) sin2 $J. ( 2 9 )  
<Y"T %)) 

Here 

< x 2 ( 2 ,  g )  ) = < X 2 ( 7 ,  E )  ) / < X Z ( T ,  0 )  ), $J=rp--E/2, 

<X' (T ,  0 )  ) = < Y Z ( ~ ,  0 )  )=<to ( T ) E ~ + ( T )  )=const. 

It is seen that the dispersion of one of the quadratures 
can grow with increasing 4, while that of the other decreases. 
The initially uniform relative distribution of the fluctuations 
over the soliton becomes nonuniform (see curve 1  in Fig. 1  ) . 

FIG. 1. Plots of the dependence of the reduced dispersion of the quantum 
fluctuations of one of the optical soliton quadratures: instantaneous 
(curve 1 ) and averaged over the detection time 27, (curve 2)  values in the 
neighborhood of the soliton peak. The dashed curve gives the soliton pro- 
file. Unity corresponds to the level of vacuum fluctuations. The distance 
traversed, normalized to the length of the dispersive spreading, is < = 5, 
the time T is normalized to the width of the soliton. 
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The quadrature components have extreme values under 
the condition 

Then 

For H% 1 we have ( x 2 )  z (2H) -', ( x 2 )  ,,, z (2HI2. 
If the soliton phase is optimized for its peak then at the 

edges the squeezing is decreased. For ultrashort pulses, in 
view of the finite response time of the detector (which we 
denote as 2rd ) an averaging of the squeezing takes place, i.e. 

~ + 7 d  

The curve 2 in Fig. 1 illustrates the degradation of the 
squeezing due to detection for the case T = 0. Nevertheless, 
as can be seen from Fig. 1, a rather deep squeezing of quan- 
tum oscillations can be achieved in optical solitons. 

It should be noted that the form of the squeezed state 
under discussion differs from the squeezed state formed un- 
der degenerate parametric amplification (see, for example, 
Ref. 5 ) ,  in which the suppression of the fluctuations as a 
function of distance proceeds according to the exponential 
law. At the same time, for both cases the regularities of the 
behavior of the quadrature fluctuations at short distances 
turn out to be the same. Therefore the results of the Refs. 6- 
8, where the parametric approximation was used to analyze 
the quantum fluctuations of the soliton, are only valid for 
small values of H(r , f )  (in our notation). For H(r,c) < 1 the 
results of the parametric approximation and the approxima- 
tion we have developed coincide [see Eq. ( 3  1 ) 1 .  

4. SUPPRESSION OF INTENSITY FLUCTUATIONS; SUB- 
POISSON PHOTON STATISTICS 

The question of intensity fluctuations is important first 
of all from the point of view of the direct detection of the 
soliton. Conclusions about the nature of the statistics of the 
fluctuations can be deduced on the basis of an analysis of the 
moments of the photon number. Below we confine ourselves 
to the calculation of just the dispersion 

The photon number operator 

is defined at the cross section 6 of the medium at time T. 

The quantum averaging in (33) can be carried out over 
the initial coherent state of the solitons or over the initial 
vacuum fluctuations after subtracting off from $(T,{) the 
nonzero expectation value as, for example, in (22). We shall 
utilize the latter variant. Then in accordance with (27) the 
dispersion of the photon number equals 

aZ(7, L) =a? ( 7 )  =ao2 (z)  <to (T) to+ (T) ). (34) 

It follows that the photon statistics in the propagation of the 
soliton does not change, remaining Poisson. 

At the same time the interference of the soliton that has 
passed through the nonlinear medium with the coherent ra- 

diation permits the photon statistics of the total radiation to 
become sub-Poisson. In the simplest case, when the coherent 
radiation is mixed with the soliton with the help of a light- 
splitting plate, introducing negligible losses of the soliton, 
the resultant radiation may be described by the "shifted" 
operator1 

where C(T) is the normalized amplitude of the coherent ra- 
diation. 

The dispersion of the photon number of the total field 
equals 

o x t ( ~ ,  5) =(Eo (T)  EOf ( T )  ) {aoZ('t) 

+2 1 C ( a )  lao (z)  . (cos v+2H sin v)  

+ /C(T)  l 2  [1+2H sin 2v-4H2 sin2 v] ), (36) 
where 

H = H ( T L ) , Y =  - ( 0  + 5/2) ,0 = O(T)  = arg ~ ( ~ 1 .  
The ratio 

(" ') 1+1H sin v (H sin V+COS v+p) F(T, G) = ------ = 
o2 (7, '1 (1+2p cos v+p2) 

, (37) 

where p = P(T) = ao(r)/l  C(T) I, characterizes the change 
in the statistics of the photon number fluctuations. 

Under certain conditions one may obtain the value 
F <  1, which corresponds to sub-Poisson statistics for the 
photons. Below we shall exhibit possible forms of the func- 
tion C(T), corresponding to optimal suppression of quan- 
tum noise. 

It can be shown that F(r) [the relation (37)] assumes 
its minimum value at every instant of time T if the condition 

is satisfied, where p(r) = + arctg H - ' ( r,f)  . The deriva- 
tion of (38) is rather laborious and will be omitted. We only 
note that its validity was verified by numerical modelling. In 
this way the form of the auxiliary pulse C(T) differs from the 
soliton form a0( r )  for achieving optimal suppression of the 
fluctuations. The condition (38) may be satisfied under 
phase, amplitude or amplitude-phase modulation of the 
pulse C(T).  We shall discuss the first two cases. 

Let the form of the envelope of the soliton and the auxil- 
iary pulse be the same, i.e.,p(r) = const. In that case condi- 
tion (38) is satisfied for phase modulation (PM) of the form 

v (z)  =-n/2--(p(z) f arccos{p [l+tg-2 cp (T) I-'"). (39) 

Since we have I tg p(r) 1 < 1, PM may be effective over 
the duration of the entire pulse (for arbitrary T) only if 
p<fi. In the opposite case the value of arccos I...) in (39) 
does not always exist and the fulfillment of (38) is not real- 
ized. 

The form of the function (39) is represented in Fig. 2a 
(curve 1 ) forp = fi and the " + " sign in front of the arcco- 
sine. The " - " sign corresponds to interference of a0( r )  and 
C(T) with the phase difference, leading to a lowering of the 
amplitude of the resultant pulse. The T dependence of the 
Fano factor for the case under consideration is depicted by 
curve 1 in Fig. 3. 

One way to produce PM in an initially unmodulated 
soliton consists in making use of the phase self interaction in 
a medium with cubic nonlinearity in the absence of disper- 
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FIG. 2. Plots of the dependence of the phase ( a )  and the envelope (b)  of 
the auxiliary pulse on the normalized time T for ( = 5; curve 1 is optimal, 
curve 2 is approximate. 

sion effects. Then the phase increase equals 

v (a) =cp+B sech2 T, (40) 

where q, and B are real constants, the first of which is the 
initial phase and the second is determined by the nonlinear- 
ity of the medium, the maximum intensity of the soliton and 
the traversed distance. 

FIG. 3. Plots of the time dependence of the Fano factor for < = 5: the 
dashed straight line corresponds to coherent radiation, the dashed curve is 
the envelope of the fundamental soliton, curve 1 corresponds to optimal 
amplitude of phase modulation, curve 2-to the approximating phase 
modulation, curve 3-to the approximating amplitude modulation, curve 
4-to mixing with continuous radiation, curve 5-to mixing with a soliton 
of the same form. 

An example of the approximation of the dependence 
(39) by the function (40) is shown by the curve 2 in Fig. 2a, 
and the dependence of the Fano factor corresponding to it by 
curve 2 in Fig. 3 (p = a). As was to be expected, near the 
soliton peak the suppression of the intensity fluctuations is 
practically optimal. Differences arise on the wings of the 
pulse in view of significant discrepancies between the re- 
quired and the approximating curves (Fig. 2).  

We consider now the possibility of realizing the condi- 
tion (38) for amplitude modulation of the auxiliary pulse 
C(T). In the case = 5,v = - 95.655 (for this phase the 
amplitude I C(T) I is minimal) we have calculated the opti- 
mal form of the auxiliary pulse, which is shown as curve 1 in 
Fig. 2b. We note that it corresponds to the same T depen- 
dence of the Fano factor as in the optimal PM, i.e., curve 1 in 
Fig. 3. It is seen that to obtain optimal suppression of the 
quantum fluctuations the auxiliary pulse should lag the fun- 
damental one (in the present case by approximately a time 
T Z  1.7). 

An attempt to approximate this curve by some retarded 
soliton (curve 2 in Fig. 2b) leads to a barely noticeable in- 
crease of the Fano factor (curve 3 in Fig. 3, v = - 95.655 ") 
in the region 0.1 < T < 1.2. For other T curve 3 almost exactly 
coincides with the curve 1. 

To obtain a better feeling for the results under discus- 
sion we also calculate the r dependence of the Fano factor for 
the following two interesting cases. The first constitutes the 
result of mixing the soliton with continuous radiation, hav- 
ing constant amplitude and phase chosen to be optimal for 
the soliton peak ( lC I = 0.099, v = - 95.655 "). This case is 
illustrated by curve 4 in Fig. 3. It is seen that this mixing 
variant is fully competitive with that discussed above. 

The second case turns out to be most unfavorable 
(curve 5 in Fig. 3). It is the result of mixing two identical 
solitons, differing only in amplitude, i.e., p and v are con- 
stants chosen to be optimal for the point T = 0. But even in 
this case the photon statistics in the soliton is essentially sub- 
Poisson. 

Beside the Fano factor it is of interest to estimate the 
dispersion of the photon number fluctuations, which direct- 
ly determines the detection shot noise. In the form normal- 
ized to the maximal initial value the dispersion may be writ- 
ten as 

a"~, 5) =ao2 (T) {1+2p-'(7) cos v (T) f p-2 (7) 
+4Hp-' (z) sin v (T) [ I f  p-' (z) cos v (T) Sp-' (T) H sin v (z)] } . 

It is not hard to obtain this expression by making use of Eq. 
(36). 

In accordance with (41 ) we have calculated the disper- 
sion for the above mixing variants. The results of the calcula- 
tion are shown in Fig. 4. The best noise suppression is 
achieved by the optimal amplitude modulation (curve 1 Fig. 
4).  In the case of optimal PM (curve 2) the dispersion turns 
out somewhat larger than in the case of amplitude modula- 
tian, due to the fact that the minimal value p = fl which it 
requires corresponds to a larger amplitude of the auxiliary 
pulse and, consequently, to an increased intensity of the re- 
sultant pulse. 

To avoid excessive crowding of Fig. 4 we omit the 
curves for the approximating amplitude and phase modula- 
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FIG. 4. Plots of the time dependence of normalized dispersion for f = 5: 
the dashed curve corresponds to the coherent soliton, curve 1-to optimal 
amplitude modulation, curve 2-to optimal phase modulation, curves 3 
and &to mixing with continuous radiation and with a soliton of the same 
form (there is an error in the labeling of curve 3: for small T it is below 
curve 2 ) . 

tions: they are very close to curves 1 and 2. Also curve 3, 
illustrating mixing with continuous radiation ( 1 C I = 0.099; 
Y = - 95.655 O ) ,  differs little from them. 

Just as before, the interference of solitons identical in 
form (curve 4 in Fig. 4, p = 10.15, Y = - 95.655 ") turns 
out to be least productive. But also here the suppression of 
the photon number fluctuations in comparison with the ini- 
tial coherent soliton turns out to be quite significant. Thus, 
even when the soliton has comparatively short propagation 
length (( = 5) significant suppression of the quantum inten- 
sity fluctuations is possible, i.e., one may reach significantly 
sub-Poisson photon statistics. 

5. CONCLUSION 

It follows from the results of this work that the initially 
coherent optical soliton goes over under nonlinear propaga- 
tion into a definite quantum state with suppressed fluctu- 
ations of the field quadrature or the photon number. The 
latter is realized in the interference of the soliton in the 
squeezed state with coherent radiation. We determine forms 
of amplitude and phase modulations of the coherent radi- 
ation that result in sub-Poisson statistics of the photons. The 
peculiarities in the detection of ultrashort light pulses by the 
photon counting method were recently discussed in Ref. 15. 

The main parameter that determines the suppression of 
the quantum fluctuations of the soliton is 
H(O,[) = a: (O)( = ( = Z / L ,  . We estimate its value under 
typical  condition^.'^ In single-mode fiber lightguides the 
propagation of the fundamental soliton at wavelength 
A,= 1.5 pm for D =  -2rcg//Z; = 15 ps/(nm.km) may 
be realized for a pulse power of 1 W for width T, z 4 ps. Here 

L, = L,, -800 m. For a lightguide length of a few kilo- 
meters the parameter ( will be equal to several units. Conse- 
quently a quite realistic possibility exists of obtaining power 
pulses with suppressed quantum fluctuations. Naturally one 
should keep in mind that our calculations were performed 
without taking into account absorption and distributed me- 
dium noise, which could lead to definite corrections of the 
results here obtained. Without a doubt this circumstance 
deserves special discussion. 

The method for analyzing the behavior of the quantum 
fluctuations of the fundamental optical soliton developed 
here leads in essence to a quasistatic approximation for the 
fluctuations; at each instant of time their size is determined 
by the value of the envelope at that same instant. 

This method may be applied to solitons of higher order 
as well as to the so-called dark  soliton^.'^ In the framework 
of the approximation developed here the answer to the ques- 
tion of how the quantum fluctuations would behave them- 
selves in their case is quite obvious-the temporal dynamics 
of the fluctuations dispersion will be connected with the soli- 
ton envelope. 

The authors are grateful to S. A. Akhmanov, D. N. 
Klyshko and V. I. Tatarskii for discussion of the work and 
critical remarks. 
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